Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Application of characterisation methods in the development of biomedical titanium alloys (CROSBI ID 323430)

Prilog u časopisu | pregledni rad (znanstveni) | međunarodna recenzija

Jajčinović, Magdalena ; Slokar Benić, Ljerka ; Pezer, Robert ; Holjevac Grgurić, Tamara Application of characterisation methods in the development of biomedical titanium alloys // Machines, Technologies, Materials, 17 (2023), 2; 86-89

Podaci o odgovornosti

Jajčinović, Magdalena ; Slokar Benić, Ljerka ; Pezer, Robert ; Holjevac Grgurić, Tamara

engleski

Application of characterisation methods in the development of biomedical titanium alloys

Biomaterials are becoming an increasingly important research topic over time as they are used to replace parts and functions of the human body, helping to improve the quality of human life. Titanium alloys are particularly important for the development of new biomaterials. Commercial pure titanium and its alloys are used as essential structural biomaterials in the manufacture of implants due to their excellent biocompatibility, good corrosion resistance and mechanical strength. However, studies have shown that aluminum and vanadium ions are released in alloys such as Ti-6Al-4V, which can cause health problems over time. Because of the problems that occur, researchers are working to improve the properties of titanium alloys by adding new elements. In most cases, different metals are added to titanium and it is known that with the presence of different metals, the properties of titanium also change. All biomedical titanium alloys must undergo various testing procedures before they can be used. The article describes the characterisation methods used in the development of titanium alloys, such as: light and scanning electron microscopy, energy-dispersive spectrometry, X-ray diffraction analysis, differential scanning calorimetry, differential thermal analysis. The reliability of the results depends on the methods used and the avoidance of errors in the characterisation of biomedical alloys in order to reach better conclusions and produce alloys of the highest quality desirable for use in the human body.

biomedical alloys, Ti-alloys, characterisation, properties

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

17 (2)

2023.

86-89

objavljeno

1313-0226

1314-507X

Povezanost rada

Metalurgija