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Abstract. We present a finite element model for a two-layered moderately thick 
plates based on the Mindlin plate theory. Starting from the pure displacement-based 
approach and the general expressions for the shear strains, selective constraints for 
the shear are assumed and a new layered plate element is introduced based on the 
mixed formulation. In the bending part of the formulation the starting transverse 
displacement interpolation has a cubic order and the rotation interpolations are 
quadratic while they are linked in both fields following the problem-dependent linked-
interpolation expressions. In the membrane part the displacement interpolations are 
quadratic and also linked with the drilling nodal rotations by the constraints on 
constant stresses within the patch test. 

The element passes the general constant-bending patch test and has 36 degrees of 
freedom after the internal bubble parameters are statically condensed in the element 
stiffness matrix. The layers can have different material characteristics, but these are 
assumed to be linear for each layer. 

The element is tested on a set of benchmark problems and compared with the 
results produced by the displacement-based layered elements without reduction in 
shear and which stiffness matrix is calculated by the reduced integration technique. 
The element is also compared with the other elements from the literature. 

1 Introduction 

A two-layered plate finite element is presented, developed in the research project 
entitled “Assumed strain method in finite elements for layered plates and shells with 
application on layer delamination problem – ASDEL”, financially supported by the 
Croatian Science Foundation. 

Two existing plane finite elements, one for the moderately thick plates and the other 
for the membrane effects are combined to model a space layer of the two-layered plate 
element (Fig. 1). Both incorporated elements are displacement based elements, involving 
only nodal displacements and nodal rotations as the unknown parameters linked by 
polynomial interpolations. The plate part of the element model is already presented in [1] 
and it involves cubic interpolation for transverse displacement and quadratic interpolation 
for the section rotations. The plate part of the element is problem dependent and it means 
that in the interpolations material parameters are involved. The membrane part has also 
only displacements as the unknown parameters and they include two components of a 
nodal displacement in the membrane plane and a nodal rotation around the normal to its 
plane.  

Mindlin plate theory is adopted in the plate part of the layered element with the shear 
strains together with bending deformations included in the total strain energy. Equilibrium 
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conditions are imposed by the minimization procedure on the total potential energy of the 
modelled problem. 

Some constraints are introduced in the plate and the membrane part with the intention 
to avoid the locking effects present in the thin plate limit conditions and as well the 
membrane locking. This constraints are enforced on the shear strain expressions in the 
natural coordinate orientations for the plate part and on rotational degrees of freedom in 
membrane part as it will be shown further. 

 
Figure1: Two layered plate model with four nodes per every plate, together with space nodes of 

the layered structure 

 

2 Linked interpolation functions 

2.1 The plate part 

The plate displacement fields are interpolated as follows. The transverse displacement 
is interpolated with the cubic polynomial: 
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The global rotations of the plate sections are interpolated with the quadratic 

polynomials: 
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(3) 

where wi, θx,i and θy,i are the nodal unknown parameters: the transversal displacement 
and the two rotations of the plate sections around the local in plane x and y coordinates 
respectfully, for every element node (i= 1,…4).  wBb,0, wBb,3,  wBb,4 and  wBb,5 are four internal 
bubble parameters that do not affect the displacement field on the element sides and also 
θBb,2 and θBb,3 are internal bubble parameters in the rotation fields, which compete the cubic 
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and the quadratic interpolation polynomials respectively. This bubble parameters satisfy 
the conformity of the element and they can be statically condensed on the element stiffness 
matrix level.  Ni are the bi-linear Lagrangean interpolations, and the ∆κij are the element 
side curvature increments between nodes i and j (hierarchical rotation vectors in Fig. 2) 
that can be expressed in terms of the shear strains along that element side with the aim to 
pass the constant bending stress condition on the standard patch test of five elements. 

 
Figure2: Four node plate element, nodal rotation vector and hierarchical rotation vectors 

perpendicular to the element’s sides 

 

This higher order parameters are expressed with the nodal displacements and rotations 
of that element side and the plate material parameters: 
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In the expression (4) xi i yi are the coordinates of the four element nodes i=1,..,4, Lij 
are the lengths of the element sides between neighboring nodes i and j, D is the plate 
bending rigidity D=Et3/12(1-ν2), E and G are the elasticity and the shear moduli, ν the 
Poisson’s  coefficient, t the plate thickness and k the shear coefficient, usually taken as 
k=5/6. 

 

2.2 The membrane part 

The membrane fields are interpolated as follows. The two in-planar components of the 
displacement for the membrane deformations are interpolated in terms of the nodal 
displacements and the nodal rotations of element with four nodes. 
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In the expressions (5) and (6) ui and vi are the nodal displacement in the local coordinate 
orientations,  θz,i are the nodal rotations around the axis perpendicular to the plane of the 
element and uBb,0 and vBb,0 are again the internal bubble parameters that do not affect the 
displacement conformity on the element sides and are statically condensed on the element 
stiffness level. Ni are again the bi-linear Lagrangean interpolations, and the rotational 
differences are controlling the hierarchical (quadratic) polynomial part of the 
interpolations (Fig. 3). This kind of interpolations most membrane elements from 
literature use if the rotational degrees of freedom are involved. 

 
 
 

 

 

Figure3: Hierarchical perpendicular side displacements 
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Since the rotation field is a kinematical field that can be expressed from the skew stress 
tensor part  by  
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the nodal rotation differences can be derived to satisfy the patch test for the constant strain 
condition, where the Lagrangean interpolation part suffices to pass it and the quadratic 
part must vanish. From that criteria the nodal rotation differences can be expressed like in 
(8) for the element side between nodes 1 and 2 and where the rotation difference between 
these nodes is expressed: 
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3 Assembled layer stiffness matrix 

From plate and membrane element stiffnesses, generated with presented interpolations 
by standard finite element procedures, the assembled layer stiffness is calculated 
involving only nodal displacements and eliminating all rotation degrees of freedom. 

 

4 Conclusion 

The element is tested on a set of benchmark problems and compared with the results 
produced by the layered elements without the constraints in shear and the membrane 
constraints. The element is also compared with the other elements from the literature and 
with the layered beam element models [2]. 

The results of the presented layered model will be published in the research paper with 
more details and comparative numerical examples. 
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