
An overview and comparison of free Python

libraries for data mining and big data analysis

I. Stančin* and A. Jović *
* University of Zagreb Faculty of Electrical Engineering and Computing / Department of Electronics, Microelectronics,

Computer and Intelligent Systems, Unska 3, 10 000 Zagreb, Croatia

stancin.igor@gmail.com, alan.jovic@fer.hr

Abstract - The popularity of Python is growing, especially

in the field of data science. Consequently, there is an

increasing number of free libraries available for usage. The

aim of this review paper is to describe and compare the

characteristics of different data mining and big data analysis

libraries in Python. There is currently no paper dealing with

the subject and describing pros and cons of all these libraries.

Here we consider more than 20 libraries and separate them

into six groups: core libraries, data preparation, data

visualization, machine learning, deep learning and big data.

Beside functionalities of a certain library, important factors

for comparison are the number of contributors developing

and maintaining the library and the size of the community.

Bigger communities mean larger chances for easily finding

solution to a certain problem. We currently recommend:

pandas for data preparation; Matplotlib, seaborn or Plotly

for data visualization; scikit-learn for machine leraning;

TensorFlow, Keras and PyTorch for deep learning; and

Hadoop Streaming and PySpark for big data.

Keywords - data science, python, data mining, machine

learning library, big data analysis, framework

I. INTRODUCTION

Data mining (DM) deals with preparation of data
obtained from various information sources (e.g. databases,
text files, streams) as well as data modeling using a variety
of techniques, depending on the goal that one wants to
achieve (e.g. classification, clustering, regression,
association rule mining, etc.). DM uses machine learning
(ML) techniques to discover new knowledge from the
existing information. DM is, nowadays, mostly considered
within the wider scope of data science, which also
encompasses statistics, big data techniques and data
visualization. Data preparation is a vital step in the process
of data analysis, and it includes data preprocessing and data
manipulation (sometimes also called wrangling).
Preprocessing aims at cleaning, integrating, transforming
and reducing the original raw data so that it can become
usable for data analysis, while wrangling transforms the
preprocessed dataset into a data format that can be easily
manipulated by the data modeling algorithms.

The use of Python in the area of data science has
reached unprecedented levels, especially in the area of
freely available tools and libraries. In a poll published in
May 2018 by the authoritative portal KDNuggets [1], under
the category “Top Analytics, Data Science, Machine
Learning Tools”, it was found that Python is used by 65.2%
of roughly 2000 participants, compared to 52.7% for

RapidMiner and 48.5% for R, its two major competitors. In
practical perspective, in the last three years, Python has
become the programming language of choice for the data
science community, with R being the second choice. The
Python’s popularity probably stems from its relative ease
of use (even for non-computer scientists), huge ecosystem
consisting of a number of libraries for every aspect of data
science and its reliance via NumPy and SciPy wrappers on
the fast implementations of a large number of scientific
algorithms written in C and Fortran.

In our previous work from 2014, we have provided a
comparison of freely available tools for general DM [2]. At
the time, Python based tools were still not mature enough,
while R, RapidMiner, Weka and Knime were at the
forefront of the most popular tools. In contrast, the aim of
this work is to provide an overview and comparison of
various existing Python based libraries for data science.
Specifically, we focus on six groups of libraries: Python
core, data preparation, data visualization, machine learning,
deep learning and big data. We estimate the libraries’
significance based on a detailed analysis of their
capabilities, the number of contributors and the community
size. Since deep learning is a rather recent development in
data science, but already with a steady and growing tools’
support in Python, we include these libraries, too.

II. AN OVERVIEW AND COMARISON OF LIBRARIES

A. Core libraries

Many DM and ML tasks in Python are based on fast and
efficient numerical and vectorized computing with NumPy
[3] and SciPy [4] libraries. Many functionalities from these
libraries are actually wrappers around the Netlib [5], secure
and robust scientific implementations of algorithms. Main
advantage of NumPy and SciPy is their ability of
performing efficient vectorized computing and
broadcasting over n-dimensional arrays.

The other advantage of using Python in this field is the
fact that it is relatively easy to connect third party code into
the Python interpreter. Probably the most commonly used
library for that purpose in the of DM is Cython [6]. Cython
is a language built on top of Python that also supports
calling C functions and having C type of variables and
classes. The usage of Cython can make some critical parts
of code several times faster.

All three aforementioned libraries have a stable code
and are in constant maintaining and development. Table 1
shows useful information about libraries’ “reputation” on
GitHub, a web-based hosting service for version control
[7], using the number of stars, forks, contributors and
activity on the library repository. Activity is shown through
the number of contributing authors and the number of
commits in the last month.

B. Data preparation

Since everything in the field of data science is based on
data, there is a need for data preparation libraries. Currently
the best and most used Python library in this field is pandas
[8]. pandas has a wide range of capabilities for input/output
data formats, like Excel, csv, Python/NumPy, HTML, SQL
and more. Furthermore, pandas has powerful querying
possibilities, statistic calculations and basic visualizations.
It has a rich documentation, but a bit confusing syntax,
which is often pointed out as its most significant flaw.

Every other library in this field has much bigger issues
than pandas. PyTables [9] and h5py [10] accept only HDF5
data type, which is a huge limitation for general usage.
There are several more similar libraries (e.g. Tabel [11]),
but none of them can be competitive to pandas, for now.

C. Data visualization

Table 3 shows a comparison of data visualization
libraries. Plotly [12] has support for most of the standard
plots that are used in DM and ML. seaborn [13] has a few
capabilities less than Plotly, and Matplotlib [14] has a few
less than seaborn. Although there are differences between
these three libraries, they all have the main plotting
capabilities. Bokeh [15] and ggplot [16] have the fewest
options and are the least used libraries.

Matplotlib is a Python implementation of the
MATLAB-like plots and is written on a low level, with a
lot of possibilities for customization. Its syntax can be a bit
confusing at first, but once one masters its main concepts,
it is easy to draw pretty much any graph. seaborn is built
on top of Matplotlib and is easier for usage and learning for
beginners than Matplotlib. Although it is easier to use, in
the cases of some complex graphs with a need for a lot of
customization, it is possible that seaborn would be an
infeasible option.

Plotly seems to be the most powerful library in data
visualization field. Its main flaw is a relatively unintuitive
syntax, making it harder to learn for beginners. However,
the flaw is compensated with a very rich documentation
providing a lot of examples. It is possible to integrate Plotly
graphs into webpages with Dash [17]. Bokeh is intended for
integration of interactive plots into webpages, where a user
can explore data himself. ggplot is the Python’s
implementation of R’s way of plotting. It has a limited
documentation and sacrifices customization in order to
have a simple and straightforward code.

Although all of the libraries in this group are relatively
popular based on the data presented in Table 1, we must
mention that ggplot has not been maintained or developed
in the last two years.

D. Machine Learning

scikit-learn [18] is the most popular Python library for
machine learning. Beside it, there are also mlxtend [19], a
new and small library that includes only a few basic
algorithms, and Shogun [20], which is primarily written in
C++, but there is an available Python wrapper for all of its
functionalities. Shogun has more algorithms than mlxtend,
but far less than scikit-learn. There are only a handful of
algorithms that Shogun has implemented and scikit-learn
does not, which can be seen in Table 2. There is also a
library called mlpy [21], which is not listed in Table 2. The
reason for its absence is that it is a small library, similarly
to mlxtend, but it does not have any well known algorithm
implemented that other libraries do not have.

scikit-learn has an advantage in the number of
algorithms implemented in most categories in Table 2.
Shogun’s advantage over the other libraries is in the number
of algorithms that implement different kinds of trees.
Although mlxtend is a small library, it is the only library
with implemented association rule algorithms and stacking
ensemble learning. The lack of these algorithms can be
considered a huge omission by scikit-learn and Shogun.
The same goes for inductive rule learners, full Bayesian
network, rotational forest and fuzzy c-means clustering,
which are not implemented in any of the listed libraries.

Table 1. Information about libraries from GitHub

Library Stars Forked Contributors Activity

NumPy 9621 3318 726 28 (103)

SciPy 5418 2690 685 21 (101)

Cython 3833 799 275 10 (85)

pandas 18134 7233 1407 65 (217)

PyTables 801 164 60 0 (0)

h5py 1042 288 98 3 (6)

Tabel 11 0 1 1 (1)

Matplotlib 8688 3966 787 20 (218)

seaborn 5722 905 87 0 (0)

Plotly 4569 1068 68 5 (38)

Bokeh 8969 2398 346 11 (52)

ggplot 3429 539 13 0 (0)

scikit-learn 33337 16358 1253 38 (94)

mlpy 5 2 1 0 (0)

Shogun 2312 891 153 8 (57)

mlxtend 2033 475 46 3 (17)

TensorFlow 120547 72008 1834
194

(1888)

Keras 38196 14584 773 20 (53)

PyTorch 24781 5878 934
152

(913)

Caffe 27016 16335 267 0 (0)

Caffe2 8407 2130 196 0 (0)

mrjob 2367 570 82 3 (143)

Dumbo 1037 161 6 0 (0)

Hadoopy 245 62 3 0 (0)

Pydoop 168 53 11 1 (18)

Spark

(PySpark)
20576 18057 1330 78 (246)

Hadoop

(Streaming)
8567 5360 155 58 (456)

Note: 1) activity represents: number of contributing authors

(number of commits) in the last month; 2) data is from February

14th, 2019

From popularity shown in Table 1, we can see that…
Table 2. Comparison of machine learning libraries

Category Supported algorithms scikit-learn mlxtend Shogun

Feature selection
Filters + (many methods) + (one method) -

Wrappers + (many methods) + (two methods) -

Feature transformation

Discretization + - -

Normalization + - +

PCA + (several methods) + +

ICA + (several methods) + + (various)

MDS + - +

Manifold learning + - +

SVD + - -

Random projections + - -

LDA (for dimensionality reduction) + + +

GDA (Kernel Fisher Discriminant

Analysis, for dimensionality reduction
+ - -

Factor analysis + - +

tSNE + - -

others + - +

Decision tree learner

ID3 - - +

C4.5 - - +

CART + (optimized) - +

CHAID - - +

RelaxedTree - - +

others - -

+ (Conditional

probability tree,

Nobody tree)

Bayesian classifiers
Naïve Bayes

+ (various distribution
assumtions)

- +

others + (ComplementNB) - -

Function based
classification

LDA classifier + - -

Logistic regression + + -

GDA classifier + - -

Elastic net + - -

Others +
+ (Softmax

regression)
-

Instance based learning
kNN + (several) - + (several)

Nearest centroid classifier + - +

Regression analysis

Ordinary least squares linear regression + + -

Ridge regression + - -

Kernel ridge regression + - +

PLS regression + - -

Lasso (and variations) + - -

Least angle regression + - -

Polynomial regression + - -

others

+ (Bayesian regr.

Robustness regr.,
Isotonic regr. …)

- -

ANN

Perceptron + + +

MLP classification and/or regression + - +

Restricted Bolzman Machine + - -

Building your own NN - - +

others -
+ (Adaline,
Multilayer

perceptron)

+ (Averaged

perceptron)

SVM

SVC (or NuSVC) + - +

SVR (or NuSVR) + - +

OneClassSVM + - +

LaRankSVM - - +

others + (RBF kernel SVM) -

+ (NewtonSVM,

SVMSGD,
LPBoost,

MKLRegression)

Ensemble learning

Bagging + - +

AdaBoost + - -

Random forest + - +

Extremely randomized trees + - -

Totally randomized trees + - -

Gradient boosting + - +

stacking - + -

Majority voting + + +

others
+ (IsolationForest,

weighted average voting)
+ (stacking
regressor,

+ (MeanRule,

Combination

Rule)

From popularity shown in Table 1, we can see that scikit-
learn has a huge community, while mlpy has a very small
community. It should also be mentioned that scikit-learn
has the best documentation, which is intuitive for usage.

E. Deep learning

Table 4 shows functionalities that certain deep learning
library have implemented. Basic functionalities are
implemented in all four available libraries. Caffe [22] does
not have much more than these basic functionalities and its
documentation is not intuitively structured. Caffe has its
new version – Caffe2 [23], but it has a similar number of
functionalities. TensorFlow [24] (TF) is developed by
Google Brain, it has a good documentation, a lot of
functionalities beside the basics and it is possible to make
code very customable. Since it is written as a low level
library, it is bit harder to master. TensorBoard is a

visualization tool that comes with all the standard
installations of TF. It allows users to monitor their models,
parameters, losses, and much more.

Keras [25] is built on top of TF. Coding in Keras is
therefore on a higher level. The cost for that is a harder
customization of code. It is well known that customization
and tweaking of code is much easier when coding at a low
level. PyTorch [26] (PT) is developed and used by
Facebook. It was developed more recent than TF, but its
community is growing fast. PT is dynamic and it runs code
in a more procedural fashion, while in TF, one first needs
to design the whole model and then run it within a Session.
Because of this, it is much easier to debug code in PT. PT
has more “pythonic” codes, it is easier to learn and easier
to use for quick prototyping. PT and Keras also have good
documentations.

Table 3. Comparison of data visualization libraries

Plot type Matplotlib seaborn Plotly Bokeh ggplot

Line chart + + + + +

Histograms + + + - +

Bar + + + + +

Scatterplots + + + + +

Boxplot + + + - -

Contures + + + - -

Filled polygons + - + + -

Spectrogram + - + - -

Violin plot + + + - -

Pairplot - + - - -

Heatmap - + + + -

Matrix clustermap (dendogram) - + + - -

Regression plot - + - - +

Joint plot - + + - -

Polar plot + - + - -

3D + - + - -

Interactive graphs and animations + - + + -

Others + + + + -

NOTE: If there is minus in some column, it does not necessarily mean that it is not possible to do it, but that there is no direct function for a

wanted plot (for example, pairplot is possible to create with Matplotlib with several lines of code and a scatterplot)

Hierarchical clustering
AgglomerativeClustering

+ (Ward; single, average

and complete linkage

strategies)

-
+ (single
linkage)

BIRCH + - -

Centroid (partition)

clustering

k-means + + -

Mean Shift + - -

Distribution based
clustering

EM clustering
+ (Gaussian mixture

model)
-

+ (Gaussian

micture model)

Affinity propagation + - -

Spectral clustering + - -

Density based clustering DBSCAN + - -

Association rules

(unsupervised)

Apriori - + -

Association rules - + -

Evaluation methods and

metrics

Holdout + + -

Cross-validation + - +

Regression evaluation: MSE, MAE,

Pearson’s correlation coefficient
+ - -

Classification evaluation: TP, FP, FN, TN,
confusion matrix, accuracy, precision,

recall, F1…

+ + +

Clustering evaluation: Adjusted rand index,

Normalized mutual information, Silhouette

Coefficient, Calinski-Harabasz index…

+ -

+ (Normalizer

mutual

information)

ROC, PRC, Lift chart, Cost-benefit

+ (ROC, PRC), liftchart

and cost-benefit in
scikit-plot

- + (ROC, PRC)

other

+ (OVO, OVR,

GridSearchCV,

RepeatedKFold, …)

+ (bootstrap, lift
score, …)

+

(ECOCStrategy
, OVO, OVR,

GridSearch, …)

 Table 4. Comparison of deep learning libraries

Category Supported method TensorFlow Kearas PyTorch Caffe

Layers

Conv1D, Conv2D, Conv3D + + + +

ConvTranspose1D, ConvTranspose2D,

ConvTranspose3D,
+ + + +

SeparableConv1D, SeparableConv2D + + - -

MaxPool1D, MaxPool2D, MaxPool3D + + + +

AvgPool1D, AvgPool2D, AvgPool3D + + + +

AdaptivePool (all combinations) - - + -

GlobalPool - + - -

Dense + + + +

Dropout + + + +

Flatten + + - +

Padding + + + +

RNN + + + +

LSTM + + + +

GRU + + + -

Normalization + + + +

Noise - + - -

others + + + +

Activation functions

ReLu + + + +

ReLu6 + - + -

PReLu - + + +

LeakyReLu - + + -

CReLu + - - -

ThresholdedReLu - + + -

Elu + + + +

Selu + + + -

Softplus + + + -

Softsign + + + -

Bias_add + - - -

Sigmoid + + + +

Hard_sigmoid - + - -

Exponential - + - +

Linear - + - -

Softmax + + + +

Tanh + + + +

others + + + +

Losses

MSE + + + +

Log_loss + - - -

Hinge_loss + + + +

Logcosh - + - -

Cross_entropy + + + +

Poisson + + - -

Cosine_distance + - - -

Huber + - - -

NLLLoss + - + -

CTCLoss + - + -

KLDivLoss - + + -

NCELoss + - - -

BCELoss - + + -

SoftMarginLoss - - + -

CosineEmbeddingLoss - - + -

MultiMarginLoss - - + -

others + + + +

Optimizers

GradientDescent (GD) + - - -

Proximal GD + - - -

StohasticGradientDescent (SGD) - + + +

Averaged SGD - - + -

RMSprop + + + +

Rprop - - + -

Adadelta + + + +

Adagrad + + + +

AdagradDualAveraging + - - -

ProximalAdagrad + - - -

Adam + + + +

AdaMax - + + -

Nadam - + - +

SparseAdam - - + -

L-BFGS - - + -

FTRL + - - -

Momentum + - - -

GPU acceleration + + + +

F. Big data

Currently, the most popular tools for big data are Spark
and Hadoop MapReduce. Both are scalable, flexible and
fault tolerant tools. They have their own specialized storage
system, which allows them to work on clusters of
computers. Spark uses the Resilient Distributed Datasets
(RDDs), while Hadoop uses the Hadoop distributed file
system (HDFS). The main difference between Spark and
Hadoop MapReduce is the fact that Spark can work within
the RAM memory, while Hadoop always writes on the file
system. Hadoop is a good choice in the cases of very large
amount of data (larger than the available RAM) and when
there is no need for immediate results. In all other cases,
Spark is probably a better choice. Although both are written
in Java, many big data engineers prefer to use them in
combination with Python.

Hadoop Streaming [27] is an interface that allows the
usage of any language for MapReduce jobs on Hadoop. The
other possibility is to use mrjob [28], an open source
wrapper around Hadoop Streaming. It is actively developed
by Yelp and it has a good documentation. A disadvantage
of mrjob is that it is a simplified framework that does not
provide some advanced functionalities and does not have
available support for typedbytes, so it is a bit slow in some
cases. In contrast, Dumbo [29] provides more advanced
functionalities. It is also a wrapper around Hadoop
Streaming, but its documentation is not that rich, which
makes it harder to use. It is very similar to Hadoopy [30],
which also has support for typedbytes serialization of data
and is a Hadoop Streaming wrapper. Hadoopy has a
relatively good documentation. Pydoop [31] is a wrapper
around Hadoop pipes (C++ API for Hadoop). There are a
few additional Python libraries for Hadoop, but we find that
those mentioned above are currently the best options.
Dumbo and Hadoopy have not been maintained or
developed for the last 5 years.

Regarding Spark, we are not aware of any other Python
library other than PySpark [32]. PySpark is an API that
exposes Spark data processing model to Python.

III. CONCLUSION

For data preprocessing and manipulation, we
recommend the usage of pandas. It has a strong community
support, a rich offer of functionalities and no serious
competition. In the field of data visualization, things are not
so clear-cut and the choice of library largely depends on the
project. Plotly has the most capabilities, seaborn is very
intuitive and easy to use, while Matplotlib offers many
possibilities for customization. All three have strong
communities.

scikit-learn is the best library in the field of machine
learning. It has a very good and intuitive documentation
with many examples. It has a large scope of implemented
algorithms. Deep learning is a relatively recent field, but
with three very good libraries. We recommend the usage of
PyTorch or Keras for quick prototyping and TensorFlow
for projects which demand a lot of customization.

Hadoop Streaming and PySpark are the best libraries to
use in the field of big data. Both are APIs for native libraries

(Hadoop and Spark), so they have a large community
support.

REFERENCES

[1] KDnuggets, (2019, February 4th), https://www.kdnuggets.com/.

[2] A. Jovic, K. Brkic and N. Bogunovic, "An overview of free
software tools for general data mining," 37th International
Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), Opatija, 2014.

[3] T. E. Oliphant, A guide to NumPy, USA: Trelgol Publishing, 2006.

[4] E. Jones, T. E. Oliphant, P. Peterson, et al. SciPy: Open Source
Scientific Tools for Python, 2001.

[5] S. Browne, J. Dongarra, E. Grosse and T. Rowan, The Netlib
Mathematical Software Repository, D-Lib Magazine, 1995.

[6] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn and K.
Smith, Cython: The Best of Both Worlds, Computing in Science
and Engineering, 13, 31-39, 2011.

[7] GitHub, (2019, February 14th), https://github.com/.

[8] W. Mckinney, pandas: a Foundational Python Library for Data
Analysis and Statistics. Python High Performance Science
Computer, 2011.

[9] F. Alted and M. Fernández-Alonso, PyTables: Processing And
Analyzing Extremely Large Amounts Of Data In Python, 2003

[10] A. Collette, h5py, (2019, February 4th), https://www.h5py.org/

[11] B. Bergman, Tabel, (2019, February 4th),
https://github.com/BastiaanBergman/tabel.

[12] Plotly Technologies Inc., (2019, February 4th), https://plot.ly/.

[13] seaborn, (2019, February 4th), doi: 10.5281/zenodo.883859.

[14] J. D. Hunter, Matplotlib: A 2D graphics environment, Computing
In Science & Engineering, 9(3), 90-95, 2007.

[15] Bokeh Development Team, Bokeh: Python library for interactive
visualization, 2018.

[16] ggplot, (2019, February 4th), http://ggplot.yhathq.com/.

[17] Dash, (2019, February 4th), https://plot.ly/products/dash/

[18] F. Pedregosa et al., Scikit-learn: Machine Learning in {P}ython,
Journal of Machine Learning Research, 12, 2825-2830, 2011.

[19] S. Raschka, MLxtend: Providing machine learning and data science
utilities and extensions to Python’s scientific computing stack, The
Journal of Open Source Software, 3(24), 2018.

[20] S. Sonnenburg, et al., The SHOGUN Machine Learning Toolbox,
Journal of Machine Learning Research, 11, 1799-1802, 2010.

[21] D. Albanese, R. Visintainer, S. Merler, S. Riccadonna, G. Jurman
and C. Furlanello, mlpy: Machine Learning Python, 2012.

[22] Y. Jia, et al. Caffe: Convolutional Architecture for Fast Feature
Embedding, MM 2014 - Proceedings of the 2014 ACM Conference
on Multimedia, 2014.

[23] Caffe2, (2019, February 4th), https://caffe2.ai/.

[24] M. Abadi, et al., TensorFlow: A system for large-scale machine
learning, Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’16), 2016.

[25] F. Chollet, Keras, (2019, February 4th),
https://github.com/fchollet/keras.

[26] PyTorch, (2019, February 4th), https://pytorch.org/.

[27] Apache, Hadoop Streaming, (2019, February 4th),
https://hadoop.apache.org/docs/current/hadoop-
streaming/HadoopStreaming.html.

[28] mrjob, (2019, February 4th), https://pythonhosted.org/mrjob/.

[29] Dumbo, (2019, February 4th), https://github.com/klbostee/dumbo

[30] B. White, Hadoopy, (2019, February 4th),
https://github.com/bwhite/hadoopy

[31] S. Leo, G. Zanetti, Pydoop: a Python MapReduce and HDFS API
for Hadoop., Proceedings Of The 19th ACM International
Symposium On High Performance Distributed Computing, pp.
819–825, 2010.

[32] Apache, PySpark, (2019, February 4th),
https://spark.apache.org/docs/latest/api/python/index.html

