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Emotion Classification Based on Convolutional
Neural Network Using Speech Data

N. Vrebčević, I. Mijić, D. Petrinović
University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia

nikola.vrebcevic@fer.hr, igor.mijic@fer.hr, davor.petrinovic@fer.hr

Abstract—The human voice is the most frequently used mode

of communication among people. It carries both linguistic and

paralinguistic information. For an emotion classification task,

it is important to process paralinguistic information because it

describes the current affective state of a speaker. This affective

information can be used for health care purposes, customer

service enhancement and in the entertainment industry. Previous

research in the field mostly relied on handcrafted features that are

derived from speech signals and thus used for the construction

of mainly statistical models. Today, by using new technologies,

it is possible to design models that can both extract features

and perform classification. This preliminary research explores

the performance of a model that comprises a convolutional

neural network for feature extraction and a deep neural network

that performs emotion classification. The convolutional neural

network consists of three convolutional layers that filter input

spectrograms in time and frequency dimensions and two dense

layers forming the deep part of the model. The unified neural

network is trained and tested spectrograms of speech utterances

from the Berlin database of emotional speech.

Keywords—emotions, speech, emotion classification, convolu-

tional neural network, deep learning

I. INTRODUCTION

It is known that communication between people has two
dimensions: verbal and non-verbal. Each dimension carries a
portion of the information which can be examined both as
a whole or independently. The verbal dimension will take
into account only the lexical meaning of words that are
produced while the non-verbal dimension comprises hand ges-
tures, facial expressions, prosodic characteristics and emotion
expressions [1]. In some situations verbal information by itself
can be ambiguous and complete meaning of an utterance will
be defined by a gesture, intonation, pitch fluctuations or any
other component of non-verbal communication [1].

Emotions are an intriguing portion of non-verbal commu-
nication because they represent a biological response to an
arbitrary event that is significant to a person involved in the
event [2]. In other words, emotions unequivocally present a
complex state of mind in a certain situation, where the state of
mind is mainly defined by feelings, thoughts, and moods. On
the other hand, emotions affect physiological state (e.g. heart
rate, blood pressure, muscle movements, etc.) and thus provide

This research is founded by European Union, partly from European
Regional Development Fund and Cohesion Fund for financial period 2014.-
2020.

a mechanism for direct mapping of an inner psychological
state into a physiological state. Since physiological signals
are measurable, by observing changes in such signals, it is
possible to make conclusions about the presented emotions.
The entire field of affective computing is based on that
hypothesis and it tries to solve the problems of emotion
recognition and prediction from different modalities such as
facial expressions, electrodermal activity, heart rate variability,
EEG and finally, speech, the modality which is focused
on throughout this paper. Emotion recognition could be an
useful enhancement in human-computer interaction (HCI) in
a way that computers should modify their responses on user
commands appropriately based on a estimated user’s affective
state. This improvement should take present HCI to the next
level and make it more similar to the real-life interactions
among people. Based on the survey in [3], affect-sensitive
computer systems can find applications in the entertainment
industry, intelligent vehicle systems, customer services such
as call centres, health care, and research.

Speech production is a process in which a complex system
of organs must perfectly collaborate to create series of sounds
that are understandable and interpretable. The process results
in a transformation of an abstract thought into a sequence
of sounds that are spoken aloud and carry the meaning of
the original thought. For this paper, the relevant subsection
of the described complex chain of speech production is the
mechanism of sound generation. Basically, Broca’s area, the
brain area responsible for speaking [4], uses the premotor
cortex to send nerve impulses to all muscles involved in
speech production, most prominent among them being the
vocal chords that will either contract or relax. Simultaneously,
the respiratory muscles will compress the lungs and a current
of air will flow through the glottis. At that moment, if the
vocal cords are tensioned, they will start to vibrate under the
pressure of air (open and close very swiftly) and generate
harmonical impulses of air which are manifested as voiced
sounds. In contrast, if the cords are opened, the air flow will
freely pass by and produce unvoiced sounds. Following the
vocal cords, air flows through the rest of the vocal tract which
ends with the lips and the nose. That part of the vocal tract can
be represented by a system with a specific frequency response
which defines the characteristics of the produced sound based
on its shape, length, thermal capacity, the vocal tract wall
elasticity and friction between the wall and the air. Specific
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sounds are result of different, small perturbations in the air
flow and the air pressure which can be described with linear
vocal tract model excited with vocal cords.

An emotional state in speech is observable thorough dif-
ferent physical characteristics of sounds which are induced
by changes of the vocal tract and its excitation. Different
emotional states will cause modulation of nerve impulses
which will result in minor oscillations of pitch, air flow and
the physical properties of the vocal tract. Previously stated
changes will affect vocal tract frequency response especially
in higher frequencies regions [5], which is observable when
statistics of frequency response is computed through sufficient
period of time.

Emotion classification and prediction tasks are usually per-
formed by modelling patterns in arbitrary data. Most widely
used models are statistical models (e.g. Hidden Markov Model,
Gaussian Mixture Model), machine learning models (mainly
Support Vector Machine - SVM) and deep learning models
[6]. Statistical and machine learning models use handcrafted
features as information describing specific physical properties
of speech and they have advantage of low complexity and
theoretical interpretability. On the other hand, deep learning
models have the ability of automatically learning relevant
features from raw data that best suit the given task and use
them to perform classification. Popular deep learning models
are inherited from the domain of computer vision and they
usually consist of multiple consecutive subnetworks, in most
cases some combination of convolutional neural networks and
deep neural networks, and recently recurrent networks.

In this paper through Section II will introduce related work
with similar architecture to the proposed model. Details about
the explored model are given in the Section III. Final results
and discussion are presented in IV and V.

II. RELATED WORK

Emotion recognition from speech data is to the present
day still a challenging research problem. One of the reasons
researchers like to experiment using the speech modality is
because speech is a natural way of sharing information [6]. In
recent years, the field of deep learning exploded and provided
tools for designing complex models from raw data. These
models have very high number of parameters and when trained
on sufficient amount of data, they outperform conventional
machine learning models.

Authors in [7] used convolutional neural network (CNN)
that have been trained and evaluated on multiple emo-
tional speech databases. The CNN model was inherited from
AlexNet [8] and evaluated using the Leave-One-Speaker-Out
(LOSO) cross validation method. Input features for the model
were spectrograms computed on 1.5 s long speech fragments
using 20 ms wide analysis window. To increase the amount
of training data, authors computed spectrograms from speech
signals with different sampling frequencies: 16, 15 and 14

kHz. The model was defined by five convolutional layers,
with max pooling at the first and the last layer, followed by
two dense layers with ReLU activation and 50% dropout and
softmax layer at the output. Finally they reported unweighted
recall averaged over each LOSO cross validation fold. For
Database of German Emotional Speech (EmoDB) unweighted
averaged recall (UAR) was 0.71 for the seven class classifica-
tion problem, the eNTERFACE corpus produced an UAR of
0.66 for six classes and SUSAS 0.57 for five classes.

III. MOTIVATION AND METHODOLOGY

In this preliminary research, the main goal is to design
a stable and simple model by using deep learning methods
and algorithms. The model should serve as a reference for
future models that will emerge from upcoming research by
authors in the domain of affective computing, mainly based
on an exploration of the emotion recognition using the speech
modality. In Section II a model has been introduced which
is, by its architecture and parameters, the closest one to
the model which is explored in this paper. In that manner,
another important aim of this research will be a comparison
between model used in [7] and model CNN model in this
research. Additionally, a performace of the CNN model will
be compared with the performance of an SVM model which is
frequently used in affective computing [3], [6] and the AlexNet
model [8] that is usually referenced in the computer vision
tasks.

According to the survey in [6], every speech classification
or prediction task consists of: defining the features that contain
the highest amount of affective information from speech;
subsequent design of the best possible model for a given task;
and finally, careful preparation of the raw speech data for
model training and evaluation. This section will describe these
key points in detail.

A. Dataset
For the purpose of this paper, emotional speech data from

the publicly available EmoDB corpus [9] was used. It com-
prises utterances from 10 speakers (5 female and 5 male). Each
speaker had to pronounce predefined sentences while acting
one emotion at a time from a set of seven basic emotions
(fear, disgust, happiness, boredom, sadness, anger and neutral).
The corpus includes 535 studio recorded utterances with a
sampling rate 16 kHz.

B. Features
A widely accepted way of extracting features from utter-

ances is by using some set of predefined features, e.g. Com-
putational Paralinguistics Challenge (ComParE) [10] or The
Geneva Minimalistic Acoustic Parameter Set (GeMAPS) [11].
In general, these features describe the statistical properties of
specific physical occurrences present in a sample of speech.
Each physical property should be calculated on short segment
(frame of analysis) in which speech is considered to have
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characteristics of stationary process. Finally, the statistics will
be computed over a predefined number of frames, where
results may vary depending on the number of frames.

Two types of features were computed for development of the
baseline model and the CNN model. First type of features are
functionals defined by the GeMAPS [11] feature set and they
describe statistical properties of speech in terms of low level
descriptors (LLDs) which are representing different physical
characteristics of an utterance. Functionals were computed
by using openSMILE feature extractor [12]. The other type
of features are spectrograms which are carrying complete
information about speech in frequency domain, in a given time
segment.

It can be observed that selected features are, directly or
indirectly, describing statistical properties of observed data and
the statistics will depend on a span of a time window in which
it is computed. To explore dependency of a model performance
and width of the analysis window, previously stated features
were calculated on speech fragments of length 720 ms and
1280 ms. Utterances were fragmented into fragments of afore-
mentioned lengths and overlap between consecutive fragments
in the case of length 720 ms was 480 ms (2/3 overlap), and
for the length of 1280 ms, overlap was 560 ms (1/2 overlap).
For the fragments that were 720 ms long, spectrograms were
calculated by a using Hamming time window of 40 ms width
FFT with frame advance of 10 ms, while for the fragments
of length 1280 ms, spectrograms were calculated by using 36
ms Hamming window and 512-point FFT with the window
advance of 5 ms. Resulting spectrograms had dimensions
256⇥ 72, and 256⇥ 256, respectively. In Fig. 1 is illustrated
the process of spectrogram calculation for speech fragments
lenght of 1280 ms.

1280 ms
0 Hz

8 kHz5 ms

 512 samples

Fig. 1: Illustrated method of spectrogram calculation with
parameters of analysis frame and resulting spectrograms di-
mensions

C. Data Augmentation

For the purpose of training a complex convolutional neural
network, the data was expanded by using bootstraping tech-
niques. More precisely, original utterances were downsampled
to 14 kHz and 15 kHz (the method was adopted from [7]), a
reverberation effect was applied, utterances were reversed in

TABLE I: Amount of anotated speech fragments for different
levels of augmentation

Augmentation type Fragment length [ms] Utterances Number

downsampled 720 (2/3 overlap) 46890
downsampled 1280 (1/2 overlap) 14328

noise 720 (2/3 overlap) 328230
noise 1280 (1/2 overlap) 100296

noise & effects 720 (2/3 overlap) 474110
noise & effects 1280 (1/2 overlap) 144872

downsampled - original and downsampled fragmets
noise - downsampled augmentation type extended with white and
ambient noise
noise & effects - combination of downsampled augmentation type
extended with reverberation and reverse effect with and without white
and ambient noise

time and additive white and ambient noise was combined with
everything previously stated. White and ambient noise were
added with signal-to-noise ratio (SNR) of 20 dB. The white
noise was derived from three different distributions: Gaussian,
Laplace and uniform. The ambient noise was taken from the
MUSAN dataset [13] and sounds of plane takeoff, keyboard
typing and a motorcycle passing by were used. Alltogether,
six noise types. The number of annotated speech fragments
for each level of augmentation is displayed in Table I. The
total number of original and downsampled fragments without
noise is 46890 for the 720 ms fragment length and 14328
for the 1280 ms fragment length. When three types of white
and ambient noise are added, the total number of fragments
for clean and noisy utterances becomes 328230 and 100296
for the 720 ms and 1280 ms fragments, respectively. Finally,
when the reverberation effect and the time reversed samples
are added to the original and downsampled fragments and
when the noise is applied, the database comprises the original
clean fragments, the clean fragments with effects, the noisy
fragments and the noisy fragments while the total number of
fragments becomes 474110 and 144872 for the 720 ms and
1280 ms long fragments, respectively.

D. Baseline SVM Model
As stated above, a simple SVM model has been trained to

serve as a reference for the more complex CNN models. Pre-
suming nonlinear feature interactions, a radial basis function
(RBF) kernel was used as an extension of the model, to ensure
separability between data points in a high dimensional space.
The model hyper parameters C and � were tuned by using a
grid search algorithm and by narrowing the range of values
that C and � should have. For the parameter C, the final range
of values was [3, 5] and for � was [0.005, 0.012].

The model was validated through 4-fold cross validation
where each fold comprised train and test partition. Partitions
in each fold were stratified by gender. The train partition was
built from all utterances of a randomly selected four male and
four female speakers. The remaining speakers (one male and
one female) were included in the test partition. Such partition
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organisation accomplishes a type of gender-stratified-speaker-
independent cross validation evaluation.

E. CNN Model

The convolutional neural network comprises convolutional
and dense layers. Three sequentially stacked convolutional
layers define the first portion of the network. In the following
description of model’s architecture, strides were applied in
both time and frequency dimensions of spectrograms. The first
layer has 96 rectangular filters with size 7 ⇥ 7 and stride 3,
then the second layer has 256 filters with size 5 ⇥ 5 and
stride 1 and the third layer has 256 filters with size 3 ⇥ 3
and stride 1. After each convolutional layer max-pooling was
applied with kernel 2 ⇥ 2 and stride 2. The aforementioned
convolutional layers are used for custom feature extraction
where the neural network aims to learn its own features
throughout training. The second portion of the model consists
of two dense layers with 1024 neurons which perform the
classification. The final decision is made on a final dense layer
with seven output neurons corresponding to seven emotion
classes. The outline of the described architecture is presented
in Fig. 2 with annotations of the data dimensions after each
of the convolutional layers. ReLU activation has been used
at three points in the model, after the third convolutional
layer and after each of the dense layers. The high number
of model parameters (7.626.848) along with the low number
of speakers and spoken utterances in the dataset can result in
poor generalisation of the model, with overfitting to specific
speakers’ utterances from the training partition. To accomplish
better generalisation, several regularisation techniques were
applied. Dropout regularisation [14] was used before and
after the first dense layer and after the second dense layer.
For convolutional layers, batch normalisation is used as a
regularisation technique [15]. Finally, the RMSprop optimiser
is used to optimize the softmax cross entropy loss function
and update the model’s parameters in the training phase. All
the hyperparameters stated above were manually picked in the
process of fine tuning of the model. Layers were jointly trained
from a random state where weights were initialized by using
Glorot random uniform initialization [16]. Additionally, step
learning rate decay was applied which lowered learning rate
by factor 0.9 every 10 epochs and an early stopping criterion
was used to finish training at an optimal moment.

Fig. 2: Convolutional neural network architecture

For training and evaluation of the CNN model, the dataset
was partitioned in a similar way as for the baseline SVM
model, except for a validation partition created for the pur-
poses of tracking the training performance of the model. In the
end, training partitions were defined with three random male
and female speakers, and remaining speakers were randomly
organised in validation and test partition. Same as in the
case of the baseline SVM model, the partitions were gender-
stratified and evaluation was speaker-independent.

IV. RESULTS

Table II summarises performances of all the trained models.
As it was stated previously each model was trained with
features that were calculated on speech fragments of different
lengths. Additionally, it was explored how different degrees of
data augmentation will affect the performance. The first type of
augmentation included only ambient and additive white noise,
while the second type was extended with reverberation and
reverse effects. Finally, the performance of the proposed CNN
model (denoted with minimal in the Table II) was compared
with an AlexNet type model (the number of model filters and
nodes in dense layers was reduced relative to the original ar-
chitecture ([8]) in order to fit in the memory of used hardware).
This smiplified AlexNet model is denoted large in the Table
II. In comparison to the minimal CNN model, the AlexNet has
two extra convolutional layers and its total number of trainable
parameters without regularisation is 7.634.272. In average, the
models reached 58% of accuracy in the training phase before
their validation loss metrics started diverging (and training was
stopped) . Depending on the model’s architecture, the best
test performance on the clean data set was achieved for the
minimal model CNN-4 (32.28%) and the performance on the
augmented data set was the best for large models CNN-11
(34.03%) and CNN-12 (33.17%) where original data set was
augmented with additive noise and combination of additive
noise and aforementioned effects, respectively. In general, the
minimal model has better performance on the clean data set,
in contrast to the large model which has higher accuracy in
the test phase on augmented data set.

V. DISCUSSION

Results show that a CNN model with higher complexity will
have a greater ability to generalise when compared to minimal
CNN models. On the other side, SVM models in this research
outperform any of the given CNN models. This kind of
behaviour is unclear since SVM models are trained on a small
portion of handcrafted features in comparison to the CNN
models which are able to extract a large number of custom
features that are describing a pattern present in the data set.
Depending on the length of the utterance fragments, features
computed for an SVM model can contain slightly different
information amounts and thus the separability of emotions
in high dimensional space can increase for longer duration
fragments which is observed in the test performance of an
SVM model trained on features computed from fragments of
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TABLE II: Comparison between the performance of the CNN model described in Section III (minimal) and customized
AlexNet model (large). Models were trained with the datasets that have different augmentation levels (relative to the base
dataset described in Section III)

Model Architecture Fragment length [ms] Data augmentation type Train accuracy [%] Test accuracy [%]

SVM-1 — 720 — — 52.01
SVM-2 — 1280 — — 64.33
CNN-1 minimal 720 downsampled 50.18 30.64
CNN-2 minimal 720 noise 58.76 29.29
CNN-3 minimal 720 noise & effects 55.59 30.22
CNN-4 minimal 1280 downsampled 56.27 32.28
CNN-5 minimal 1280 noise 59.22 28.96
CNN-6 minimal 1280 noise & effects 75.35 28.81
CNN-7 large 720 downsampled 45.72 29.15
CNN-8 large 720 noise 59.05 31.32
CNN-9 large 720 noise & effects 58.87 30.64

CNN-10 large 1280 downsampled 57.51 29.55
CNN-11 large 1280 noise 62.71 34.03
CNN-12 large 1280 noise & effects 61.71 33.17

downsampled - original and downsampled fragmets
noise - downsampled augmentation type extended with white and ambient noise
noise & effects - combination of downsampled augmentation type extended with reverberation and reverse effect with and without
white and ambient noise

720 ms and 1280 ms. The same behaviour is not observed in
the case of the minimal CNN model where better evaluation
results are achieved with shorter fragments. Regarding the
augmentation level, it is observable that the test accuracy
is higher for an augmented data sets in comparison to the
clean sets which indicates that the EmoDB is still a small
data set which does not contain a sufficient number of inter-
speaker and intra-speaker variations of emotional speech and
thus complex models do not have wide enough variety (and
number) of examples of an emotional speech to generalise
well between speakers and emotions. In between types of
augmentation, better results were achieved for an augmenta-
tion with the additive noise only while the combination of
an additive noise and effects is slightly inferior. It should be
further explored why the effects degrade affective information
since reverberation effects occur in real life situations while
time reversing should not change the frequency content of an
utterance or its statistics.

VI. CONCLUSION

The trained models are defined by the most widely used
architecture in the domain of computer vision aided with deep
learning. Results show that there is still room for significant
improvement both with an architecture upgrade with recurrent
layers and better understanding of the entanglement between
data and the specific model architectures. Additionally, data
sets with higher number of speakers and utterances per speaker
should result in better generalisation of an CNN model, and
would negate the need for data augmentation (which in the
case of speech isn’t as straightforward as in computer vision
applications). Finally, further research should aim on devising
specific model architecture used for the task of emotion

classification in speech modality since models in this paper
were constructed by using best practices from the domain of
computer vision that might not be the optimal for the speech
modality. Further work should continue to explore the model
design to achieve similar or better performance than the SVM
model which is relatively high when it is taken into account
that the classification problem in this paper contained seven
independent classes.

VII. ACKNOWLEDGEMENTS

This work was partly supported by: Croatian Science
Foundation under the project number IP-2014-09-2625 and
DOK-2018-01-2976; DATACROSS project under number
KK.01.1.1.01.009. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of Croatian
Science Foundation.

REFERENCES

[1] M. Argyle, “Non-verbal Communication and Language,” Royal Institute
of Philosophy Lectures, vol. 10, no. 1976, pp. 63–78, 1976.

[2] K. R. Scherer and M. R. Zentner, “Emotional Effects of Music: Pro-
duction Eules.” Music and emotion: Theory and research, pp. 361–392,
2001.

[3] Z. Zeng, M. Pantic, G. I. Roisman, and T. S. Huang, “A Survey of
Affect Recognition Methods: Audio, Visual, and Spontaneous Expres-
sions,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 31, no. 1, pp. 39–58, 2009.

[4] R. M. Lazar and J. P. Mohr, “Revisiting the contributions of Paul Broca
to the study of aphasia,” Neuropsychology Review, vol. 21, no. 3, pp.
236–239, 2011.

[5] C. E. Williams and K. N. Stevens, “Emotions and Speech: Some
Acoustical Correlates,” The Journal of the Acoustical Society of America,
vol. 52, no. 4B, pp. 1238–1250, 1972.

MIPRO 2019/CIS 1195



[6] M. El Ayadi, M. S. Kamel, and F. Karray, “Survey on speech emotion
recognition: Features, classification schemes, and databases,” Pattern
Recognition, vol. 44, no. 3, pp. 572–587, 2011.

[7] N. Weiskirchen, R. Bock, and A. Wendemuth, “Recognition of Emo-
tional Speech with Convolutional Neural Networks by Means of Spectral
Estimates,” Conference on Affective Computing and Intelligent Interac-
tion Workshops and Demos, no. October, pp. 50–55, 2017.

[8] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” Neural Information Pro-
cessing Systems, vol. 25, p. 04015009, 2012.

[9] F. Burkhardt, A. Paeschke, M. Rolfes, W. F. Sendlmeier, and B. Weiss,
“A Database of German Emotional Speech,” Interspeech, pp. 1517—-
1520, 2005.

[10] B. Schuller, S. Steidl, A. Batliner, A. Vinciarelli, K. Scherer, F. Ringeval,
M. Chetouani, F. Weninger, F. Eyben, E. Marchi, M. Mortillaro,
H. Salamin, A. Polychroniou, F. Valente, and S. Kim, “The INTER-
SPEECH 2013 computational paralinguistics challenge: Social signals,
conflict, emotion, autism,” Proceedings of the Annual Conference of the
International Speech Communication Association, INTERSPEECH, no.
August, pp. 148–152, 2013.

[11] F. Eyben, K. R. Scherer, B. W. Schuller, J. Sundberg, E. Andre, C. Busso,
L. Y. Devillers, J. Epps, P. Laukka, S. S. Narayanan, and K. P. Truong,
“The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) for Voice
Research and Affective Computing,” IEEE Transactions on Affective
Computing, vol. 7, no. 2, pp. 190–202, 2016.

[12] F. Eyben, F. Weninger, F. Gross, and B. Schuller, “Recent developments
in openSMILE, the munich open-source multimedia feature extractor,”
Proceedings of the 21st ACM international conference on Multimedia -
MM ’13, no. May, pp. 835–838, 2013.

[13] D. Snyder, G. Chen, and D. Povey, “MUSAN: A Music, Speech, and
Noise Corpus,” 2015, arXiv:1510.08484v1.

[14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting,” Journal of Machine Learning Research, vol. 15, pp. 1929–
1958, 2014.

[15] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” 2015.

[16] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” Proceedings of 13th International
Conference on Artificial Inteligence and Statistics, vol. 9, pp. 249–256,
2010.

1196 MIPRO 2019/CIS


