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Abstract: The aim of the study was to explore the possibility of bioremediation of oil refinery
wastewaters by the cyanobacterium Synechococcus sp. MK568070, isolated from the Adriatic Sea.
The potential of biomass and lipid production was explored upon cultivation on oil refinery wastewater
with excess CO2 after the removal of nutrients. The strain grew well in a wide range of salinities and
ammonium concentrations, and was further tested on the wastewater from local oil refinery plant of
various N-composition. Growth experiment under optimized conditions was used to analyze the lipid,
carbohydrate and protein dynamics. The biomass yield was highly dependent on nutrient source
and concentration, salinity and CO2 addition. Highest biomass yield was 767 mg/L of dry weight.
Towards the end of the experiment the decline in carbohydrate to 18.9% is visible, whereas at the same
point lipids, in particular saturated fatty acid methyl esters (FAME), started to accumulate within
the cells. The content of lipids at the end of the experiment was 21.4%, with the unsaturation index
0.45 providing good biofuel feedstock characteristics. Fourier Transform Infrared (FTIR) spectroscopy
analysis demonstrated a high degree of lipid accumulation in respect to proteins, along with the
structural changes and biomass accumulation. In addition, the N-removal from the wastewater
was >99% efficient. The potential of lipid accumulation, due to the functional photosynthesis even
at the minimal cell quota of nutrients, is critical for the usage of excess industrial CO2 and its
industrial transformation to biodiesel. These findings enable further considerations of Synechococcus
sp. (MK568070) for the industrial scale biomass production and wastewater remediation.

Keywords: Synechococcus sp.; carbohydrates; proteins; fatty acids; industrial wastewater;
bioremediation; ammonium

1. Introduction

Microalgae have recently drawn a lot of attention as promising candidates for CO2 neutral biofuel
production. However, highly competitive crude oil prices, as well as the high expenses related to
biomass-to-biofuel processing, are hindering its economic sustainability [1]. Efforts to overcome
problematic economical aspects of the biofuel production from microalgae are directed towards (i) the
increase in biomass yield and cellular lipid content by transgenic engineering [2], (ii) optimization of
cogeneration process including the use of the excess heat, water and flue gases from the industry and
(iii) usage of the effluent water after phycoremediation [3] in agriculture and other purposes.

Some selected wild strains of microalgae can naturally produce a high proportion of valuable
products such as lipids, carbohydrates or proteins, whereas recent advances in genetic engineering
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opened the possibilities to produce an even greater variety of valuable molecules useful for food,
chemical and pharmaceutical industries [1,2]. Although it is rarely possible to achieve as high a
proportion of valuable compounds in a wild strain, as in a genetically modified one there are many
advantages in the cultivation of non-transgenic, indigenous algal flora [4,5]. Mass production of
indigenous microalgae avoids the possible risks associated with large-scale propagation of genetically
modified microorganisms and legal constraints related to their use [6].

Cyanobacteria have large surface/volume ratio due to relatively small cell size (picocyanobacteria
and nanocyanobacteria), high nutrient uptake efficiency and high reproduction rates. However, these
traits are strongly dependent on the environmental conditions as well as on the species individual
phenotypic adaptability. Cyanobacteria vary in preference for light intensity, temperature, nutrient
concentrations, salinity and pH, as well as in capabilities to tolerate different ammonia, heavy
metals and other toxic substances concentrations [7]. Many studies exist on municipal wastewater
phycoremediation [8,9] and some authors explore the growth of cyanobacteria on swine [10] or poultry
litter effluent as well as the paper industry [11] or carpet industry [12]. However, the viability of
cyanobacteria in industrial wastewater is still a challenge. The untreated petrochemical industry effluent
is, thus, rich in ammonium and because of the presence of various growth inhibiting and toxic substances
(such as toluene, xylene, benzene, thiols, phenols, sulfides, cyanides, heavy metals, ammonia, etc.) may
represent a hostile environment for microalgal growth [13]. However, we hypothesize that due to their
high stoichiometric flexibility, high tolerance to salinity stress, photoheterotrophic metabolism, as well
as capabilities in the degradation of crude oil [14] cyanobacteria make good candidates for growth on
heavily polluted and toxic oil refinery wastewaters. Moreover, if present in trace amounts, the metals
such as Cu, Zn, Ni, etc. may represent micronutrients for growing algae [9,11].

Most of the preselected potentially oleaginous species [15,16] have not yet been systematically
evaluated for the capacities in fatty acid production [17], and/or growth on wastewater. Since nutrient
quality can severely affect growth rates and biochemical composition of biomass feedstock, optimization
is required in order to produce a high proportion of lipids along with the fast growth. In cyanobacteria,
fatty acids are doubly important, as membrane lipids and as constituents of glycolipids, which form
the thylakoid membranes where photosynthesis takes place. Cyanobacteria often contain significant
quantities of some essential polyunsaturated fatty acids (PUFAs) such as C18 linoleic (18:2ω6) and
α-linolenic (18:3ω3) acids whose production can reach up to 20% of the cellular dry weight via genetic
engineering [18]. The species rich in saturated fatty acids (SFAs) are good candidates for biofuel
production whereas species rich in PUFAs are considered more appropriate for production of nutrition
supplements, animal feed, etc. [19]. In cyanobacteria lipid content rarely exceeds 20% of the dry
algal biomass though under certain growth conditions it can reach as high as 85%, bringing the
exploitation closer to its economic sustainability [20]. Regulating the changes in lipid content is of
utmost importance to the protection of the cellular metabolic functions, and a response to environmental
stress. By regulating the saturation degree of the structural fatty acid profile, cyanobacteria maintain
the membrane integrity/fluidity under pressures such as desiccation, heat-shock, salinity changes
or the presence of toxic substances. There is also the dependence of desiccation tolerance on the
accumulation of sucrose, trehalose or more complex carbohydrate molecules in cyanobacteria, i.e., in
Synechococcus sp., Synechocystis sp., etc. [21]. The physiological stress of nutrient starvation leads to
lipid biosynthesis and accumulation in the cells. However, the photosynthesis process is highly protein
bound and P-dependent and may result in lower biomass production and overall lipid yield.

We tested Synechococcus sp. MK568070 isolated from the Adriatic Sea for growth on the oil
refinery wastewater. Potential of the tested strain for production of biofuel was assessed through
the analysis of lipid content and composition, as well as changes in fatty acids, carbohydrates and
protein concentrations along with the growth dynamics monitored during the uptake of nutrients from
wastewater. Herein we present the first results of marine Synechococcus species growth and nutrient
sequestration in a heavily polluted, oil refinery wastewater.
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2. Materials and Methods

2.1. Wastewater Properties

Oil refinery wastewater (WW) from three different sources (1–3) of the same plant were used
in experiments. The WWs contained different concentrations of dissolved inorganic nitrogen (DIN)
and phosphorus (DIP i.e., orthophosphate) and dissolved organic phosphorus (DOP). Of note,
measurements of DIP, in fact, represent soluble reactive phosphorus (SRP) because of the acid-labile
fraction of DOP, potentially participating with orthophosphate in the formation of the blue complex [22].
WW were pre-filtered through 0.2 µm polycarbonate filters (Whatman) and stored at −22 ◦C before
utilization. The composition of all used effluents is presented in Table 1.

Table 1. The composition of the oil refinery wastewaters used in the experiments.

Wastewater
Type

NO2−

(µM)
NO3−

(µM)
NH4

+/NH3
(mM)

DIN
(mM)

SRP
(mM)

DOP
(µM) DIN/SRP

WW1 2.2 5.1 0.8 0.8 0.1 1.86 8
WW2 23.7 204.0 0.6 0.8 0.16 18.15 6
WW3 0.1 4.5 2.5 2.5 0.001 2.09 1897

The wastewaters differed significantly in NH4
+ and NO3

− concentrations. Nitrification-phase
wastewater (WW1) contained most of the nitrogen in the NH4

+ form, and the resulting DIN/SRP
ratio was 8. The 2nd wastewater (WW2) contained both NH4

+ and NO3
− and a high proportion of

organic phosphorus because of the presence of sanitary effluent with the resulting DIN/SRP with a
value of 6. The untreated oil refinery wastewater (WW3) contained the highest concentrations of
NH4

+ and hydrocarbons and high chemical oxygen demand (INA PLC unpublished data). In WW3
both organic and inorganic P were very scarce and for successful microbial growth, this WW needs to
be enriched with bioavailable P. In addition, WW3 contained elevated concentrations of chemicals
potentially inhibiting the cyanobacteria growth: mercaptans (<64 mg/L−1), sulfides (<122 mg/L−1) and
hydrocarbons (<152 mg/L−1). The traces of heavy metals are below the referent values for coastal sea
water (INA PLC, unpublished data).

2.2. Cyanobacteria Isolation and Culture Maintenance

The surface seawater for cyanobacteria isolation was sampled in the vicinity of the oil refinery WW
outlet in Urinj Bay (Adriatic Sea) in May 2017. Isolation was performed through the subsequent plating
and isolation on solid and liquid medium (PCRS11-Red Sea, Roscoff Culture Collection) amended with
10% of WW3. Cells were grown at 26 ◦C and photon flux density of 80 µm/(m2s) of 12:12 day/night
light cycle with continuous stirring. The isolate was determined by 16S rDNA sequencing. Internal
transcribed spacer (ITS) region was PCR amplified from the extracted DNA by using primers
CYA106F (5′-CGGACGGGTGAGTAACGCGTGA) and 23S0R (5′-CTTCGCCTCTGTGTGCCTAGGT)
specific for cyanobacteria. Clones showing different pattern were sent to Macrogen (Amsterdam,
The Netherlands) for sequencing of the amplified ITS region with a reverse primer CYA-1380R
(5′-TAACGACTTCGGGCGTGACC). The identified strain selected as capable of growing in the NH4

+

enriched industrial wastewater was identified as picocyanobacteria Synechococcus; Synechococcales;
Synechococcaceae. The sequence was deposited into the National NCBI GenBank database (https:
//www.ncbi.nlm.nih.gov/) under accession number MK568070 (RBI unpublished data).

2.3. NH4
+ and Salinity Tolerance Testing

To test the growth under different salinity and ammonium concentrations, short-term experiments
in microwell plates were performed. A range of (i) four NH4

+ concentrations and (ii) eight salinities
were prepared as described in the paragraphs below. Each microwell contained 250 µL of the respective
solution and was inoculated with 20 µL of Synechococcus sp. MK568070 culture. Microwells were

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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incubated at 25 ± 0.1 ◦C and photon flux density of 80 µm/(m2s) of 12:12 day/night light cycle. Optical
density at λ = 690 nm (OD690) was recorded daily as a proxy for growth using Multiskan Ascent
microplate reader 354 (Thermo Labsystems Oy, Finland). Daily OD690 values were calculated by
subtracting the average OD690 of the blanks from the average OD690 values of inoculated wells for
each salinity and species. For detecting outlier values in OD690 measurements, we used a modified
z-score method [23].

Four concentrations of NH4
+ (2.0, 2.4, 2.8 and 3.2 mM) were prepared using the filtered (0.2 µm)

WW3 To cover the common annual range of NH4
+/NH3 concentration in the WW it was either

diluted with distilled H2O, or amended with inorganic N. Dissolved inorganic nitrogen (DIN) and
soluble reactive phosphorus (SRP) concentrations were adjusted by addition of stock solutions of
ammonium-sulfate (400 mM) and phosphate buffer (100 mM). The DIN/SRP ratio was set to 8 simulating
the DIN/SRP of the growth medium. Salinity was adjusted to 35 by amendment of NaCl. The prepared
solutions were arranged in microwell plates in triplicates. Deionized water (250 µL) with inoculum
(20 µL) was used as a blank. According to Bowen et al. [24], at pH of 8.3 and ambient temperature
of 25 ± 1 ◦C, NH3 concentrations (a toxic form) in the prepared solutions were ~10% of the targeted
NH4

+ concentrations.
For salinity testing, appropriate growth medium (PCRS11-Red Sea, Roscoff Culture Collection)

was prepared in the following range of salinities: 0, 4, 11, 19, 21, 25, 32 and 35. The salinity was
adjusted by addition of NaCl salt into the medium. Wells contained 250 µL of media inoculated with
20 µL of microalgae culture. Measurements for Synechococcus sp. MK568070 and blanks (medium
without inoculum) were determined in triplicates for each salinity level.

2.4. Experiments in Photobioreactors (PBRs)

To test the adaptability of the strain to different nutrient sources, the batch mode experiment was
performed in four double-walled borosilicate glass 2.8 L photobioreactors (PBRs), each containing
different media and operated independently (Figure 1). The initial volume of the growth medium
containing inoculated cells in each PBR was 2.6 L. Each PBR was illuminated with a separate LED-light
roll mantle with the illuminated surface area of 533.8 cm2. Due to the thorough mixing by air bubbling,
we suppose that all cells were equally exposed to the light. The temperature of 25 ± 0.1 ◦C was
regulated by the circulation of water through the double wall of the PBRs, using a chiller/cooler
equipped with a water pump. The light intensity, light cycle and pH (via CO2 flux) were controlled
by SCADA (supervisory control and data acquisition) system, a network of module and bioreactors,
controlled by a single supervisory computer. Air or air/CO2 mixture (97:3 v/v) was injected at the
bottom of the reactor through a glass tube. The reactors were illuminated with LED warm white light
at the illumination of 80 µm photon m−2s−1 at the 12:12 h day/night cycle.

The algal cells were harvested from the culture grown in PCRS11 medium and inoculated into
sterilized WW media in all four PBRs at the equal initial cell density of 0.5 ± 0.05 (OD690). Growth
conditions in the PBRs are described in Sections 2.4.1 and 2.4.2.

Salinity was monitored daily by conductometer (Mettler Toledo) and pH was controlled by
pH-probe (Mettler Toledo) connected to the SCADA system.
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Figure 1. A scheme of four photobioreactors (PBR). Temperature, air/CO2 bubbling, pH, light intensity
and diurnal cycle are controlled by the supervisory control and data acquisition (SCADA) system.

2.4.1. Effect of N-Source on Growth of Synechococcus sp. MK568070

In PBR1 and PBR2 we used WW1 and in PBR2 we used WW2 as a source of nutrients, respectively.
The salinity was adjusted to 19 by amendment of NaCl and where necessary phosphorous content was
adjusted to N/P 8 with the addition of PO4

3−.
PBR3 contained untreated wastewater (WW3, Table 1) with NH4

+ as a dominant (>99%) source
of DIN diluted with artificial seawater (ASW) 1:1 (v/v). ASW was prepared according to the Cold
Spring Harbor Protocol for Artificial Seawater (doi:10.1101/pdb.rec068270, Cold Spring HarbProtoc
2012. http://cshprotocols.cshlp.org/content/2012/2/pdb.rec068270.full). The resulting salinity of the
medium was 19 and NH4

+ concentration was 1.3 mM. The N/P ratio was set to 8 by addition of PO4
3−

buffer. pH was controlled continuously and in case of the overnight pH-decrease below 7.7, the value
was set up by the addition of NaOH (1 M).

In PBR1-3, mixing of the growth medium was achieved by air bubbling at a flow rate of 0.25 L/min.
In PBR3, minimum air- bubbling for sufficient mixing of culture was set up, whereas in PBR4
(Section 2.4.2) four times stronger gas flow rate was set up by the introduction of CO2 as a significant
nutrient for Synechococcus sp. MK568070.

2.4.2. Biochemical Aspects of Synechococcus sp. MK568070 Growth on WW

PBR4 contained untreated wastewater (WW3, Table 1) with NH4
+ as a dominant (>99%) source of

DIN diluted with artificial seawater (ASW) in 1:1 (v/v) ratio. The resulting salinity was 19 and N/P
ratio was set to 8 by addition of PO4

3− buffer.
As a difference to PBR1-3, to provide sufficient CO2 for growth, the medium in PBR4 was amended

by air/CO2 mixture (97:3 v/v) at a constant flow rate of 1 L/min. The pH was kept constant at value 8.3
via CO2 flux controlled by the SCADA system. In case of the overnight pH-decrease below 7.7, the
value was set up by the addition of NaOH (1 M). The purpose of the CO2 feed to the culture was the
exclusion of the CO2-limitation factor to the biomass yield.

http://cshprotocols.cshlp.org/content/2012/2/pdb.rec068270.full
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2.5. Analytical Prcedures

2.5.1. BIOMASS Measurements

The growth of Synechococcus sp. MK568070 was monitored daily through measurements of the
culture media optical density at λ = 690 nm (OD690) using SHIMADZU UV-VIS 1800 spectrophotometer
at a 1 cm light path. The dry weight (dw) biomass concentration of the inoculum was calculated from
OD690 measurements using the calibration curve for comparison between OD690 and dw biomass of
Synechococcus sp. MK568070. The culture was sampled daily in 10 mL aliquots with three replicates.
Samples were filtered on pre-weighed polycarbonate (PC) filters with 0.4 µm pore size (Whatman).
Filters were dried for 2 h at 60 ◦C and weighed again for biomass determination. The biomass
concentration was calculated by subtracting the blank filter mass from the mass of the filter with dry
sample and dividing the resulting mass by the sampled volume. The triplicates were checked for
outliers by using the modified z-score method [23] and averaged for the final dry weight biomass
concentration. The conversion factor for dw biomass was calculated as a linear function of OD690.

2.5.2. Nutrient-Determination

Aliquots (50–100 mL) were sampled daily for dissolved nutrients determination. Nitrate (NO3
−),

nitrite (NO2
−), ammonium/ammonia (NH4

+/NH3), soluble reactive phosphorus (SRP) and dissolved
organic phosphorus (DOP) were analyzed from the supernatant after the immediate centrifugation
(10 min, 5000 rpm) of the collected samples. We followed the procedures described by Parsons et al. [25],
and Ivančić and Degobbis [26], including the appropriate dilutions of the samples to fit the range
of spectrophotometric determinations using Shimadzu UV 1800 at the path length of 1 cm for each
method. Dissolved inorganic nitrogen (DIN) concentration was calculated as the sum of NO3

−, NO2
−

and NH4
+/NH3 concentrations.

2.5.3. Lipid Extraction and Fatty Acid Analysis

For total lipid and fatty acid (FA) analysis 50 mL samples were filtered on pre-combusted GF/F
filters (Whatman). Prior to extraction, filters were mechanically disrupted with a tissue homogenizer in
a dichloromethane/methanol mixture (DCM:MeOH, 2:1, v/v). Total lipids were extracted according to
Bligh and Dyer [27]. Extracts were saponified, methylated and analyzed as follows [28]. After addition
of 1.2 M NaOH in a 50% aqueous methanol solution, the tubes were placed in a boiling bath for 30 min.
After cooling, the saponificate was acidified with 6 M HCl (pH < 2), 12% BF3 in methanol was added
and heated for 5 min in a boiling water bath. After cooling, the fatty acid methyl esters (FAME) were
extracted in dichloromethane (DCM). FAME were analyzed by gas–liquid chromatography (GLC)
on a 6890 N Network GC System equipped with a 5973 Network Mass Selective Detector with a
capillary column (30 m/0.25 mm/0.25 mm; cross linked 5% phenylmethylsiloxan) and ultra-high purity
helium as the carrier gas. The oven temperatures were programmed as follows: 70 ◦C for 5 min,
then ramped to 205 ◦C by 4 ◦C min−1, holding for 4 min at 205 ◦C, then ramped up to 270 ◦C by
4 ◦C/min. Column pressure was constant at 15 psi. Retention times, peak areas and mass spectra
were recorded on the ChemStation Software. FAME were identified by mass spectral data and the
family plots of an equivalent chain length (ECL) data for GC standards for the GC column were used.
FAME mix C18–C20, PUFA1, PUFA3 standards (Supelco/Sigma-Aldrich, Bellefonte, PA, USA), C4–C24
FAME standard mix, cod liver oil and various individual pure standards (Sigma, Neustadt, Germany)
were applied.

2.5.4. Total Carbohydrate Determination

Total carbohydrate from each cyanobacterium pellet (from equal biomass) was quantified using
the anthrone method of Loewus [29]. One milliliter of inoculum from the initial stationary phase was
taken from each experimental setup in separate micro-centrifuge tubes and pelleted at 10,000 rpm
at 25 ◦C for 10 min, and washed twice with sterile distilled water twice before drying. Equal dried
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biomass from each species was considered for the analysis. The biomass was treated with 1 mL of 1 M
NaOH by vigorous vortexing, and later kept in the boiling water bath for 5 min. The mixture was
sonicated at 40 kHz frequencies for five cycles of 30 s on and 30 s off. The crude homogenate was
centrifuged at 3000 rpm for 5 min, and 100 µL supernatant from each was used for the determination
of total carbohydrate. Glucose (1 mg mL−1) stock solution (1 mg mL−1) was used for the preparation
of the standard. The anthrone reagent was prepared by dissolving 0.2 g anthrone in 100 mL chilled
95% H2SO4. 100 µL processed supernatant of each cyanobacteria was added to separate test tubes, and
volume was top up to 1 mL by adding the 900 µL sterile distilled water. 4 mL anthrone reagent was
added to each sample and the content was incubated at the room temperature for 10 min in the dark.
The reaction was stopped by incubating the whole content in the boiling water bath for 10 min, as
the greenish-blue color of different intensity appeared, and an immediate ice chilling was provided
for 10 min, and finally the absorbance of each sample was measured at 625 nm. The corresponding
absorbance of unknowns were interpolated with the absorbance of glucose standards to get the
concentrations of carbohydrates produced by each species.

2.5.5. Protein Determination

The protein content in the microalgal samples was determined by using a modified Micro-Biuret
method described by Safafar et al. [30].

2.5.6. FTIR Analysis

Spectroscopic tests were performed using a spectrophotometer FTIR Tensor II (Bruker, Karlsruhe,
Germany) with an attenuated total reflectance (ATR) accessory with a diamond crystal. Equal volume
(30 mL) of each sample was filtered on 0.4 µm PC filters (Whatman) and dried at 60 ◦C for 12 h. Samples
were placed in the sampling accessory obtaining the best contact with the crystal. The approximate
total time required for spectral collection was 5 min. All spectra were recorded within a range of
4000–800 cm−1 with a 4 cm−1 resolution. Each spectrum was calculated as the average of 40 scans and
subjected to background subtraction. Analyses were carried out in triplicates. ATR spectra taken in
different growth phases were compared according to the following: Base line of all spectra is corrected
by means of Opus Spectroscopy Software 7.5, the absorption values of the absorption bands (v C=O
and Amid I) are read. The proportion of v C=O and Amid1 are used as representative bands for lipids
and proteins, respectively. The ratio between the two absorption bands is indicative of the biochemical
composition changes and relationships between the molecule classes [31].

3. Results

3.1. NH4 and Salinity Tolerance Testing

In the microwell plates we tested the Synechococcus sp. MK568070 growth potential in a range
of NH4

+ concentrations (2–3.2 mM) corresponding to annual fluctuation of NH4
+ in the refinery

wastewaters. The working medium in microwells was WW3 adjusted by dilution or amendment of
nutrients as described in Section 2.3 of the materials and methods section. The results are presented on
Figure 2.

Cultures demonstrated identically ascending growth pattern in the whole tested range of NH4
+

concentrations. The highest cell densities were achieved at ammonium concentration of 2.8 mM, with
maximum OD690 of 0.150 after seven days of growth. Although the biomass yield of Synechococcus
sp. MK568070 growth on WW3 followed the increase in initial NH4

+ concentrations from 2 mM to
2.8 mM, there was a decrease in yield at maximum NH4

+ concentration of 3.2 mM.
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Figure 2. Ammonium tolerance of Synechococcus sp. (MK568070) tested in wastewater effluent
containing 2–3.2 mM of NH4

+.

Salinity test in microwells was performed over Synechococcus sp. MK568070 and the results are
presented on Figure 3. Synechococcus sp. MK568070 was incubated for a week in a standard growth
medium with a range of salinity from 0 to 35 and OD690 was measured daily. High cell densities were
reached in the range of salinities from 11 to 25, whereas salinities below 11 and above 25 inhibited
cellular growth (Figure 3).

Figure 3. Salinity tolerance of Synechococcus sp. MK568070.

The highest biomass yield occurred at a salinity of 19, corresponding to ~1/2 of the common
salinity in the surface waters of the Adriatic Sea. This enables us to consider diluting the heavily
polluted, untreated refinery wastewater, normally having salinity values <1, with seawater, which in
reality is easily available for industrial plants situated at the coast. Such a concept was tested in PBR3,
and applied in PBR4 where the biochemical aspects of Synechococcus sp. MK568070 growth on WW
were explored. In addition, the effect of higher CO2 inflow to the overall yield was tested by constant
blowing of air/CO2 mixture in 97:3 (vol:vol) proportion.
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3.2. Effect of N-Source on Growth of Synechococcus sp. MK568070

The influence of N-source on growth performance and biomass yield of Synechococcus sp.
(MK568070) was tested by growth in PBRs 1–3 under the controlled conditions in three different waste
waters: WW1, WW2 and WW3 (diluted with ASW in 1:1 (v/v)).

The growth curves of experiments in PBRs 1–3 are presented in Figure 4. The lowest growth
performance was achieved in WW1 containing predominantly NH4

+ as a source of nitrogen with
an initial DIN concentration of ≈0.8 mM (Table 1). Final biomass yield in WW1 was 152 mg/L of
dry weight.

Figure 4. Biomass growth of Synechococcus sp. MK568070 when cultured in different wastewaters:
WW1 (c (DIN) = 0.8 mM), WW2 (c (DIN) = 0.8 mM) and WW3:ASW (1:1; c (DIN) = 1.3 mM).

The wastewaters provided herein are sparse in phosphorous. In an attempt to satisfy the need for
N and P by a costless source we used WW2 already containing some of the sanitary effluent. WW2
being richer in organic and inorganic phosphorous introduced as well significant amounts of NO3

−

into the cultivation medium. Although the final concentration of DIN 0.8 mM, was the same as in
PBR1, the final biomass yield in PBR2 was 240 mg/L, substantially higher than in PBR1. Finally, the
highest biomass yield 390 mg/L was obtained by growth on the WW3 (diluted with ASW) containing
high concentration of NH4

+ (1.3 mM).

3.3. Biocheimcal Aspects of Synechococcus sp. MK568070 Growth on WW

In PBR4 Synechococcus sp. MK568070 was grown on WW3:ASW (1:1, vol/vol) at salinity 19.
The optimum salinity for growth was determined based on the salinity tolerance findings (Figure 3).
The initial concentration of NH4

+ was 1.3 mM, DIN/DIP was set to 8 and 3% CO2 was continuously
added through air/CO2 bubbling system. The nutrient uptake is represented in Figure 5. The majority
of DIN (>99%) was depleted in seven days, while 20% of SRP remained unutilized by the end of
experiment on day 15 (Figure 5). Synechococcus sp. MK568070 showed lower P-needs for the build up
of biomass in respect to the initial experimental set point (N/P = 8), which resulted in higher residual
concentration of SRP at day 15 (0.02 mmol L−1). During the first six days of the growth (day 1 to day
7) Synechococcus sp. MK568070 consumed 1.3 mmol DIN L−1 and 0.1 mmol SRP L−1, resulting in the
average DIN/SRP uptake of 13. From day 7 towards the end of experiment the growth was N-limited.
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Figure 5. Change of ammonia/ammonium and SRP concentrations during the growth of Synechococcus
sp. MK568070 on WW3:ASW (1:1) with adjusted DIN/SRP to 8.

The biomass yield and overall lipid productivity of the experimental culture grown in PBR4 are
shown in Figure 6. The culture reached stationary phase after 14 days obtaining the biomass yield of
767 mg/L.

1 
 

 
Figure 6. Biomass yield and fatty acid methyl esters (FAME) dynamics during Synechococcus sp.
(MK568070) growth in PBR4.

The structure of the fatty acid (FAME) profile of Synechococcus sp. MK568070 was analyzed
and results are presented in Table 2. The FAME profile was dominated by C16 saturated and
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monounsaturated fatty acids, followed by C14 saturated and C18 monounsaturated FAME. The highest
proportion of total lipids was achieved on the 2nd day of experiment by 41% of the dry weight.
After the 2nd day, during the early exponential phase the contribution of lipids in the dry biomass was
descending, whereas in the mid-exponential phase an increase in the lipid proportion was observed up
to 24%. In the late exponential and stationary phase lipid content oscillated again between 14% and
16%. The final lipid content in the dry biomass was 21.4% in the stationary phase of the Synechococcus
sp. MK568070 growth.

Table 2. In the fatty acid profile during 15 days of experiment in Synechococcus sp. MK568070,
proportion of saturated (SAT), monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids and
the unsaturation index (UND).

Days of Experiment

1 2 3 4 6 8 9 11 13 15

C11:0 0.53 0.39 0.21
C12:0 0.21 0.34 0.29 0.22
C13:0
C14:1 0.33 0.81 0.71 0.54 0.48 0.58 0.59 0.59
C14:0 11.08 19.92 21.83 21.33 19.78 19.66 18.22 16.78 19.73 13.26
C15:1

C15:0i/a 0.29 0.26 0.15
C15:0 0.80 0.64 0.53 0.44 0.38 0.59 0.61 0.36 1.23
C16:1c 19.69 31.90 32.12 31.82 29.88 29.48 30.65 29.37 31.91 21.27
C16:1t 0.70 0.68 0.60 0.64 0.25 0.28 0.65 1.75
C16:0 40.16 31.44 28.60 30.92 29.56 29.75 25.19 24.59 27.41 43.04

C17:0 i/a 0.45 0.44 0.52 0.58 0.51
C17:1 0.27 0.25 0.26 0.23 0.18
C17:0 1.71 1.03 0.85 0.75 0.79 1.01 1.10 0.63 2.51

C18:2(n-6) 8.10
C18:1c 8.58 8.49 6.54 7.27 11.33 13.05 17.38 20.65 12.71 5.94
C18:1t 0.19 2.15
C18:0 6.91 3.64 3.73 3.61 3.36 3.27 3.59 3.57 2.94 8.77
C20:1 0.61
C20:0 0.59 0.28
SAT 61.25 55.00 56.75 57.77 53.89 54.68 49.75 47.78 52.16 68.82

MUFA 30.18 40.39 40.40 39.80 42.35 43.65 49.13 51.31 46.05 31.11
PUFA 8.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DETRIT 2.77 0.00 2.36 1.38 1.18 1.62 2.67 2.78 1.84 3.74
C14 11.42 19.92 22.64 22.04 20.32 20.14 18.81 17.37 20.32 13.26
C16 60.55 63.34 61.40 62.74 60.04 59.86 56.09 54.24 59.97 66.06
C18 23.58 12.12 10.27 10.88 14.69 16.32 20.98 24.40 15.65 16.86

UND 0.89 0.73 0.72 0.69 0.79 0.80 0.99 1.07 0.88 0.45

The most abundant fatty acid was C16:0 with a 43.04% mass fraction of total fatty acids at the end
of the experiment in the stationary growth phase. Due to the high percentage of other saturated fatty
acids (C14 and C18) profiles are characterized with an overall unsaturation index (UND) lower than 1.
The lowest UND of 0.45 was observed at the end of the experiment. The proportion of summarized
C16 FA maintained high relative values, with decreasing dynamics in the exponential phase of the
experiment and then again increasing the proportion towards the end, finally reaching the final 66.06%.

3.4. Carbohydrates and Proteins

Carbohydrate and protein content were measured daily during the first seven days of experiment,
and later on every 2nd day. The results are presented in Figure 7.
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Figure 7. Cellular carbohydrates and protein dynamics in Synechococcus sp. MK568070 cultivated on
the oil refinery wastewater.

Proteins percentage in dry biomass was observed to increase from 3% to 21% during the first six
days of the experiment from 3% to 21% of the dry biomass. At the same time the NH4

+ values were
continuously declining from 1.3 mM to <0.01 mM. During the rest of the exponential phase protein
content continued to slowly decrease until remaining at the constant average value of 15.1% towards
the end of the experiment.

After the immediate decline upon inoculation, carbohydrate content was observed to continuously
increase from 9.8% to 34.5% by the 11th day of experiment roughly corresponding to the end of the
exponential growth. Towards the end of the experiment, the decline in carbohydrate to 18.9% occurred,
whereas at the same point, the lipids, in particular saturated FAME, started to accumulate within the
cells, as shown in Figure 5.

To evaluate the metabolic plasticity of Synechococcus sp. MK568070 and its response to stressing
growth conditions, the FTIR analysis of the dry biomass was performed. Most of the absorption
variation among the spectra was observed in the region 1200–1400 cm−1, at 1655 cm−1 and at 1745 cm−1.
Major absorption bands in the IR spectra of the microalgae are presented in Table 3. The bands selected
as discriminating tool between protein and lipid functional group abundance were: 1655 cm−1 band
for Amid1 and at 1745 cm−1 for vibrational stretching of Carboxylic C=O ester bond. Although two
regions, methyl and methylene at 2800–3000 cm−1, are commonly used to determine lipid content by
FTIR [32,33], in this study we used the vibrational stretching of ester bond C=O at 1740 cm−1 because
it is considered to be exclusively related to ester bonds of fatty acids and avoids overlapping with
functional groups present in more than one compound within the microalgae, as recommended by
Mayers Flynn and Shields [34].

The spectra were integrated and quantified and the abundance of Amid1 and Carboxylic functional
groups were assessed, as proxies for protein and fatty acid, respectively. The ratio between Amid1 and
Carboxylic group in Synechococcus sp. MK568070 during the course of the experiment is presented in
Figure 8. The increase in proportion indicates accumulation of lipids with respect to proteins.
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Table 3. Absorption bands in the IR spectra of the microalgae [34,35].

Wave Number (cm−1) Functional Group

3400–3200 ν OH (water, alcohol), ν N-H (Amide A, proteins)
2960 νasCH3, aliphatic stretching, methyl group
2930 νas CH2, aliphatic stretching, methylene group
2850 ν CH2, v CH3, methylene and methyl group
1745 ν C=O, ester of lipids and fatty acids
1655 ν C=O, Protein (Amide I)
1545 δ N-H, ν C-N, Protein (Amide II)

1420–470 δas CH2, δas CH3, aliphatic stretching, methyl and methylene group
1390 δaCH2, CH2 CH3Proteins/Carboxylic groups

1200–900 ν C-O-C Polysaccharides
1075 and 950 ν Si-O, Silicate frustules

980–940 P-O-P Polyphosphate

Figure 8. The relationship between protein (Amid1, v 1655 cm−1) and fatty acid (C=O carboxylic, v
1745 cm−1) during growth of Synechococcus sp. MK568070 in PBR4.

There was no significant change in (C=O/Amid I) ratio during active NH4
+ consumption by

Synechococcus sp. MK568070. After the 6th day, when majority of the DIN was sequestered from the
wastewater, the ratio continuously increased during the exponential phase. The maximum (C=O/Amid
I) value of 0.32 was achieved on the 14th day, when the culture reached the stationary phase.

As already reported for some oleaginous microalgae [30] the increase in the ratio reflects the
structural changes in the fatty acid profile during the exponential phase. The protein content during
the exponential phase remained almost constant, whereas lipid content varied much more (Figure 6).
In the process of photosynthesis, a high proportion of protein is required for the energy bio-conversion
process happening within the cells. This explains strong carbohydrate accumulation (Figure 6) and
biosynthesis of lipids reflected in high unsaturation and chain elongation during the exponential phase
(Table 2).

4. Discussion

Most of the efforts studying bioremediation of wastewaters by microalgae are focused on
freshwater species, and a substantial part of strains capable of growing under saline conditions
needs jet to be explored. The results of this study have demonstrated that Synechococcus sp.
(MK568070), a cyanobacterium isolated from Adriatic coastal waters grows on industrial wastewater
rich in ammonium, mercaptans, hydrocarbons and other potentially growth-inhibiting substances.
Synechococcus sp. MK568070 has demonstrated high tolerance to NH4

+ concentration and strong
dependence of biomass growth on wastewater quality. Although strong affinity towards NH4

+was
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determined, as already observed for Synechococcus species [36] the culture also grew well on the mixed
source of nutrients, containing NH4

+, NO3
− and substantial amounts of organic phosphorus.

The studies on marine microalgae for wastewater remediation are rare because they are considered
mostly metabolically adapted to the oligotrophic conditions and saline waters. However, Synechococcus
sp. MK568070 demonstrated good culturability in a wide range of salinities, achieving the highest
biomass yield when grown at salinity 19. The tests of ammonium tolerance, as well as the growth in
PBR1-3 suggest that all the concentrations used in this study allow for further increase. Most recent
studies on wastewater phycoremediation use NO3

− as a source of N declaring optimum concentrations
for lipid production to be 1.18–3.53 mM [37]. Since the nitrogen deficiency is the primary trigger of
lipids accumulation, the optimum growth conditions are always a trade-off between high biomass
and high lipid yield. In this sense, the initial nutrient concentrations and wastewater quality used
for cultivation of Synechococcus sp. MK568070 were set up to support N-limited cellular growth
but with suboptimal values for maximum biomass yield. Relying on the ability of Synechococcus sp.
(MK568070) to grow on industrial wastewater in a wide range of NH4

+ concentrations and salinity it
can be considered a good candidate for bioremediation of industrial wastewater of different origin
and characteristics.

Cyanobacteria have a high potential in degrading dissolved organic matter, including
hydrocarbons, as well as in dealing with high concentrations of heavy metals. Therefore, we tested
an indigenous marine Synechococcus strain from the Adriatic Sea regarding its growth potential and
production of carbohydrates, proteins and most importantly lipids of the desired quality for biodiesel
production during the process of remediation of oil refinery wastewater. Higher dry biomass yield, at
the same concentration of nutrients, is possible in the case of more efficient dissolved organic matter
usage. The Synechococcus sp. MK568070 has shown high consistency of biomass growth in relation
to NH4

+load and substantially higher proportion of lipids than most studied cyanobacteria [38,39].
Whereas the Pacific Synechococcus strains achieve lipid yield close to 11% of dry biomass weight,
Synechococcus sp. (MK568070) demonstrated yield of 21.40% of dry weight. The produced biomass of
761 mg/L corresponds to the yields obtained in other studies for cyanobacteria grown on commercial
freshwater medium. Patel et al. [40] have reported biomass yields close to 1 g/L for Synechococcus
and Phormidium species, but under a different light regime, higher starting N-concentration and
with a combined NH4

+/NO3
− nutrient source. However, they observed lipid proportions that were

significantly lower than those determined in our study.
In general, applying saline conditions for cyanobacteria growth may bring a disadvantage of

slower division rate. However, there are some benefits such as microbial health control, resilience
to pathogenic bacteria or opportunistic autotrophic invasions, better accumulation of lipids and
independence of fresh water resources. The salinity of 19 used in our research corresponds to brackish
conditions and is chosen as optimum salinity for Synechococcus sp. (MK568070) biomass productivity.

The cyanobacteria have evolutionary developed adaptive mechanisms to the major environmental
stressors such as salinity, temperature and light intensity, depending on their indigenous environment
to facilitate carbon uptake mechanisms and provide undisturbed CO2 availability. Such metabolic
plasticity enables enhanced photosynthesis and biomass productivity by additional carbon supply. Air
pumping with addition of 2–5% of CO2 is one of the commonly used ways to increase carbon fixation,
as well as the provision of organic carbon substrate for support of the mixotrophic growth [41]. As seen
from the experiments in PBR2 and PBR4 effects of organic P and CO2 addition, respectively, have both
positively impacted biomass productivity of Synechococcus sp. MK568070. This is in accordance with
previous studies elucidating the sufficient carbon supply as a prerequisite for lipid biosynthesis under
nitrogen stress conditions [37,42]. Moreover, Concas et al. [43] provided a mathematical model for
metabolic adaptation of Chlorella vulgaris to 100% (v/v) of CO2.

Unicellular microalgae and cyanobacteria are quite often richer in lipids than filamentous species,
known to produce large quantities of polysaccharides. Prokaryotes due to their small size, metabolic
plasticity and resilience to rough environmental conditions are widely considered as good candidates
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for open-pond lipid production [40]. In addition to lipid total yield, the structure of the synthesized
triglycerides is very important for biodiesel production. Most of the cyanobacteria have a fatty acid
profile dominated by C14, C16 and C18 saturated and monounsaturated fatty acids. However, quite
often they contain significant quantities of some essential polyunsaturated fatty acids such as C18
linoleic (18:2ω6) and α-linolenic (18:3ω3) acids whose production in some cases can reach up to
20% of the cellular dry weight [18]. The FAME profiles of Synechococcus sp. MK568070 contained
mostly saturated and monounsaturated FAME. The PUFA (18:2ω6) was present only in the inoculum.
Higher proportion of shorter acyl chain, high degree of saturation in the stationary phase, UND as
low as 0.45 and 66% of C16 and an absence of polyunsaturated FA provide good biofuel feedstock
characteristics. In gaseous CO2 supplied systems, if the CO2 flux is too high, biosynthesis can be
directed towards production of high amounts of carbohydrate, sometimes exceeding 60% of the dry
biomass. Although the carbohydrate dynamics during Synechococcus sp. MK568070 growth in PBR4
shows high production, the maximum proportion does not exceed 34%. Moreover, the FTIR spectral
analysis and (C=O/Amid I) ratio show continuously increasing proportion of carboxylic group in
respect to proteins, confirming the prevalence of the lipid biosynthesis within the metabolic pathways
during photosynthesis.

One of the advantages of using microalgae in the biofuel production is the possibility of wastewater
treatment. In this study for the first time an insight is given on all energetically important groups
of molecules synthesized by Synechococcus sp. MK568070 during its cultivation on the oil refinery
wastewater. These kind of wastewaters are very demanding regarding their high content of pollutants,
and the capability of any microalgae for remediation of such waters while producing a notable
amount of biomass is of high interest from the perspective of the lowering risks of coastal water
eutrophication and improvements in cost-efficiency of the blue economy. Therefore the nutrient
removal efficiency is an important condition for both, the biomass productivity, and for the wastewater
bioremediation. The NH4

+ removal >99% in six days makes Synechococcus sp. MK568070 a very
efficient species in bioremediation of wastewaters enriched with nitrogen. Efficient N-sequestration,
metabolic plasticity and a high tolerance to a wide range of ammonium/ammonia concentrations open
up the considerations for the genetic remodeling of its biochemical aspects [44]. In order to evaluate the
suitability of Synechococcus sp. (MK568070) for biofuel production on the industrial scale, the metabolic
mechanisms of lipid synthesis and growth kinetics should be explored in more detail. The potential of
lipid accumulation, due to the functional photosynthesis even at the minimal cell quota of nutrients, is
critical for the usage of excess industrial CO2 and its more cost-effective industrial transformation to
biodiesel. To conclude, this study of biomass and lipid production by the Synechococcus sp. MK568070
when cultivated on oil refinery wastewater with excess CO2, provides useful data for further work
in order to bring this species onto the industrial scale of biomass production and contributes to the
findings for future prospects of wastewater bioremediation through algae cultivation.
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