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Abstract

Widespread application of silver nanoparticles (AgNPs), due to their antibacterial and antifungal properties, increases
their release into the environment and potential detrimental impact on living organisms. Plants may serve as a
potential pathway for AgNPs bioaccumulation and a route into the food chain, hence investigation of AgNP phy-
totoxic effects are of particular importance. Since proteins are directly involved in stress response, studies of their
abundance changes can help elucidate the mechanism of the AgNP-mediated phytotoxicity. In this study, we inves-
tigated proteomic changes in tobacco (Nicotiana tabacum) exposed to AgNPs and ionic silver (AgNOj). A high
overlap of differently abundant proteins was found in root after exposure to both treatments, while in leaf, almost a
half of the proteins exhibited different abundance level between treatments, indicating tissue-specific responses.
Majority of the identified proteins were down-regulated in both tissues after exposure to either AgNPs or AgNOs;
in roots, the most affected proteins were those involved in response to abiotic and biotic stimuli and oxidative stress,
while in leaf, both treatments had the most prominent effect on photosynthesis-related proteins. However, since
AgNPs induced higher suppression of protein abundance than AgNO;, we conclude that AgNP effects can, at least
partially, be attributed to nanoparticle form.

Keywords Silver nanoparticles - Silver nitrate - Nicotiana tabacum - Two-dimensional electrophoresis - Proteomics -
Phytotoxicity
Introduction

Nanomaterials are chemical substances of which a single unit
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profound chemical transformations that can affect their stabil-
ity and bioavailability, and thus increase their toxicity on liv-
ing organisms, including bacteria, fungi, algae, plants, verte-
brates, invertebrates, and human cells (Levard et al. 2012).

Plants play a significant role in accumulation and
biodistribution of many environmentally released substances;
therefore, they may serve as a potential pathway for AgNPs
uptake, bioaccumulation, and a route into the food chain (Rico
etal. 2011). Hence, the phytotoxic effects of AgNPs should be
given a particular attention. Toxicological studies dealing with
the effects of AgNPs on plants conducted so far indicate that
plants can take up and accumulate AgNPs and translo-
cate them in different plant organs, thus affecting
growth and development processes (Cvjetko et al.
2017). Moreover, it was shown that plant exposure to
AgNPs can result in increased oxidative damage of
lipids, proteins, and DNA molecule as well as in chang-
es in the activity of antioxidant enzymes (Cvjetko et al. 2017,
Cvjetko et al. 2018; Peharec Stefani¢ et al. 201 8), which sug-
gests that oxidative stress has an important role in the phyto-
toxicity of AgNPs.

Previously, we have investigated the toxic effects of labo-
ratory synthesized citrate-coated AgNPs on the tobacco
(Nicotiana tabacum L.) adult plants and found that AgNPs
were less toxic than the corresponding AgNO; treatments
(Cvjetko et al. 2018). Namely, exposure to AgNPs induced
significant oxidative stress neither in roots nor in leaves, al-
though changes in activity of some antioxidant enzymes were
recorded. Furthermore, microscopy observations revealed that
the treatment with 100 uM AgNPs induced high vacuolization
of root cells due to the direct uptake of nanoparticles, while in
leaves, changes in chloroplast ultrastructure were detected. In
this study, our aim was to examine the molecular basis of the
observed AgNP phytotoxicity; therefore, we analyzed the
proteomes of roots and leaves of adult plants exposed to treat-
ments with 100 uM AgNPs. Proteomic techniques, which
detect quantitative and qualitative changes in protein expres-
sion profiles, are powerful tools for the identification of pro-
teins related to specific developmental and/or environmental
signal (Rogi¢ et al. 2015). Proteomics can provide new infor-
mation to improve the knowledge of interactions between
plants and nanoparticles, since these studies reflect the nano-
particle effects on gene expression. So far, proteomic-based
approach for studying plant responses to AgNP-induced stress
has been employed in only a few studies reporting that AgNPs
can interact with different cell metabolic processes such as
protein synthesis/degradation and apoptosis (Mirzajani et al.
2014), primary metabolism and cell defense (Vannini et al.
2014), stress and signalling (Mustafa et al. 2015), redox reg-
ulation, and the sulphur metabolism (Vannini et al. 2013). In
the present study, AgNP-induced changes in the proteome
profiles of roots and leaves of tobacco plants were evaluated
and compared to the effects induced by treatments with ionic
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silver (AgNOs) in order to elucidate the mechanism of AgNP-
mediated phytotoxicity.

Materials and methods
Exposure solutions

We used commercial citrate-coated AgNPs (50 nm Silver
Nanospheres, Citrate, BioPure™, Nanocomposix, San
Diego CA, with ¢ potential of — 47 mV). The concen-
tration of AgNP stock solution was 1 mg cm >. AgNPs
in stock solution were examined with monochromated
TF20 (FEI Tecnai G2) transmission electron microscope
(TEM).

For treatment of tobacco plants in this study, AgNP stock
solution was dissolved in ultrapure ion-free Milli-Q®
(Millipore, 18.2 M{2-cm resistivity) water to obtain a
100 uM concentration (based on concentration of total Ag).
Ag concentration in AgNP solution was further confirmed by
ELAN DRC-¢ inductively coupled plasma mass spectrometry
(ICP-MS) (Perkin Elmer, USA) as described in the “AgNPs
localization and Ag uptake determination” section. For treat-
ments with ionic silver, silver nitrate (AgNO;, Sigma-Aldrich)
was dissolved in ultrapure Milli-Q® water to obtain a 100 uM
solution.

Stability evaluation of AgNPs

For AgNP stability estimation, an aliquot (1 cm?®) of the
100 uM AgNP solution was pipetted to the 1-cm quartz cu-
vette for spectrophotometric absorbance measurements,
which were performed using the UV-visible spectrophotome-
ter (Specord 50 PLUS, Analytik Jena, Germany) in the wave-
length range of 300—-800 nm. For instrument zeroing, Milli-
Q® water was used. AgNP stability was monitored during 7
days (treatment duration). Based on the results obtained by
spectrophotometric measurements, the 2% the 5™ and the
7" day were chosen for further analyses of AgNP stability.
Hydrodynamic diameter and charge of AgNPs in Milli-Q®
water were measured using Zetasizer Nano ZS (Malvern,
UK) equipped with green laser (532 nm). The data processing
was done by the Zetasizer software 6.32 (Malvern instru-
ments). Silver dissolution was determined by centrifugal ul-
trafiltration (Millipore Amicon Ultra-4 3K) through a mem-
brane with a 3-kDa molecular weight limit. Suspensions were
centrifuged for 40 min at 15000xg. The silver concen-
tration in the filtrate was determined using ELAN DRC-
e ICP-MS (Perkin Elmer, USA). Silver concentration
was calculated according to the calibration curve obtain-
ed with a set of standards of known concentrations and related
to the Ag concentration before ultrafiltration to calculate dis-
solved Ag" ions.
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Plant material and treatments

Propagation of Nicotiana tabacum L. cv Burley adult plants
was conducted as previously described (Cvjetko et al. 2018).
Two-month-old plants were placed in Milli-Q® water supple-
mented with either AgNPs or AgNOj; applied in the 100 uM
concentration and treated for 7 days. Control plants were kept
in the Milli-Q® water, free of AgNPs or AgNOs. After the
treatment, roots and leaves were separated. Roots were
washed with 0.01 M HNO; and subsequently rinsed with
Milli-Q® water to remove the AgNPs attached to root tissue.
All tissue samples were lyophilized.

AgNPs localization and Ag uptake determination

For localization of AgNPs in cells, small pieces of roots and
leaves were prepared as previously described (Cvjetko et al.
2018; Peharec Stefani¢ et al. 2018) and were examined with
monochromated TF20 (FEI Tecnai G2) TEM.

To determine total Ag concentration, measurements were
performed by applying the same protocol as reported in
Cvjetko et al. (2018) using the ELAN DRC-e ICP-MS
(Perkin Elmer, USA). Silver concentration was calculated ac-
cording to the calibration curve obtained with a set of stan-
dards of known concentrations. Detection limits and limit of
quantification (LOQ) were 0.2 and 1 mg kg ', respectively.
Spike recovery tests were 96.2 and 96.6% for roots of AgNP-
treated and AgNOs-treated plants, respectively, and 95.4 and
95.6% for leaves of AgNP-treated and AgNOs-treated plants,
respectively.

Protein extraction and quantification

For protein extraction, 0.15 g of lyophilized tissue was
weighed and proteins were extracted in the 6 cm® of extraction
buffer (500 mM Tris, 50 mM ethylenediaminetetraacetic acid
(EDTA), 700 mM sucrose, 100 mM potassium chloride
(KCl), 1 mM phenylmethylsulfonyl fluoride (PMSF), and
2% f3-mercaptoethanol) using precooled mortar and pestle.
Three replicates for each tissue type of the control and each
treatment were prepared. Homogenates were transferred in 15
cm’ Falcon tubes, stirred on vortex, and incubated horizontal-
ly on ice for 10 min. After incubation of homogenates, extrac-
tion with phenol was further applied according to the protocol
of Pavokovi¢ et al. (2012). Proteins were precipitated over-
night at — 20 °C using the ice-cold precipitation solution
(0.1 M ammonium acetate (NH4CH5CO,) in methanol).
Solutions with precipitated proteins were centrifuged at
3900x%g for 15 min at + 4 °C, after which pellet was washed
3% with 3 cm?® of ice-cold precipitation solution and 1x (last
washing) with 3 cm® ice-cold acetone. Between each washing
step, samples were centrifuged at 3900xg for 15 min at+ 4 °C.
Protein pellets were air-dried and dissolved in 500 mm® of

isoelectric focusing (IEF) buffer (9 M urea and 4% (w/v)
3-((3-cholamidopropyl) dimethylammonio)-1-
propanesulfonate (CHAPS)), which was supplemented with
2 mg cm > of dithiothreitol (DTT) and 5.2 mm® of
ampholytes. Dissolved pellets were transferred in 1.5 cm®
plastic tubes and centrifuged at 20,800xg for 5 min at room
temperature, and obtained supernatants were used for deter-
mination of protein concentration according to the modified
Bradford method (Pavokovi¢ et al. 2012) using bovine serum
albumin (BSA) as a standard.

Two-dimensional electrophoresis (2-DE)

The sample volume, which contained 500 pg of proteins, was
mixed with IEF buffer (containing DTT and ampholytes) to
obtain the total volume of 400 mm?® (volume for loading on
dry immobilized pH gradient (IPG) strips). Additionally, in
each sample, 5 mm® of bromophenol blue was added and
samples were vortexed and centrifuged at 20,800xg for
5 min at room temperature. For the rehydration step, superna-
tants were transferred to the wells of the rehydration tray with
IPG strips (Immobiline DryStrip, 13 cm, pH 3-10 NL, GE
Healthcare, USA), which were covered with 900 mm® of cov-
er fluid (Immobiline DryStrip Cover Fluid, GE Healthcare,
USA) and left for rehydration for 14 h at room temperature.

The separation of proteins by two-dimensional electropho-
resis (2-DE) was performed as described in Rogi¢ et al.
(2015), with some modifications. After the rehydration, IPG
strips were placed on the top of the manifold of the Ettan
IPGphor 3 system (GE Healthcare, USA) for the 1% step of
protein separation, using the following IEF programme:
500 V for 1 h (step and hold), 1000 V for 1 h (gradient),
8000 V for 3 h (gradient), and 8000 V for 4 h (step and hold),
until a total run 0£ 45,000 V h was achieved. After the IEF was
finished, IPG strips were stored at — 80 °C.

Prior to the 2" step of protein separation, sodium dodecyl
sulphate-polyacrylamide gel electrophoresis (SDS-PAGE),
IPG strips were defrosted and incubated for 15 min in 2.5
cm’ of equilibration buffer (0.05 M Tris-HCI pH 8.8, 6 M
urea, 2% SDS (w/v)) containing 130 mM DTT, and after that
for 15 min in the buffer of the same composition, but with
135 mM iodoacetamide instead of DTT. Equilibrated gels
were soaked in electrode buffer (0.025 M Tris, 0.192 M gly-
cine, 10% (w/v) SDS, pH 8.3) and placed on the top of the
vertical polyacrylamide slab gel (12% T, 2.67% C, with
the addition of 10% SDS). SDS-PAGE was performed
using the PROTEAN II xi system (BioRad, USA) and has
been run first at 100 V for 30 min, and then at 220 V till the
end (approximately 5 h).

Protein spots were visualized by Commassie Brilliant Blue
(CBB) R-250 staining solution (0.1% (w/v) CBB, 45% (v/v)
methanol, and 10% (v/v) glacial acetic acid), scanned for im-
age acquisition and data analysis.
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Image acquisition and data analysis

For analyses of root and leaf proteomes, the whole experiment
was repeated 3%, with 3 technical replicates for each sample.
2-D gels were scanned with image scanner (Epson Perfection,
V700 Photo, USA) at 600-dpi resolution. Acquired images
were quantitatively and qualitatively analyzed using the
ImageMaster 2D Platinum software version 7.0 (GE
Healthcare, USA). The abundance of each spot on 2-D gels
was estimated based on the volume percentage. Protein
spots that exhibited + 1.5-fold change with statistical
significance P < 0.05 (ANOVA, STATISTICA 13.3,
TIBCO Softwere Inc.) were considered as differently
abundant and analyzed with mass spectrometry.
Subsequently, the dataset consisting of relative abundance
values of proteins was analyzed by principal component anal-
ysis (PCA), for each tissue separately using STATISTICA
13.3, TIBCO Software Inc.

Protein digestion and peptide extraction
and purification

Spots of differentially abundant proteins were excised from
the gels with a pipette tip and destained in the solution com-
posed of 10% (v/v) acetic acid and 20% (v/v) methanol, after
which they were conditioned for trypsin digestion: firstly, in
50 mM ammonium bicarbonate (NH4HCOs) pH 7.8, then in
the 50:50 (v/v) of 50 mM NH4HCO; (pH 7.8)/acetonitrile
solution, and finally, in 100% acetonitrile. After drying in
vacuum centrifuge (Concentrator 5301, Eppendorf,
Germany), gel pieces were submerged to trypsin digestion
(10 ug cm trypsin solution in 25 mM NH,HCO;, pH 7.8,
using sequencing-grade trypsin (Roche, USA)) in
thermomixer at 500 rpm and 37 °C for 18 h. After digestion,
proteins were extracted from gel pieces with extraction solu-
tion (50% (v/v) of 5% trifluoroacetic acid (TFA) in acetoni-
trile) by incubation in ultrasonic bath (Ultrasonic Cell
Disruptor XL, Misonix Inc., USA) at room temperature, after
which they were dried in vacuum centrifuge and stored at — 80
°C. Extracted peptides were dissolved in 35 mm® of 0.1% (v/v)
TFA, purified using the Bravo Automated Liquid Handling
Platform on RP-S cartridges (AssayMAP Bravo, Agilent
Technologies, USA), and dried.

Mass spectrometry analysis

For protein analyses, matrix-assisted laser desorption/ioniza-
tion—time-of-flight mass spectrometry (MALDI) was applied.
Purified and dried peptides were dissolved in 2 mm”® of 5 mg
ecm™ alpha-cyano-4-hydroxycinnamic acid (CHCA) matrix
prepared in solution of acetonitrile and water (1:1; (v/v)).
Prepared samples were placed onto the MALDI plate and
dried. Samples were analyzed using the MALDI-TOF/TOF
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mass spectrometer (4800 MALDI-TOF/TOF™ Analyzer,
Applied Biosystems, USA), working in positive reflector
mode. In MS analysis, 1600 shots were taken per spectrum,
while 2000 shots were acquired in MS/MS analysis, covering
the mass range of 900—4000 Da, focus mass 2000 Da, and
delay time 450 ns.

For protein identification, we applied the global protein
server explorer software (version 3.6, Applied Biosystems,
USA) for Mascot (Matrix Science version 2.1, UK) search
against National Center for Biotechnology Information pro-
tein database (NCBIprot, (RefSeq-release81, March 6, 2017;
31208 765 769 amino acids, 81 027 309 proteins; Taxonomy
Viridiplantae (Green plants) 12.4 million proteins; http://
www.ncbi.nlm.nih.gov/protein). For combined MS and MS/
MS database searches, we used monoisotopic peptide masses
with the following search parameters: MS/MS mass
fragment tolerance 0.5 Da, mass precursor tolerance O.
3 Da, a maximum of one incomplete cleavage per pep-
tide, peptide charge + 1. All searches were evaluated
based on the significant scores obtained from Mascot.
Significant threshold value was P < 0.03 and FDR value was
2.5%. Universal Protein Resource (UniProt) was used for
Gene ontology (GO, http://www.geneontology.org) analysis
for all identified proteins.

Results
AgNPs stability

TEM analysis of AgNP stock solution revealed the presence
of spherical AgNPs (Fig. Sla), which is in accordance with
manufacturer’s data. Electron dispersive X-ray (EDX)
analysis confirmed that detected particles contained sil-
ver (Fig. S1b and c).

Spectrophotometric characterization of the exposure solu-
tion, i.e., 100 uM AgNP solution in Milli-Q® water during 7
days, showed stable SPR peak at 424 nm (in accordance with
manufacturer’s data), which remained at the same wavelength
until the 7™ day, when it slightly increased to 426 nm (Fig.
S2a). However, the graduate decrease of absorbance was ob-
served after the Z"d, the Sth, and the 7% day, indicating some
instability. Therefore, additional analyses have been
made and results are summarized in Fig S2b. A de-
crease of hydrodynamic diameter was obtained with
prolonged exposure, which can indicate smaller particles
due to Ag" dissociation. ¢ potential values became less
negative with time, which might suggest that AgNPs
lost some of their negatively charged citrate coatings,
which favored dissociation of Ag* ions. Silver concen-
tration determined after centrifugal ultrafiltration showed that
silver dissociation in exposure solution increased during the 7-
day period, but did not exceed 1%.
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AgNP localization and Ag content in plant tissue

In root cells, AgNPs were visible as black dots (Fig. S3a),
which TEM-EDX confirmed as particles containing silver
(Fig. S3b and c), proving the direct uptake of AgNPs and their
accumulation in the root cells. In the leaf cells, AgNPs could
not be detected.

Roots of tobacco plants exposed to either AgNPs or
AgNO; exhibited a significant increase in Ag uptake of sim-
ilar values, 1.660 + 0.051 and 1.617 + 0.048 mg g ' DW,
respectively. Ag uptake in leaf tissue was significantly lower
compared to roots, 0.041 + 0.004 mg g~' DW for AgNP
treatment and 0.044 + 0.005 mg g ' DW for AgNO; treat-
ment, respectively.

Differential abundance of root and leaf proteins
revealed by 2-DE

For each tissue and treatment, triplicate 2-D gels were obtain-
ed from three independent experiments. Representative gels of
the proteins from roots of control plants and roots from plants
exposed to AgNP or AgNO; as well as from leaves of control
plants and leaves from plants treated with AgNP or AgNO;
are shown in Figs. 1 and 2, respectively. Protein spots showing
significant and at least 1.5-fold change in abundance between
control and treatments were subjected to mass spectrometry
analysis.

In root tissue, 44 protein spots showed significant differ-
ence in abundance between control and treatments with either
AgNPs or AgNO; (Fig. 1). Ten spots (1, 3,4, 5,7, 32, 25,29,
43, and 44) could not be identified, while 34 spots were iden-
tified as 29 proteins, among which majority was down-
regulated (Fig. 3a, Table 1). After exposure to AgNPs, 29 root
proteins showed differential abundance, out of which 6 pro-
teins were up-regulated, while 23 exhibited reduced abun-
dance. Treatment with AgNOj3 induced changes in abundance
of 26 proteins, out of which 7 exhibited enhanced abundance,
while 19 proteins were down-regulated compared to the con-
trol (Fig. 3a). A high overlap of differently abundant proteins
between AgNP exposure and AgNO; exposure was found in
roots; 19 proteins were down-regulated, while 6 proteins were
up-regulated by both treatments. Only 4 out of 29 proteins had
different abundance level between treatments, among which 3
exhibited decreased level only after exposure to AgNPs, while
one was down-regulated by AgNPs but up-regulated by
AgNO; (Fig. 3a, Table 1).

Leaves exhibited 47 protein spots with significant differ-
ence in abundance between control and treatments with either
AgNPs or AgNO; (Fig. 2), among which 7 spots could not be
identified (41, 42, 43, 44, 45, 46, and 47). Forty protein spots
were identified as 35 proteins and majority of them were
down-regulated (Fig. 3b, Table 2). Namely, 27 out of 32
AgNP-responsive proteins identified in leaves were down-
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Fig.1 2-DE analysis of root proteins. Proteome profiles of control roots (a)
and roots of tobacco plants treated with either 100 uM AgNPs (b) or
100 uM AgNO; (c) were compared. Differently abundant proteins (at
least 1.5-fold compared to the control) are indicated by circles; up-
regulated proteins are indicated by black line, while down-regulated pro-
teins are indicated with broken-lined circles. The numbers correspond to the
numbers listed in Table 1. M, molecular weight markers
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proteins are indicated by black line, while down-regulated proteins are
indicated with broken-lined circles. The numbers correspond to the num-
bers listed in Table 2. M, molecular weight markers
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regulated, while the same treatment resulted in up-regulation
of only 5 proteins. Treatment with AgNO; induced changes in
abundance of 25 proteins, out of which 11 proteins were up-
regulated and 14 proteins were down-regulated (Fig. 3b).
Contrary to root, more than a half (18 out of 35) of the iden-
tified proteins exhibited different abundance level between
AgNPs and AgNOj; exposure, among which 3 of them were
up-regulated only by AgNO; while 4 proteins were also up-
regulated by AgNO; but down-regulated after AgNP-expo-
sure. Moreover, 10 proteins were repressed by AgNPs, but
were not responsive to treatment with AgNO; while 1 protein
was down-regulated by AgNOs, but had increased abundance
after AgNP treatment (Table 2, Fig. 3b). Among overlapping
proteins, 13 had lower abundance and only 4 proteins in-
creased abundance after both treatments (Fig. 3b).

Classification and abundance pattern analysis of root
proteins

The detailed information on root protein identification is given
in Table S1. Root proteins were classified into 6 functional
categories (Fig. 4a and b, Table 1), among which the defense
and stress response was the most abundant one. Namely, out
of 29 identified root proteins, 16 were ascribed to this catego-
ry, in which 11 proteins were down-regulated and 4 were up-
regulated after both types of treatments; one protein was
down-regulated only after exposure to AgNPs (Table 1).
Majority of these proteins are involved in response to abiotic
and biotic stimuli and response to oxidative stress; they are
either pathogenesis-like proteins or perform oxidoreductase
activity and are mostly located in extracellular region or vac-
uole (Fig. 5, Table 1).

Carbohydrate and energy metabolism category was repre-
sented with 8 proteins, among which 6 proteins exhibited
lower abundance, while one protein was up-regulated after
exposure to either AgNPs or AgNOs; one protein was
down-regulated only after exposure to AgNPs (Table 1).
Proteins from this category are mostly involved in either
mitochondrion-related energy reactions (tricarboxylic acid cy-
cle and ATP synthesis; 3 proteins) or cytosol-related glycoly-
sis (3 proteins) and mostly have oxidoreductase activity (Fig.
5, Table 1).

Two proteins were ascribed to amino acid metabolism cat-
egory; one, involved in amino acid metabolic process in mi-
tochondrion, was down-regulated by both types of treatments,
while the other protein, which participates in glutamine bio-
synthetic process in cytosol, exhibited lower abundance only
after exposure to AgNPs (Fig. 5, Table 1).

Nucleotide metabolism and protein synthesis and process-
ing categories were represented by only one member; protein
involved in nucleotide metabolism was down-regulated with
AgNP treatment and up-regulated with AgNO; treatment,
while the translation elongation factor Tu (EF Tu), involved
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AgNP vs. control
up-regulated

Fig. 3 Venn diagram analysis of a
responsiveness of differently
abundant root (a) and leaf (b)
proteins of tobacco plants
exposed to either 100 uM AgNPs
or 100 uM AgNO;. Red numbers
represent the total number of
proteins for each treatment

AgNO; vs. control
down-regulated

AgNP vs.control
down-regulated

in protein biosynthesis in mitochondrion, was down-regulated
by both types of treatments (Fig. 5, Table 1).

Two proteins were assigned to the unknown category
(Fig. 5, Table 1).

PCA analyses identified several distinct abundance pat-
terns in root protein data set that can be associated with silver
treatments (Fig. S4a). Proteins related to PC1 (negative direc-
tion) were more abundant in control plants and included pro-
teins belonging to the categories of carbohydrate and energy
metabolism, amino acid metabolism, and protein synthesis
and processing as well as defense and stress response.
Proteins related to PC1 (positive direction) exhibited in-
creased abundance after both treatments and included
cysteine-rich secretory protein (CAP), cap-binding protein
20 (CBP20), 3-1,3-glucanase, and manganese superoxide dis-
mutase (Mn-SOD), involved in the defense and stress re-
sponse, glycolytic enolase of the carbohydrate and energy
metabolism, and membrane protein A-like with unknown
function. In PC2 (positive direction), we found proteins be-
longing to the categories of defense and stress response
(osmotin), nucleotide metabolism (nucleoside diphosphate ki-
nase 1 (NDPK1)), amino acid metabolism (glutamine synthe-
tase (GS)), and carbohydrate and energy metabolism (malate
dehydrogenase (MDH)) that had lower abundance after expo-
sure to AgNPs compared to treatment with AgNOj5 (Fig. S4a).

Classification and abundance pattern analysis of leaf
proteins

The detailed information on leaf proteins identification is giv-
en in Table S2. Thirty-five analyzed leaf proteins were classi-
fied into 7 functional categories (Fig. 4c and d, Table 2). The
most abundant category was Carbohydrate and energy metab-
olism with 19 proteins, among which 10 proteins were down-
regulated and two were up-regulated after both types of treat-
ments; 7 proteins exhibited differential abundance between
treatments with AgNPs and AgNOj3. Majority of the proteins

b AgNP vs. control
up-regulated

down-regulated

paie|nbai-dn
|013u09 'sA EQNBY

pajeinbas-dn
|o13u09 'sA EQNBY

AgNO; vs. control

AgNP vs.control
down-regulated

in this category are located in chloroplasts and belong to the
biological process of photosynthesis (11 proteins), in which 6
proteins were down-regulated and 2 were up-regulated after
both types of treatments, while three proteins exhibited differ-
ent response between AgNP and AgNOs; treatments (Table 2).
Other proteins, involved in glycolytic process (4 proteins),
were mostly down-regulated after either type of treatment
and related to ATP synthesis coupled proton transport (1 pro-
tein), carbohydrate metabolic process (2 proteins) and tricar-
boxylic acid cycle (1 protein) (Fig. 6, Table 2).

Defense and stress response category was represented with
6 proteins, among which 2 proteins were down-regulated after
the exposure to either AgNPs or AgNOs. Four proteins in this
category showed differences in abundance between the treat-
ments; two were down-regulated with AgNPs and up-
regulated with AgNOs; one protein exhibited enhanced abun-
dance after exposure to AgNPs and lower after exposure
AgNOj; while one protein was up-regulated only with
AgNO; treatment. Five out of 6 of these proteins are
pathogen-related proteins and are mostly located in vacuole
(Fig. 6, Table 2).

Three proteins were assigned to the protein synthesis and
processing category and responded differently to tested treat-
ments (Table 2). Protein involved in proteolysis was up-
regulated after exposure to either AgNPs or AgNO;, while
the protein which participates in translation was down-
regulated after both types of treatments; the third one, in-
volved in protein folding, exhibited lower abundance only
after the treatment with AgNPs. Proteins with differential
abundance after both types of treatments are located in chlo-
roplast, while the AgNP-responsive one is the cytosol protein
(Fig. 6, Table 2).

The category RNA processing was represented with two
proteins involved in mRNA processing, among which one
protein is located in the nucleus, and the other one in the
chloroplast. Both proteins were down-regulated only after ex-
posure to AgNPs (Fig. 6, Table 2).
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Amino acid metabolism category was represented with two
proteins (Table 2), protein which was down-regulated with
AgNPs and up-regulated with AgNOj; participates in glycine
catabolic process and is located in mitochondrion. The other
one, which exhibited lower abundance only after the treatment
with AgNPs, is engaged in glutathione metabolic process as
well as in response to oxidative stress and is located in cytosol
(Fig. 6, Table 2).

Nucleoside diphosphate kinase 1 was the only protein of
the nucleotide metabolism category and was down-regulated
only after exposure to AgNPs. Beside nucleotide metabolism,
this protein is also involved in stress response and can be
found in nucleus, cytosol, and peroxisome (Fig. 6, Table 2).

Two proteins were assigned to the unknown category (Fig.
6, Table 2).

PCA analysis identified differences in protein abundance
patterns between control and treatments with AgNPs and
AgNOs (Fig. S4b). Proteins related to PC1 (positive direction)
mostly belonged to the carbohydrate and energy metabolism
as well as to the defense and stress response (CBP20 and
glutathione S-transferase (GST)), protein synthesis and pro-
cessing (peptidyl-prolyl cis-trans isomerase), RNA processing
(glycine-rich RNA-binding protein (GRP), and mRNA-
binding protein (mRBP)), nucleotide metabolism (NDPK1),
and protein with unknown function (elicitor inducible), which
were all more abundant in control plants. Proteins related to
PC1 (negative direction) were partial Rubisco large subunit
(RbcL) and chlorophyll a-b—binding protein (carbohydrate
and energy metabolism), protease Do-like (protein synthesis
and processing) and the unknown protein At5g39570-like,
which were all more abundant in plants exposed to both types
of treatments. In PC2 (positive direction), we found ATP syn-
thase 24-kDa subunit, Rubisco activase, and beta-carbonic
anhydrase (carbohydrate and energy metabolism); iron super-
oxide dismutase (Fe-SOD), (3-1,3-glucanase, and ankyrin-
repeat-containing protein (defense and stress response); and
aminomethyltransferase (amino acid metabolism) that in-
creased in AgNOs-treated plants. In PC2 (negative direction),
we found osmotin (defense and stress response) that increased
after AgNP treatment (Fig.S4b).

Discussion

Proteins are directly involved in stress response both as struc-
tural proteins and also as proteins engaged in regulation of
plant epigenome, transcriptome and metabolome (Kosova
et al. 2018). Therefore, studies of changes in protein abun-
dance during stress induction can provide important informa-
tion on how plants cope with stress factors. Proteomic-based
studies on plant responses to AgNP-induced stress employed
so far show that in rice, AgNPs interact with normal cell met-
abolic processes, such as protein synthesis/degradation and

@ Springer

apoptosis (Mirzajani et al. 2014), while in wheat seedlings,
AgNPs altered abundance of proteins involved in primary
metabolism and cell defense (Vannini et al. 2014). Only two
studies have compared changes in plant proteomes after si-
multaneous exposure to AgNPs and AgNO; In the study con-
ducted on Eruca sativa (rocket), it was found that both Ag
treatments cause changes in proteins involved in the redox
regulation and in the sulphur metabolism (Vannini et al.
2013); however, the low level of overlap of differently abun-
dant proteins was found between AgNPs and AgNO; treat-
ments, suggesting specific nanoparticles effects. On the other
hand, in tobacco seedlings, it was found that majority of iden-
tified proteins exhibited similar abundance response after both
treatments, thus indicating that dissociated Ag* ions could be
involved in AgNP toxicity (Peharec Stefanié et al. 2018).

In this study, a high overlap of differently abundant pro-
teins between AgNP and AgNOj; treatments was found in
tobacco roots, but in leaf tissue, almost a half of the proteins
exhibited different abundance level between AgNP exposure
and AgNO; exposure. A schematic comparison of protein
abundance in the roots and leaves of tobacco adult plant in
response to exposure to 100 M AgNPs or 100 uM AgNO;
has been generated (Fig. 7). Obtained results indicate that
AgNPs and AgNO; cause similar changes in the root prote-
ome, but more distinct changes in the proteome of the leaf
cells, although in both tissues, higher suppression of protein
abundance was induced by AgNPs. Several proteins in roots,
such as osmotin, NDPK1, and GS, were decreased only by
AgNP treatment. These data confirm evidences found in other
organisms (Domingos et al. 2011; Poynton et al. 2012) that
AgNP effects on the gene expression patterns are not only due
to the dissociated Ag* ions. Interestingly, only several proteins
(osmotin, basic beta-1,3-glucanase, CBP20, Fe-SOD,
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), triose
phosphate isomerase (TPI), and MDH) were found to be reg-
ulated by silver treatments in both tobacco tissues. This tissue-
dependent response probably results from differences in metal
content, as silver accumulation in roots was several times
higher than in leaves, after both types of treatments. Tissue-
specific response has not been extensively studied so far, al-
though reports on metal-induced stress show that proteins in
roots and leaves are differently regulated by exposure to cad-
mium, generating different detoxification mechanisms (Lee
et al. 2010).

Root proteome

Majority of the identified proteins in roots were those in-
volved in defense and stress response. Given that the roots
were the first in contact with the investigated treatments and
that silver largely accumulated in the root after exposure to
both AgNPs and AgNOs, these findings could be associated
with (nano)silver-imposed stress. We identified several
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pathogenesis-related (PR) proteins, which are known to accu-
mulate in response to infections by viruses, bacteria, or fungi,
but also after treatments with different abiotic stressors, in-
cluding excess metals (Sudisha et al. 2012). There are at least
17 different PR families and each group consists of several
members with similar properties (Sudisha et al. 2012). In our
experiment, exposure to AgNPs and AgNOj; increased abun-
dance of three PR proteins from different families: precursor
of protein CBP20 (PR-4 family, chitinase types I and IT), CAP
protein predicted to be a basic form of pathogenesis-related
protein 1 (PR-1 family), and basic 3-1,3-glucanase (PR-2
family). CBP20 protein and basic (3-1,3-glucanases were
found to be induced by heavy metals (Hensel et al. 1999; Su
et al. 2016) and although they are expected to be localized in
the vacuole, there are reports about their extracellular accumu-
lation (Kunze et al. 1998). Hensel et al. (1999) speculated that
stress situations can lead to an accumulation of CBP20 in the
cell wall to protect cells against damages caused by wounding
and heavy metals. Moreover, it was proposed that basic 3-1,3-
glucanase, which functions in the regulation of callose at plas-
modesmata, can be responsible for resistance to metals as
decreased callose levels in response to excess metals and in-
creased plasmodesmatal permeability may lessen the negative
effects of metals on primary root growth (O’Lexy et al. 2018).
Vannini et al. (2014) reported that PR proteins are the compo-
nents of the plant response against AgNPs. By TEM-EDX
analysis, we confirmed AgNPs accumulation inside the root
cells of tobacco plants; thus, up-regulation of abovementioned

AgNP responsive root proteins

a

m carbohydrate and energy
metabolism (27.59%)

mdefense and stress
response (55.17%)

m protein synthesis and
processing (3.45%)

amino acid metabolism
(6.90%)

= nucleotide metabolism
(3.45%)

munknown (3.45%)

AgNO; responsive root proteins
b m carbohydrate and energy
metabolism (26.92%)

mdefense and stress
response (57.69%)

mprotein synthesis and
processing (3.85%)

amino acid metabolism
(3.85%)

mnucleotide metabolism
(3.85%)

munknown (3.85%)

Fig. 5 GO analysis of root proteins identified after exposure to 100 M P>
AgNPs and 100 pM AgNOs;. Differently abundant proteins were
identified by MALDI-TOF/TOF MS according to the NCBIprot
database. GO analysis was derived through Uniprot hit accessions for
all protein identifications according to three categories which
describe biological process (a), molecular function (b), and
cellular compartment (c)

PR proteins involved in modifications of cell wall can contrib-
ute to defense against (nano)silver stress (Kosova et al. 2018).
However, three PR proteins, identified as members of germin-
like protein (GLP) superfamily, were found to be down-
regulated with both types of treatments. These proteins, clas-
sified as PR-16 family (Sudisha et al. 2012), are ubiquitously
expressed in plants and play important roles in development
(Dunwell et al. 2008) and response to stress (Wang et al.
2013). However, down-regulation of certain members of
GLPs was also reported after plant exposure to NaCl (Wang
et al. 2013). Interestingly, GLPs were the most down-regulat-
ed gene family in Arabidopsis roots during biosynthesis
of gold nanoparticles, although proteome analysis did
not reveal changes in GLP protein levels (Tiwari et al.
2016). It seems that different response, i.c., increased or
decreased expression of certain GLPs, could be associ-
ated with time- and/or dose-dependent activation
(Dunwell et al. 2008). Osmotin, protein which belongs
to the PR-5 family, was also down-regulated, but only
after exposure to AgNPs. As other PR proteins, osmotin
is involved in the modulation of plant responses to

AgNP responsive leaf proteins

b

AgNO; responsive leaf proteins

mcarbohydrate and energy
metabolism (53.13%)

mdefense and stress
response (15.63%)

RNA processing (6.25%)

mprotein synthesis and
processing (9.38%)

amino acid metabolism
(6.25%)

mnucleotide metabolism
(3.13%)

munknown (6.25%)

m carbohydrate and energy
metabolism (60.00%)

mdefense and stress
response (24.00%)

mprotein synthesis and
processing (8.00%)

amino acid metabolism
(4.00%)

munknown (4.00%)

Fig. 4 Functional categorization of the differently abundant proteins in roots (a) and leaves (b) of tobacco plants exposed to 100 pM AgNPs and of
differently abundant proteins in roots (¢) and leaves (d) of tobacco plants exposed to 100 uM AgNO;
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<« Fig. 6 GO analysis of leaf proteins identified after exposure to 100 uM
AgNPs or 100 uM AgNOs. Differently abundant proteins were identified
by MALDI-TOF/TOF MS according to the NCBIprot database. GO
analysis was derived through Uniprot hit accessions for all protein
identifications according to three categories which describe biological
process (a), molecular function (b), and cellular compartment (c)

stress (Hakim Ullah et al. 2018) by acting as a tran-
scriptional regulator or a signalling molecule (Sudisha
et al. 2012). As presented, the responses of different
types of PR proteins during abiotic and biotic stress are very
well documented in literature; however, there are still gaps in
understanding the exact mechanisms of action during their
multiple functions in plant defense.

Annexins are soluble proteins involved in the organization
of membrane-associated protein networks which participate in
a wide range of cellular and developmental processes, includ-
ing tolerance to abiotic stress (Laohavisit and Davies 2011).
The majority of plant annexins has been localized in the cyto-
sol; however, they have also been found in other cell compart-
ments such as vacuole (Laohavisit and Davies 2011). Two
annexins were identified in tobacco roots in this study; one
vacuole-associated VCaB42 and the other located in the cyto-
sol, and both were found to be down-regulated in response to
AgNPs or AgNOs;. Our findings are in a good correlation with
report of Mustafa et al. (2015), in which several cell
organization-related proteins, including annexin 8, were
down-regulated by AgNPs in soybean roots. Obtained results
may indicate stagnant status of root cell division and elonga-
tion under stress conditions imposed by AgNPs, as suggested
by Mustafa et al. (2015), particularly since the annexin
VCaB42 was found to be involved in the expansion of tobac-
co cells and in the early events of vacuole biogenesis (Seals
and Randall 1997).

Among root proteins involved in defense and stress re-
sponse, several antioxidant enzymes, which serve to detoxify
reactive oxygen species (ROS), were identified. Most of the
proteomic research on plant response to various stress factors
revealed a positive correlation between stress tolerance and an
increased abundance of antioxidant proteins (Kosova et al.
2018). However, there are several reports which show that
excess metals can lead to decreased expression of antioxidant
enzymes (Hossain and Komatsu 2013 and references therein).
Fe-SOD, located in plastids, was down-regulated in response
to AgNPs or AgNOs3, which is in a good correlation with
decreased SOD activity recorded in roots after treatment with
100 uM AgNPs (Cvjetko et al. 2018). However, Mn-SOD, a
mitochondrial isoform, was up-regulated after both types of
treatments. Root proteome analysis of Brassica juncea ex-
posed to Cd revealed up-regulation of Fe-SOD, while Cu/
Zn-SOD was down-regulated (Alvarez et al. 2009), suggest-
ing that different SOD genes could play different roles in
eliminating ROS. Abundance of other identified antioxidant
enzymes, peroxidase, salicylic acid binding catalase,

monodehydroascorbate reductase (MDHAR), and quinone re-
ductase was also decreased after exposure to silver treatments.
These findings are in a good correlation with results from our
previous study, in which majority of the investigated antioxi-
dant enzymes, after exposure of tobacco plants to 100 uM
AgNPs and AgNOs, exhibited a decrease or no change in total
activity (Cvjetko et al. 2018). It is known that Ag" ions can
inhibit enzyme activities by binding to thiols and other active
groups or by displacing native metal cations from their bind-
ing sites in enzymes (Ghandour et al. 1988). AgNPs applied in
this survey were found to be rather stable according to stability
analysis. However, 1% dissociation of Ag” was measured in
the exposure solution after 7-day period. Moreover, it is pos-
sible that detected intracellular AgNPs dissociate into highly
toxic Ag" ions, as has been reported by Jiang et al. (2017).
Still, in AgNP-treated plants, contrary to AgNO3, the levels of
ROS and parameters of oxidative stress were similar as in
control plants (Cvjetko et al. 2018), indicating differences in
defense against oxidative stress between AgNP- and AgNOs-
treated plants.

In the category carbohydrate and energy metabolism, ma-
jority of the identified proteins were those involved in glycol-
ysis and alcoholic fermentation as well as in mitochondrion-
related energy production. This was expected as roots are non-
photosynthetic tissue, dependent on glycolysis and oxidative
phosphorylation for their energy supplies (Goodwin and
Mercer 1983). It has been reported that expression of several
proteins involved in the energy production and metabolism,
including enolase, aldolase, pyruvate decarboxylase, and al-
cohol dehydrogenase (ADH), is increased in organisms ex-
posed to metals due to higher energy demands required for
detoxification (Kosova et al. 2018). However, in some organ-
isms, opposite results were obtained after exposure to different
metals; for example, proteins involved in mitochondrial respi-
ration were up-regulated after Cd-exposure, but inhibited un-
der Mn-induced stress, suggesting that different mechanisms
are triggered by exposure to different metals or caused by a
dose-dependent response (Luque-Garcia et al. 2011). In rice
roots, the ADH abundance was decreased by AgNP treatment
(Mirzajani et al. 2014). In tobacco roots exposed to AgNPs or
AgNO;, we found down-regulation of two glycolysis pro-
teins, GAPDH and TPI, as well as of ADH-like UDP-glucose
dehydrogenase, protein involved in subsequent fermentative
pathway. Down-regulation was also found for MDH and
isocitrate dehydrogenase (IDH), proteins involved in tricar-
boxylic acid (TCA) cycle, which links glycolysis to the mito-
chondrial electron transport chain. Moreover, abundance of
mitochondrial ATP synthase 24-kDa subunit was also lower
after exposure of plants to either AgNPs or AgNOs, which
indicates decreased ATP production. Moreover, mitochondrial
translation elongation factor Tu was also down-regulated after
both treatments, which together, with the decrease in abun-
dance of glutamine synthetase (GS) and glutamate

@ Springer
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dehydrogenase (GDH), key enzymes involved in biosynthesis
of glutamate and glutamine amino acids, suggests general
reduction in protein synthesis. These results imply loss of
ability to maintain energy production under silver-imposed
stress. Rodriguez-Celma et al. (2010) suggested that low con-
centrations of metals induce up-regulation of cellular metabo-
lism as adaptive response, while high metal concentrations
cause severe cell deregulation. However, it is possible that in
roots of tobacco plants, energy metabolism is decreased in
response to (nano)silver-induced stress in order to reduce the
excess production of ROS and thus prevent induction of oxi-
dative stress, as has been suggested for drought (Vitamvas
et al. 2015). Interestingly, one glycolytic enzyme, enolase,
was up-regulated under both treatments. Beside its role in
glycolysis, enolase activity is required for secondary cell wall
assembly and synthesis of lignin, a major structural compo-
nent of secondary cell walls, which protects cell wall polysac-
charides from degradation (Vanholme et al. 2010); therefore,
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= down-regulated

I = \

RNA processing
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NDPK1
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its enhancement could be involved in defense response against
silver stress.

NDPK1, which was found to be down-regulated after treat-
ment with AgNPs and up-regulated after exposure to AgNO3,
is a housekeeping enzyme present in several subcellular com-
partments, although the main isoform is located in the cytosol
(Dorion et al. 2017). NDPK1 plays a specific role in the sup-
ply of UTP, necessary for synthesis of cell wall precursors
during early root growth (Dorion et al. 2006). Moreover, it
was demonstrated that protein moonlighting can be ascribed
to NDPK 1. Moonlighting proteins perform multiple autono-
mous and often unrelated functions without partitioning these
functions into different domains of the protein (Huberts and
Klei2010). NDPK1 displays important functional diversity by
interacting with proteins involved in a variety of processes,
including ROS detoxification, carbohydrate metabolism, and
signal transduction (Luzarowski et al. 2017). In the study of
Dorion et al. (2017), ROS levels were positively correlated
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Fig. 7 A schematic comparison of protein abundance in roots and leaves
of tobacco adult plant in response to exposure to 100 uM AgNPs or
100 uM AgNO;. CAP, cysteine-rich secretory protein; CAT, catalase;
CBP 20, cap-binding protein 20; EF Tu, elongation factor Tu; Fe-SOD,
iron-dependent superoxide dismutase; GAPDH, glyceraldehyde-3-
phosphate dehydrogenase; GLP, germin-like protein; GST, glutathione
S-transferase; HBP1, ankyrin-repeat protein HBP1; MDH, malate
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dehydrogenase; MDHAR, monodehydroascorbate reductase; Mn-SOD,
manganese-dependent superoxide dismutase; NDPK1, nucleoside di-
phosphate kinase 1; PPlase, peptidyl-prolyl cis-trans isomerase; PPX,
peroxidase; PSI, photosystem I proteins; PSII, photosystem II proteins;
RbcL, Rubisco large subunit; RPE, ribulose-phosphate 3-epimerase;
Rubisco activase, ribulose-1,5-bisphosphate carboxylase/oxygenase
activase; TPI, triose phosphate isomerase
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with levels of NDPK1 expression in potato roots, which is in
agreement with our findings for root tissue; namely, after ex-
posure to AgNO;, NDPK1 up-regulation as well as increased
ROS production (Cvjetko et al. 2018) was recorded, while
AgNP treatment resulted in a down-regulation of NDPK1
and control level of ROS (Cvjetko et al. 2018). Moreover, in
our previous study, enhanced NDPK1 abundance and in-
creased oxidative stress were found in tobacco seedling ex-
posed to AgNPs and AgNO5 (Peharec Stefani¢ et al. 2018).

Leaf proteome

Majority of the identified proteins with differential abundance
in leaf tissue were those involved in carbohydrate and energy
metabolism. Among biological processes related to this cate-
gory, photosynthesis was the one on which treatments of to-
bacco plants with AgNPs and AgNO; had the most prominent
effect. Among protein complexes engaged in the photosynthe-
sis light-dependent reactions, protein PsaD, which guides fer-
redoxin (Fd) to the binding site on photosystems I (PSI)
(Hanke and Mulo 2013), and protein PsaE, crucial for Fd
and ferredoxin-NADP reductase (FNR) binding to PSI (Sétif
et al. 2010), were down-regulated after exposure to both treat-
ments. Moreover, FNR, responsible for transferring electrons
from Fd to NADP®, was also down-regulated after both treat-
ments. In plants exposed to heavy metals like Cd and As,
down-regulation of proteins involved in photosynthetic elec-
tron transport was also found (Kosova et al. 2018), thus sug-
gesting their susceptibility to metal stress, including
(nano)silver, which can result in decreased electron transport
and subsequently decreased production of NADPH and ATP.
On the other hand, both types of treatments resulted in an up-
regulation of chlorophyll a-b—binding protein. It is possible
that the tobacco plants regulate the abundance of chlorophyll
a-b—binding protein to preserve the function of PSI and/or
photosystems II (PSII) during AgNP- and AgNOs-induced
stress as some proteins from chlorophyll a-b—binding family
mediate the distribution of excitation energy between PSI and
PSII (Andersson et al. 2003). Interestingly, two extrinsic Mn-
binding PSII proteins, the 11 kDa one (known as Psb27) and
the 23 kDa one (known as PsbP), were down-regulated only
after exposure to AgNPs. In Arabidopsis, Psb27 homolog is
required for the efficient repair of photodamaged PSIT (Wei
et al. 2010), while the 23-kDa protein plays an important role
during the process of PSII assembly (Bondarava et al. 2005).
Moreover, CF1 epsilon subunit of plastid ATP synthase, an
enzyme involved in ATP biosynthesis, also exhibited de-
creased abundance in our study after exposure to AgNPs;
however, it was up-regulated after the treatment with
AgNO;. Our results are in partial correlation with those of
Vannini et al. (2013), who also reported that rocket exposure
to AgNO; caused up-regulation of plastid ATP synthase sub-
units, although exposure to AgNPs had no effect on

abundance of this protein. Changes observed in the abundance
of the proteins involved in light-dependent reactions can be
correlated with previously published chloroplast ultrastructur-
al changes, which differed between AgNP and AgNO; treat-
ments, despite similar accumulation of Ag in leaves (Cvjetko
et al. 2018). Namely, exposure to 100 pM AgNPs resulted
with smaller and partially swollen and ruptured chloroplasts,
although the thylakoid system was well developed, while
chloroplasts found in leaf cells of AgNO;-treated plants were
bigger than the control ones. These results suggest that expo-
sure to AgNPs and AgNOj; induces changes in chloroplast
ultrastructure and processes that are similar, but not identical,
which is evidence that the AgNP effects are not just a result of
the release of Ag” ions.

Consistently with decreased primary electron transport pro-
cesses, photosynthesis carbon reactions were also impaired.
Namely, partial Rubisco subunit RbcL of 47 kDa was up-
regulated after exposure to either AgNPs or AgNO;, while
the 53-kDa protein, native RbcL, was down-regulated, thus
indicating Rubisco degradation. It has already been reported
that under metal stress, Rubisco undergoes the down-
regulation or degradation (Kosova et al. 2018). It is likely that
the reduction in Rubisco content in leaves of tobacco plants
exposed to (nano)silver led to a down-regulation of proteins
involved in photosynthetic electron transport as an imbalance
between the rate of primary and secondary photosynthetic
reactions enhances a risk of ROS formation (Kosova et al.
2018). Another enzyme of Calvin cycle, ribulose-phosphate
3-epimerase (RPE), had lower abundance after both treat-
ments, contributing to the diminished photosynthetic activity.
However, Rubisco activase 2, enzyme that is required for ac-
tivation of Rubisco, was up-regulated after exposure to
AgNO;, probably to compensate decreased Rubisco content.
Keown et al. (2013) suggested that Rubisco activase removes
inhibitors from Rubisco, thus playing a key role in regulating
photosynthesis in plants. Moreover, the abundance of beta-
carbonic anhydrase, which catalyzes conversion of HCOz ™
to CO,, to ensure the sufficient amount of CO, for fixation
by Rubisco, was also enhanced after exposure to AgNOs.
Vannini et al. (2013) recorded carbonic anhydrase up-
regulation in rocket plants exposed to AgNOj3, which corrob-
orates our results. These results further confirm that AgNPs
and AgNO; can induce different responses. More severe
down-regulation of photosynthesis observed after exposure
to AgNPs could be correlated with absence of ROS and oxi-
dative stress in these plants. It can be assumed that by repres-
sion of photosynthesis-related proteins, plants avoid damage
of'the photosynthetic machinery and formation of free radicals
that are destructive for the cell (Nouri et al. 2015).

The second group of reactions of the primary metabolism
whose proteins were affected with both treatments is glycoly-
sis. In plants, glycolysis takes place in the cytosol and in
plastids of both photosynthetic and non-photosynthetic
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organs. Down-regulation of glycolysis proteins GAPDH and
TPI as well as plastidic aldolase was recorded upon exposure
to AgNPs or AgNO;. MDH, a TCA enzyme, was down-
regulated only after exposure to AgNPs. Although an en-
hanced need for energy under stress conditions often leads
to an increase in proteins related to anaerobic metabolism
(Kosova et al. 2018), decreased abundance of glycolysis pro-
teins has also been recorded, for example, in cactus tissue
exposed to salinity and mannitol (Rogi¢ et al. 2015) and
Arabidopsis shoots exposed to drought and heat stress (Zeng
et al. 2016). It is possible that the negatively affected primary
metabolism observed in both tissues might be a consequence
of reduced growth due to silver-imposed toxicity.

Besides the inhibition of the primary metabolism, the pro-
teome analysis suggests reduced protein synthesis. Peptidyl-
prolyl cis-trans isomerase (PPIase), an enzyme that accelerates
protein folding, was found to be down-regulated after expo-
sure to AgNPs. Chloroplastic 30S ribosomal protein S5, an
RNA-binding protein responsible for the synthesis of chloro-
plast genome-encoded proteins, exhibited decreased abun-
dance after both treatments. Since this protein is involved in
the synthesis of chloroplast transcription and translation ma-
chinery and components of the photosynthetic apparatus
(Yamaguchi and Subramanian 2000), its decrease, to-
gether with increased abundance of chloroplastic-like
protease Do-like 1, protease involved in the degradation
of damaged proteins, could explain severe down-regulation of
photosynthesis-involved proteins.

Proteins involved in metabolism of amino acids and nucle-
otides, aminomethyltransferase, glutathione S-transferase
(GST), and NDPK1, were down-regulated by AgNPs. This
could be a result of reduced primary metabolism and supply
shortage. However, aminomethyltransferase, involved in the
metabolism of glycine, was up-regulated by AgNOs;, which
implies its role in defense response as glycine could be used
for synthesis of glycinebetaine, an effective protectant against
abiotic stress (Chen and Murata 2008).

In the category defense and stress response, we identified
PR protein CBP20, osmotin, and 3-1,3-glucanase as well as
Fe-SOD, which were also detected in root tissue, although
with different abundance level. Lower abundance of CBP20
in leaves after both treatments could be related to much lower
silver content accumulated in leaf and, therefore, reduced need
for protection against metal-induced damage. However, 3-
1,3-glucanase exhibited enhanced abundance in leaf after the
treatment with AgNOs;, although the content of silver after
both treatments was similar. Furthermore, osmotin, a protein
that can act as signalling molecule and/or transcriptional reg-
ulator (Hakim Ullah et al. 2018) was up-regulated after expo-
sure to AgNPs and down-regulated after exposure to AgNO3,
unlike ankyrin-repeat-containing protein, that regulates ex-
pression of PR proteins and antioxidant metabolism (Yan
et al. 2002), which was down-regulated after exposure to
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AgNPs but up-regulated upon the AgNO; treatment. The
same response was observed for Fe-SOD and could be related
with AgNOs-induced oxidative stress (Cvjetko et al. 2018).
Different abundance of regulatory proteins including two
RNA-binding proteins in response to AgNPs or AgNO3 im-
plies differences in signalling pathway between Ag™ ions and
nanoparticles, which in turn leads to different expression of
other proteins.

Conclusion

The obtained results indicate that in tobacco, AgNPs and
AgNOj; cause similar changes in the root proteome while
more distinct changes in the proteome of leaf cells were found.
In both tissues, AgNPs revealed more severe impacts on pro-
teome composition in comparison to AgNO3. Moreover, these
data add further evidence that the AgNP effects are not simply
due to the release of Ag™ ions, but could involve differences in
signalling pathway in response to Ag" ions or nanoparticles.
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