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ABSTRACT 
In this paper, we consider the problem of automatic detection of 

humans in thermal videos and images. The thermal videos are 
recorded on a meadow with a small forest with up to three persons 

present on the scene at different positions and ranges from the 

camera. To simulate realistic conditions that can happen during 

surveillance and monitoring of protected areas, all videos are 
recorded at night but different weather conditions– clear weather, 

rain, and fog. We present the results of human detection on a 

custom dataset of thermal videos using the out-of-the-box YOLO 

convolutional neural network and the YOLO network trained on a 
subset of our dataset. YOLO is an object detector pretrained on the 

COCO image dataset of RGB images of various object classes. 

Test experimental results have shown significantly improved 

performance of human detection in thermal imaging in terms of 
average precision for trained YOLO model over the original 

model. 
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1. INTRODUCTION 
Security is nowadays a rising concern, and thus security 

technologies are becoming more relevant and researched. 

This concerns the domain of personal security, national 

security, border protection due to global terrorism threat and 

illegal migrations, as well as the security of important 

government and private infrastructure. Investment in security 

systems reach record highs, and video surveillance systems 

and protected area control systems are becoming more 

sophisticated and capable. A significant factor in this 

development is the improvements in computer vision 

technologies and successful application of neural networks 

for object detection.  

The goal of object detection is to classify certain objects in 

images and to provide their exact position. Many successful 

machine learning algorithms have been developed in the past 

for the detection of objects such as human faces [1] or full 

human figures [2] in RGB images.  

Currently, the most successful paradigm for object detection 

in RGB images is based on convolutional neural networks 

(CNNs). Development started with the great success of 

AlexNet in the ImageNet Large Scale Visual Recognition 

Challenge in 2012 [3] for the image recognition task. Since 

then, several successful CNN architectures have been 

developed for the object detection task as well, such as R-

CNN [4], SSD [5], Mask R-CNN [6], R-FCN [7] and YOLO 

[8].  

In this paper, we consider the application of the CNNs for 

the task of detecting persons in images and videos obtained 

with a thermal camera. The thermal camera captures the heat 

emitted by the subject of the surveillance and forms an image 

using infrared (IR) radiation, so-called thermogram. 

The IR radiation is electromagnetic radiation emitted in 

proportion to the heat generated/ reflected by an object and, 

therefore IR imaging is referred to as thermal imaging. The 

wavelengths of IR are longer than those of visible light, 

ranging from 400 nm to 1400 nm, Fig. 1, so IR is not visible 

to humans [9]. 

 

Figure 1.  Wavelengths of light in nm (https://www.scienceoflight.org/ir-

light/) 

Since thermal sensors form imagery of the environment or 

object solely by the detected amount of thermal energy 

emission of recorded object, they are, unlike the visible 

sensors, invariant to illuminating conditions, robust to a wide 

range of light variations and weather conditions [10, 11]. 

Thermal cameras can be used in security applications in 

weather conditions in which regular RGB cameras produce 

poor results, such as rain and fog or are not useful at all, such 

as in the total darkness, Fig. 2. 

 
Figure 2.  Night vision vs. thermal imagine showing that tree cover cannot 

hide a person from a thermal camera 

(https://www.opticsplanet.com/howto/how-to-thermal-imaging-vs-night-

vision-devices.html) 

On the other hand, IR cameras are susceptible to the 

variations of surrounding's temperature and provide fewer 



details than visible light cameras since color captured in 

visible spectrum provides much more information and is 

easier to interpret. 

Due to the difference between visual and thermal images, we 

are interested in exploring how the common deep learning 

methods successful for object detection and recognition in 

RGB images [12, 13] will perform with thermal images.  

For the detection task, we decided to use the YOLOv3 

network [14], which performs at or near state-of-the-art 

levels in the object detection task in RGB images [15].  

In the next section, we briefly describe the YOLO object 

detector. The dataset and the experimental setup are 

discussed in Section 3. The results are presented and 

discussed in Section 4, followed by the conclusion. 

2. THE YOLO OBJECT DETECTOR 
The original YOLO paper [8] describes the object detection 
model that uses a single convolutional network to 
simultaneously predict multiple object bounding boxes in 
full images as well as class probabilities for those boxes, Fig. 
3.  

The network architecture of this model has 24 convolutional 
layers and two fully connected layers. The convolutional 
layers perform feature extraction while the fully connected 
layers predict the bounding box locations and their 
probabilities. The system first divides the input image into an 
S x S grid. Two bounding boxes and corresponding class 
confidences are associated with each grid cell, so at most two 
objects can be detected within a cell, and if an object 
occupies more than one cell, the center cell is selected to be 
the holder of prediction for that object. When training the 
network, a bounding box that holds no objects has a 
confidence value of zero, a bounding box around an object 
has a confidence value that corresponds to the intersection-
over-union (IoU) score of the bounding box and the ground 
truth box. 

 

 
Figure 3.  The detection pipeline of YOLO: the input image is divided into 

a S x S grid where the bounding boxes are simultaneously predicted with 

corresponding confidence and class probability values [8] 

Version 2 of the YOLO detector (YoloV2) [16] replaces five 

convolution layers of the original model with max-pooling 

layers and changes the way bounding box proposals are 

generated. Instead of fully connected layers that predict the 

bounding box coordinates for each cell, predefined anchor 

boxes are used. To define the anchor boxes, YoloV2 uses k-

means clustering in a training set of GT bounding boxes 

where boxes translations are relative to a grid cell. 

In Yolov3 [14], the 19-layer feature extraction network has 

been replaced with a much deeper network consisting of 53 

layers of 3x3 and 1x1 filters with skip connections. Also, the 

bounding box prediction was refined, using features at three 

different scales to make three sets of box predictions for each 

location. The classification method has also been changed, so 

now multi-label classification is used. An object may, in that 

case, belong to more than one class simultaneously, which is 

achieved by replacing the soft-max with logistic regression. 

3. EXPERIMENT SETUP 
In the experiment, we focus on the application of YOLO in 

the area of surveillance using thermal imaging for human 

detection in different weather conditions.  

We compare the performance of the YOLOv3 network 

pretrained on the COCO image dataset of RGB images of 

various object classes [17], used as baseline model and 

referred to as bYOLO, with the performance of YOLO with 

additional training on thermal images from our dataset 

(referred to as tYOLO). Even though thermal images differ 

significantly in appearance from the RGB images, it is 

expected that individual layers of RGB images still 

sufficiently resemble the thermal image, so that the features 

learned on training data of RGB images should still provide 

a reasonable baseline for thermal images. Additionally, an 

experiment in [8] has shown that the YOLO detector 

performance degraded less than of other detectors when 

applied to person detection in artwork, a domain that was not 

used in training the network. 

We have compared the baseline performance with the YOLO 

network that was trained on thermal image data for the class 

Person.  

The evaluation is performed using the mean average 

precision (mAP) criteria, like the one used in the PASCAL 

VOC 2012 competition [18]. 

3.1. Dataset 

The data for our experiment was collected by recording 

humans during the night in different weather conditions and 

different ranges from the camera. The videos are taken using 

the FLIR ThermaCAM P10 thermal camera. It is a focal 

plane array (FPA) camera with uncooled bolometer which 

covers the spectral range between 7.5 and 13 m (LWIR). The 

camera has a sensor resolution of 320 x 240 pixels, but we 

used a digital recorder which converted and unsampled the 

video to the resolution of 1280 x 960 pixels in AVI format. 

We recorded five men and two women during the winter 

time (in February 2017.) in several lens and range 

configurations. The people moved in normal walking 



position and hunched position, and with normal walking 

speed and running.  

The base range for recording was 110 m, conducted using 

basic camera equipment and lenses with 24° x 18° / 0.3 m 

field of view. Additionally, we used the FLIR P/B series 

telephoto lenses with 7°x5.3V FOV and 3.5x magnification.  

Recordings were made in different weather conditions, with 

appropriate setups. In clear weather, the distance of people 

from the camera was either 110 m (base) or 165 m. 

Recordings in heavy fog, with minimum visibility to about 5 

m were made with people less than 30m from the camera and 

with people moving at a distance of 50 m from the camera. 

In the fog, using standard lenses or recording at larger 

distances was not possible, so we only used the telephoto 

lens here. In the heavy rain condition, the people were 

moving at 30m, 70m, 110m, 140m, 170m, 180m, and 215m 

from the camera. 

After recording the videos, we extracted individual video 
frames to create the dataset. We got 15.000 images taken 
with a telephoto lens on clear, fog and rain condition and 
about 6.000 images taken with a standard lens on clear 
weather conditions.  

For the training, we used approximately 1.000 images for 

each weather condition. Images were manually annotated 

using the VGG Image Annotator (VIA) [19]. 

4. RESULTS AND DISCUSSION 
The Average Precision (AP) measure is used to evaluate the 
performance of the models. The detection results are 
compared with the ground truth so that for a detection to be 
counted as a true positive, intersection over union (IoU) 
score of the detection bounding box and the corresponding 
ground truth bounding box should be at least 50%. An 
example of positive and negative object detection concerning 
intersection over union (IoU) score in case of ball detected is 
shown in Fig. 4. 

 

 
Figure 4.  Visual representation of IoU criteria [20] 

When the same object is detected multiple times, only one 

detection is counted as a true positive. To get the mAP value, 

mean of AP value of all classes is calculated, but in this 

experiment, we consider only one class, Person. 

By varying the confidence threshold of the detector, a 

precision-recall curve can be produced for the desired class. 

The AP score is then the area underneath the precision-recall 

curve, Fig. 5. 

Fig. 5 presents AP score for original YOLO model, bYOLO, 

that was not trained on our datasets, while Fig. 6 corresponds 

to AP score obtained with the tYOLO model that is 

additionally trained on our custom datasets. The AP score 

achieved with tYOLO of 29% significantly exceeds the AP 

score achieved by bYOLO of 7%.  

For example, the bYOLO model achieves a precision of 97% 

with a recall of 6%, while the model tYOLO achieves the 

same precision with a much higher recall of approx. 20%, 

meaning the tYOLO model detects a lot more people in the 

images with the same precision. 

 
Figure 5.  AP score and precision/recall curve for baseline YOLO model, 

bYOLO 

 
Figure 6.  AP score and precision/recall curve for custom trained YOLO 

model, tYOLO 



Below, Figs. 7 to 11 show examples of the detection results 

of both models bYOLO and tYOLO with respect to different 

weather conditions and different distances from the camera. 

In all examples, the model tYOLO has a true positive 

detection (TP) of people, Figs. 7 to 11 (b), while model 

bYOLO had positive detection only in the case of a normal 

walk on images recorded with telephoto cameras on rain 

condition, with a distance of 70m from the camera, Fig. 8 

(a). Interestingly, in the case of the same weather conditions 

but at a distance of 100 meters, (for 30 meters longer), when 

the person was hunched, the model bYOLO failed to detect 

the person. On the other hand, change of people behavior 

and activity from a person walking to hiding and hunched 

walking and running did not affect the detection result for 

model tYOLO, Figs. 9 (b) and 10 (b). 

 
 (a) (b) 
Figure 7.  Results of person detection (hunched walk) on images recorded 

with a standard lens on rain condition, 70m distance, using bYOLO (a) 

opposite to tYOLO model (b). 

Fig. 7(a) shows a false positive detection of the bYOLO 

model for class tv-monitor and false negative detection for a 

person since no person was detected although the person 

exists on the image. In all other cases, Figs. 9 to 11 (a), the 

model bYOLO did not detect the person in the image even 

though it was present (false negative detection). 

 
 (a) (b) 

Figure 8.  Results of person detection (normal walk) on images recorded 

with a telephoto lens on rain condition, 70m distance, using bYOLO (a) 

opposite to tYOLO model (b). 

 
 (a) (b) 

Figure 9.  Results of person detection (hunched walk) on images recorded 

with a telephoto lens on rain condition, 100m distance, using bYOLO (a) 

opposite to tYOLO model (b). 

On all images in rain conditions (Figs. 7 to 10), there is a 

large temperature difference between the person on image 

who is hot and marked with red and the environment that is 

cold and marked ranging from blue to green. The heat 

difference makes it easier to detect a person, but that 

temperature difference is not present at all weather 

conditions. E.g., in the case of fog, (Fig. 11) the temperature 

difference between the person and the environment is much 

smaller and the detection according to the heat map is much 

harder.  

In the case of fog, bYOLO could not detect any person, Fig. 

11(a), and tYOLO has detected one of the two people present 

on the scene, Fig. 11(b). 

 
 (a) (b) 

Figure 10.  Results of person detection (running) on images recorded with a 

telephoto lens on rain condition, 215m distance, using bYOLO (up) 

opposite to tYOLO model (b). 

 
(a) 



 
(b) 

Figure 11.  Results of detection of a group of people (2 persons) on images 

recorded with a telephoto lens on fog, 50m distance, using bYOLO (a) 

opposite to tYOLO model (b). 

The selected detection examples, as well as the results 
presented in Figs. 5 and 6. have shown that the original 
YOLO model (bYOLO) trained for class Person on COCO 
dataset of RGB images does not achieve good detection 
results in any of the weather conditions and thus cannot be 
used directly on thermal images. This is especially so in the 
case of large distances from the camera when people are 
hunched or are running and appear as a tiny object in the 
image. Additional learning on thermal imaginary results in 
significant improvement of people detection in different 
weather conditions, especially when the temperature 
difference between persons and the environment is large. 

5. CONCLUSION 
In this paper, we wanted to examine how the common deep 

learning methods that are successful for object detection and 

recognition in RGB images, such as the YOLO detector, 

perform with thermal images.  

The task was to detect persons in videos captured during the 

winter time in different weather conditions during the night 

and with different distance from the camera, ranging from 

30m to 215m. The persons were walking and running or 

walking hunched and trying to stay out of sight. 

Even though thermal images differ greatly in appearance 

from the RGB images, we have assumed that the features 

that YOLO has learned on large COCO dataset of RGB 

images for the class Person will still provide a reasonable 

baseline for thermal images. Unfortunately, due to the 

difference between visual and thermal images, the original 

YOLO model (bYOLO) has achieved average precision 

(AP) of only 7% for person detection in the thermal images. 

That result is significantly worse than the results YOLO 

achieves on the images of the visible spectrum where the 

results depending on the scenario range around 90% [21]. 

Therefore, we have additionally trained the bYOLO model 

on thermal images from our custom dataset, and after 

training the model, tYOLO has achieved significantly better 

results of AP approx. 30% for person detection in different 

weather conditions and with different distances from the 

camera. 

The experiment has shown that the performance of YOLO 

model on thermal imagery can improve significantly with 

additional training on the thermal dataset. We plan to 

investigate further how the different conditions affect the 

detection performance, such as distances of the object from 

the camera, different time conditions, and for each of the 

situations, we will examine the success of the model.  

In the future, we intend to expand a dataset with other 
objects that may occur in the observed scenario of forests 
and meadows such as wolves, foxes, wild boars, and other 
forest animals. The idea is to learn a model that can detect 
them to avoid misleading detection and alarms of illegal 
access to the controlled area in cases when it comes to the 
passing of animals. 
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