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Optical control of vibrational coherence triggered by an ultrafast phase transition
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Femtosecond time-resolved x-ray diffraction is employed to study the dynamics of the periodic lattice
distortion (PLD) associated with the charge-density wave in K0.3MoO3. Using a multipulse scheme we show
the ability to extend the lifetime of coherent oscillations of the PLD about the undistorted structure through
reexcitation of the electronic states. This suggests that it is possible to enter a regime where the symmetry of the
potential energy landscape corresponds to the high-symmetry phase but the scattering pathways that lead to the
damping of coherent dynamics are still controllable by altering the electronic state population. The demonstrated
control over the coherence time offers different routes for the manipulation of coherent lattice states.
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The use of ultrashort laser pulses to generate and manipu-
late coherent states of lattice vibrations has been demonstrated
in a wide variety of crystalline materials [1,2]. Typically, the
largest responses are obtained when the pulse photon energy
is tuned to a region of pronounced absorption in the material,
triggering electronic transitions that strongly couple to small
wave-vector vibrational modes. This is often referred to as
“displacive excitation of coherent phonons” (DECP), in the
limit where the light absorption happens on timescales shorter
than the period of resulting vibrations [3–5]. The DECP
mechanism is often understood in terms of a time-dependent
interatomic potential energy surface for the crystal ions. The
fast absorption induces a sudden shift in the quasiequilibrium
structure of the crystal which excites a coherent oscillation
of a normal mode about a displaced coordinate. Several
experiments have demonstrated coherent control of these os-
cillations in different materials using a multipulse scheme to
further shift the quasiequilbrium structure at controlled time
delays [6–10].

Strong optical excitation can lead to changes in the overall
symmetry of the interatomic potential, a phenomenon that is
often identified as an “ultrafast phase transition” [11–16]. In
some cases the symmetry change is short lived and collapses
back into the low symmetry within a few picoseconds [17].
In this situation multiple pulse excitation enables the study
of the dynamically evolving potential surface by inducing
DECP in the partially relaxed structure [18]. In other cases,
under strong enough excitation conditions and/or long-lived
electronic and structural excitations, the change in symmetry
persists up to microseconds. Typically, the system then relaxes
back to the low-symmetry state only after thermalization and
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heat transport have led to cooling the material back to its ini-
tial temperature. Several experiments have studied this regime
and observed dynamics in the high-symmetry structural con-
figuration [14–16]. Beyond that the possibility of controlling
coherent oscillations within the high-symmetry state remains
largely unexplored. Here, we focus on this issue, exploring
possible avenues of control over the dynamics that follow the
light-driven collapse of the charge-density-wave (CDW) order
in K0.3MoO3, a model system for a one-dimensional Peierls
transition [19].

In equilibrium, K0.3MoO3 undergoes a metal-to-insulator
transition at Tc = 183 K, accompanied by the formation of a
CDW [20–22]. Strong excitation with a femtosecond optical
pulse can melt the CDW, inducing a phase transition to the
high-symmetry state. Experiments using optical reflectivity as
a probe show either a disappearance of amplitude mode oscil-
lations [23] or a dramatic softening and increase in damping
[24] above a critical absorbed fluence of F opt

c ≈ 0.3 mJ/cm2

for pump pulses at a wavelength λ = 800 nm. Experiments
using x rays to probe directly the collapse of the periodic
lattice distortion (PLD) estimate a critical fluence of F x-ray

c ≈
1.0 mJ/cm2 [14], which is roughly comparable to F opt

c , es-
pecially considering differences in the probing methods. For
excitation fluences F � 1.5F x-ray

c the PLD does not simply
vanish but transiently revives after around 0.3 ps, which is as-
cribed to coherent dynamics along the Peierls coordinate [14].
These dynamics correspond to a pair of acoustic modes with
the wave vector of the Peierls distortion but in a quasiequilib-
rium structure with symmetry equivalent to the metallic phase.
The coherent dynamics exhibit an unusual damping behavior,
resulting in an abrupt stop of coherent motion after only half
a vibrational period. This appears to be inconsistent with the
normal assumption of viscous damping [14].

These observations open the question of whether some
degree of control of these coherent dynamics in the high-
symmetry phase is possible, despite the fact that the high wave
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FIG. 1. Scheme of the experimental setup in (a) and comparison
between individual and sequential application of the pump pulses in
(b). The two different delay times are indicated in (a). One is the
delay time t between the first pump pulse p1 and the x-ray probe,
while �t12 is the time delay between the two pump pulses. In (b) the
trace with the double-pulse excitation (middle) is compared to the
traces obtained by excitations with individual p1 (top) and p2 (bot-
tom) pulses at F1 = F2 = F0. Dashed lines indicate the background
level, and black lines correspond to the model (cf. text).

vector of the underlying acoustic modes normally precludes
further displacive optical excitation. We explore this question
using a two-pulse excitation scheme, where the first pump
melts the electronic order and launches the coherent motion,
and the second reexcites the system during the motion. We
study with time-resolved x-ray diffraction how the reexcita-
tion of the second pulse affects the coherent dynamics.

For our experiments we use a bulk sample of K0.3MoO3

cleaved along its (201) plane and cooled with a nitrogen
blower to 95 K, substantially below Tc. The PLD associated
with the CDW can be probed using hard x-ray diffraction by
monitoring the intensity of the (1 (4 − qb) 0.5) superlattice
Bragg reflection, where qb is the modulation wave vector
along the chain direction (b axis). At 100 K the modulation
wave vector is qb = 0.748(1) [25]. In the kinematic approx-
imation the diffraction intensity is proportional to the square
of the magnitude of the PLD.

A sketch of the experimental setup is presented in Fig. 1(a).
The structural dynamics associated with the CDW state are
investigated using 7-keV x-ray pulses with a full width at
half maximum (FWHM) duration of around 120 fs and the
sample is excited with 100-fs (FWHM) p-polarized 800-nm
laser pulses. With the grazing geometry used this results in

penetration depths of δL = 80 nm for the 800-nm pump and
δX = 100 nm for the x rays [14]. A Mach-Zehnder scheme
creates a second pump pulse p2, which can be delayed by
�t12 relative to the first pump pulse p1. In order to match the
penetration depths of the optical and x-ray beams a grazing in-
cidence geometry is chosen. We set F1 to F0 = 1.7 mJ/cm2 to
be above the critical fluence of the previous study [14], while
F2 varies between F0/4 and F0. We estimate the experimental
time resolution to be 150 fs [26].

Figure 1(b) shows the time evolution of the superlattice
diffraction intensity for excitation with each pulse individually
as well as both sequentially. If only p1 or p2 are applied at a
fluence of F0 = 1.7 mJ/cm2, a single transient revival appears
0.30 ps after the arrival of the excitation pulse, in agreement
with the results of Ref. [14] (cf. Fig. 1 of Ref. [26]). The
middle plot shows the time evolution when both p1 and p2

are present and �t12 = 0.30 ps (the arrival of p2 is indicated
with a red arrow in all plots). Here, a second revival of
the CDW distortion is visible at t ≈ 0.60 ps, whose shape
and magnitude resemble the first one. A background level
intensity Ibg remains in the superlattice diffraction peak even
for high excitation fluence. We ascribe this to the fraction of
unexcited volume of the sample that is probed by the x rays
[14]. In all plots the background level Ibg fit to the model
curves is shown as a dashed line.

We now focus on the temporal evolution of the PLD as
a function of the reexcitation delay �t12 between 0.18 and
1.00 ps with F2 = F1, as shown in Fig. 2(a). Clearly, the
magnitude of the second revival depends on �t12, with a
maximum near �t12 = 0.30 ps. A further increase of �t12,
e.g., to �t12 = 0.50 or 1.00 ps, leads to no clear additional
response of the system.

We also varied F2 while keeping �t12 at 0.30 ps. The
resulting delay time scans for F2 = F1, F1/2, and F1/4 are
displayed in Fig. 2(b). We define the amplitude of the first
revival A1 as the difference between its maximum and the
minimum of the first half cycle, and the second revival am-
plitude A2 accordingly. The ratio of A2/A1 scales linearly with
F2, as shown in the inset. Additionally, we show A2/A1 for
�t12 = 0.30 ps and F2 = F1 from the other two data sets [cf.
Figs. 1 and 2(a), colors correspond] to emphasize the similar
amplitude of the two revivals for this configuration. The tim-
ing of the revivals are, within our experimental uncertainties,
independent of �t12 and F2.

To describe the dynamics we extend the phenomenological
model of Ref. [14]. The concept is similar to that of the
Landau theory for second-order phase transitions [27], where
we define a parametrization of an effective ionic potential
energy surface rather than a free energy. The basic idea is that
the shape of the effective potential depends strongly on the
electronic states that are populated at a given time after the
optical excitation. For simplicity we will consider a potential

V (x) = 1
2 ax2 + 1

4 bx4, (1)

where a and b are parameters, and x is a structural coordinate
giving the instantaneous magnitude of the PLD associated
with the CDW. As in Ref. [14], we consider the parameter a
to be a function of the electronic state of the material and the
parameter b to be constant. For convenience we will work in
dimensionless units for V and x, where b = 1 and a = −1 for
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FIG. 2. The data taken in the double-pulse excitation configura-
tion. (a) The dependence on �t12 for fixed F1 = F2 = F0. (b) The
dependence on F2 for fixed �t12 = 0.30 ps. Dashed lines indicate
the background level, and black lines correspond to the model
(cf. text). The inset of (b) shows the dependence of the ratio between
the amplitude of the second (A2) and the first (A1) revival on the
relative fluence of the second excitation for �t12 = 0.30 ps including
a linear fit. The colors of the data points indicate the corresponding
time trace (see also Fig. 1).

the ground state of the material. For these choices, the minima
of V (x) in the ground state occur at xmin = ±1. Without loss
of generality we assume that the equilibrium state is at x0 = 1.
For a more general value of a we have either xmin = ±√

a
for a < 0 or xmin = 0 for a � 0. We can identify xmin as an
effective order parameter of the CDW phase.

The electronic excitation of the material from the laser in-
teraction will cause a to become time dependent. In Ref. [14],
a was assumed to depend linearly on a dimensionless elec-
tronic energy density parameter η. While this may be appro-
priate for low or moderate excitation levels, at high excitation
levels we encounter a problem since allowing an arbitrarily
large value of a gives unrealistically high frequencies for

vibrations along the PLD coordinate x for strong excitation
levels. We will therefore make a rough approximation for a(η)
that prevents this effect by defining

a(η) =
{
η − 1, if η < 1 + amax,

amax, if η � 1 + amax,
(2)

where amax > 0 is a constant.
The excitation parameter η depends on time, depth z from

the sample surface, and the strength of the pump pulse(s). For
a single excitation pulse at t = 0, we approximate η as

ηS(z, t ) = η0e−z/δL e−t/τdisp�(t ), (3)

where η0 is a dimensionless parameter depending on the
pump fluence F1, δL is the 1/e penetration depth of the laser
intensity, τdisp is a relaxation time, and � is the Heaviside
step function. If we now add a second pulse with fluence F2

separated by a time �t12, we have instead

ηD(z, t ) = η0e−z/δL

[
�(t )e−t/τdisp

+�(t − �t12)
F2

F1
e−(t−�t12 )/τdisp

]
. (4)

The duration of the excitation pulses is taken into account by
a convolution with Gaussian of 0.10 ps FWHM.

The equation of motion for x is

ẍ = −ω2[a(t )x + x3] − 2γ (t )ẋ, (5)

where ω = 2πν, ν = 1.53 THz is the amplitude mode fre-
quency in the ground state [14], and γ (t ) is a phenomenolog-
ical damping coefficient. As discussed in Ref. [14], in order
to make it possible to fit Eq. (5) to the dynamics we observe
experimentally, γ should be suppressed for a short time after
the pulse. Microscopically, this would correspond to fewer
scattering channels from the amplitude mode available under
conditions of very high electronic excitation. Using arguments
analogous to our form for a(η), we consider this transient
suppression of damping to be of the form

γ (z, t ) =
{
γ ∗(z, t ), if γ ∗(z, t ) > γmin,

γmin, otherwise, (6)

with

γ ∗(z, t ) = γunex�(−t ) + γsat

[
1 − g(a + 1)e−z/δL

(
�(t )e−t/τγ

+ F2

F1
�(t − �t12)e−(t−�t12 )/τγ

)]
, (7)

where g is a dimensionless constant and τγ is a relaxation
timescale. The constants γunex and γmin are introduced as the
damping value before excitation and the minimum value for
the transient damping parameter, respectively. Physically, γmin

represents alternative scattering channels that are not sup-
pressed by the electronic excitation. We set γunex to 0.4 ps−1

and γmin to 0.2 ps−1—see Ref. [26]. We can now solve Eq. (5)
with initial conditions x = x0 and ẋ = 0 to find x as a function
of both time t and depth z.

The intensity of x-ray diffraction from the superlattice peak
is proportional to a weighed average of x(z, t ) over the 1/e
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FIG. 3. Visualization of the model described in the text. The
upper curve of (a) is a typical pump-probe trace with �t12 = 300 fs
and F2 = F1 [dashed lines indicate the background level, and black
lines correspond to the model (cf. text)]. Below the corresponding
progression of the damping γ (blue, left axis) and a(t ) (red, right
axis) near the surface are shown. (b) Sketch of the evolution of
the PLD in its potential at delay times denoted on the pump-probe
trace. The background colors indicate the potential configuration the
system is in at different delay times.

attenuation length δX = 100 nm of the x-ray intensity

I (t )

I0
= 1

δX

∫ ∞

0
x2(z, t )e−2z/δX dz, (8)

which we then convolve with a Gaussian of FWHM 150 fs to
approximate the experimental time resolution.

The top part of Fig. 3(a) shows a fit from this model
compared to data with �t12 = 0.30 ps and F2 = F1, while the
bottom part displays the time evolution of γ (t ), and a(t ) at z =
0. A sketch of the time-dependent potential energy surface is
depicted in Fig. 3(b). The letters A–D guide through the mea-
sured pump-probe dynamics relating the corresponding points
in the potential landscape, while the background colors mark
the current effective potential configuration. In the beginning
the system is in its double-well equilibrium state at A. At
t = 0 the first pump pulse p1 arrives, promotes a(t ) to amax

(B), and quenches γ (t ) from γunex to γmin. The system then
goes through the minimum and overshoots to the opposite side
of the high-energy potential. At t = 0.30 ps, p2 excites the
system again (C), only suppressing the damping γ (t ) without
changes in V . Afterwards, the system swings back to B, and
finally comes to a stop in the single-well minimum at D, since
the damping has reached its saturation value γsat.

We fit all presented data sets with four global parame-
ters, namely, amax, γsat, g, and τγ , while η0 and τdisp are
determined only for the data sets showing a partial recovery
within the monitored time frame [26]. Ibg is fit for each curve
individually [26]. The parameter γsat = 2.81 ± 0.38 ps−1 is
similar to the damping constant close to the thermal transition
[26], whereas τγ = 0.18 ± 0.11 ps is comparable to the fast
relaxation time of Ref. [23]. The resulting model curves are
shown in all figures as black solid lines. With a small set of
fit parameters our model reproduces the overall features of
all data sets, including the single pump time traces at various

fluences from Ref. [14] [cf. Fig. S1(a) in Ref. [26]]. The
observation of the current double-pump data is that a second
revival is present only when a second excitation arrives while
the coherent motion after the first pump pulse still persists.
This is reproduced by our simple model, which describes the
qualitative dynamics of the system quite consistently. This
is true for both the absence of a second PLD revival for
�t12 = 1.00 ps and the scaling of A2 for different values of
F2 as presented in Fig. 2(b).

The appearance of a second revival in the case of an
additional pump between �t12 = 0.18 and 0.40 ps unambigu-
ously identifies this phenomenon as coherent PLD oscillations
in the photoinduced high-symmetry phase. As mentioned
above, the timing of the second revival is independent of
changes in the timing and strength of the second pump pulse.
This suggests that the frequency of the vibrational mode is not
strongly changed by the second pulse.

When comparing the presented PLD dynamics in the high-
symmetry phase to the doubly pumped coherent structural
dynamics of materials far from a phase transition, such as
the coherently driven A1g mode of bismuth at low excita-
tion fluences [6,9], a different behavior is observed. Here,
the symmetry of the potential energy surface is unchanged,
allowing the second pulse to further shift the values of xmin

at well-defined times t after the initial DECP. This enables a
selective enhancement or cancellation of the coherent phonon,
since the effect of the second excitation depends on the phase
of x(t ). We observe something fundamentally different in
the high excitation limit: The first pulse already changes
the symmetry of the potential energy surface to that of the
undistorted phase, and the second pulse cannot further shift
xmin displacively. It does, however, influence the dynamics by
extending the time over which underdamped dynamics occur.
The mechanism behind the damping evolution is unclear,
and could be either the result of a suppression of electron-
phonon coupling channels or the modulation of anharmonic
coupling to other vibrational modes. Methods such as time-
and angle-resolved photoelectron emission spectroscopy or
nonequilibrium diffuse scattering could help to shed light on
the details of the damping mechanism.
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