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1. Introduction

The field of cryptography is a pretty large and well-developed one. As it is with
most such fields, doing anything of worth means going down a rabbit hole into
progressively greater and greater detail, until it becomes hard to describe where
you are to someone standing on the surface.
This thesis is an attempt at covering one particular path down the rabbit hole.

Its structure is roughly this:

Chapter 1 lays out the general motivation and the current state of the art;

Chapter 2 contains some technical prerequisites, covering evolutionary algo-
rithms (and genetic algorithms in particular), fault injection, and SHA-3;

Chapter 3 presents the setup I’ve used and describes the parameter space and
the problem at hand;

Chapter 4 deals with the optimization algorithm, the simulator built to aid
experimentation, and the results obtained;

Chapter 5 presents the procedure of exploiting the faulty outputs, and covers
the exploitation part of the results

Chapter 6 just wraps it all up, and presents directions for future improvements.

1.1. Motivation
Cryptography is ubiquitous; as technology keeps advancing, the normal function-
ing of key infrastructure now depends on cryptographic algorithms. Billions of
people worldwide rely on it daily to protect not only commerce, but also their
privacy. But even with good cryptographic primitives, new attacks keep being
discovered, commonly against implementations.
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Zooming into this picture for something more concrete, we may find a service
provider running attacker’s code on the same machine as a vulnerable encryption
library, just waiting for a cache-timing side-channel attack; or a TLS imple-
mentation that will courteously say when the padding is wrong, thus letting an
attacker steal a session; or perhaps, a smartcard that can be persuaded by a
carefully placed glitch in its power supply to give out its secret PIN.

Surely, no one would want their bank account emptied just because someone
had physical access to their debit card. But attacks like these do exists, and it’s
this last case that’s most relevant for this thesis: fault attacks.

They’re usually not the easiest thing to do, and one part of why? is picking the
right parameters. The core part of this thesis concerns finding a good algorithm
for picking the parameters, and (if possible) mounting a successful fault attack.

This thesis is partly based on [18], and hence reuses some of the material.

1.2. Related work
While a lot of work has been done on fault injection itself (see e.g., [13, 8, 23, 2,
19]), very little of it concerns parameter optimization.

In [17], the authors develop an EMFI susceptibility criterion, which they use
to rank the points of the chip surface depending on how susceptible they are
to fault injection. The underlying assumption for the criterion is the Sampling
Fault Model, described in [20]. The Sampling Fault Model could be summarized
thus: faults are (mostly) induced by violating the setup time constraint of D-type
flip-flops, and the length of the time window for fault injection does not depend
on the clock frequency. (Early on during development, I considered this might
provide a way to substantially decrease the search space size in the time-offset
dimension; the practical problems of synchronizing to the internal clock and the
comparatively low time resolution of the equipment ensured that this direction
was not pursued.) The criterion itself is a combination of Power Spectral Density
(measuring emitted power at the clock frequency) and Magnitude Squared Inco-
herence (measuring how linked the emitted signal is to the data being processed),
weighted with a configurable parameter a like so:

emfiscx,y =
√
a · psdn2

x,y + (1− a) · incn2
x,y

where psdn and incn are normalized Power Spectral Density and Magnitude
Squared Incoherence, respectively.
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They use a grid scan (in the 2 spatial dimensions) to measure all the points
and rank them according to the criterion; a share α of the highest-ranking points
are kept for further scanning; the rest is thrown away. They are able to reject over
50% of the chip surface (75% in their best case), while keeping 80% of the points
causing faults. Figure 1.1 shows their coverage ratio – the share of preserved
faulty points – dependent on α. However, note that by fault, they mean any
perturbation of the normal behaviour of the algorithm.

Figure 1.1: coverage ratio vs. α for EMFISC

In [9], the authors use several different methods to the problem of parameter
optimization for supply voltage (VCC) glitching. They work with 3 parameters:
glitch voltage, glitch length, and time offset. They reduce the dimensionality
of the problem by splitting the search in two stages, effectively solving a “2.5-
dimensional” problem, so to say. In the first stage, they look for the best (glitch
voltage, glitch length) combination, i.e. the most promising shape of the glitch.
All parameters not explicitly specified – in this case, time offset and the number
of glitch repetitions – are set as random. In the second stage, 10 most promising
(voltage, length) combinations are tried at each point in the specified time range
(which is discretized into 100 instants), i.e. they perform a grid search in the
time offset dimension.

The methods are compared at the first stage – random search, FastBoxing
and Adaptive zoom&bound algorithms, and a genetic algorithm. While Adaptive
zoom&bound comes out as the best strategy of these, the genetic algorithm shows
some promise.

That work is extended in [21] where the authors use a combination of genetic
algorithm and local search (called a memetic algorithm) in order to find faults
even more efficiently. The authors consider power glitching with 3 parameters
and are interested in fast characterization of the search space.

The evolutionary algorithm developed for the purpose of this thesis builds on
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the ideas of the latter two papers.
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2. Prerequisites

In order to understand what was done and how, several things must be understood
first. These are:

1. genetic algorithms, used here for optimization

2. fault injection (FI) in general

3. the SHA-3 hash function, which is exploited here using algebraic fault anal-
ysis

4. algebraic fault analysis (AFA), which is used in conducting a real attack

SHA-3 and AFA are exposed first, so as to not interrupt the exposition of FI.

2.1. SHA-3/Keccak
In 2015., after a competition to choose the next SHA (Secure Hash Algorithm)
algorithm, NIST standardized Keccak [5] as SHA-3. Strictly speaking, SHA-3 is
not one algorithm, but several, which all share the same internal structure, and
differ in a few parameters.

Its predecessors, SHA-1 and SHA-2, as well as some earlier algorithms which
weren’t standardized but are still widely used (MD4, MD5), were based on the
Merkle-Damgård construction [10]. Figure 2.1 shows the general concept: the al-
gorithm operates on blocks of data of size B. There exists an underlying function
f , called the compression function, which takes 2B bits of input and produces B
bits of output. f is essentially a small hash function itself, but one with fixed-
length input and output, which the Merkle-Damgård construction uses to build a
“big” hash function, with arbitrary-length input. It can be proven that the “big”
hash function will be collision-resistant if and only if the compression function is
collision-resistant [3].
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Figure 2.1: the Merkle-Damgård construction

SHA-3, however, is based on a different construction called a sponge. It’s
called a sponge because unlike the Merkle-Damgård construction, which takes
an arbitrary amount of input and puts out a fixed-length output at the end,
the sponge can alternate between taking in chunks of input (absorbing) and
putting out chunks of output (squeezing); it has arbitrary-length output as well
as arbitrary-length input. This is nicely illustrated in Figure 2.2.

Figure 2.2: the sponge construction

Another way to put it would be this: the Merkle-Damgård construction has
a compression function munging its internal state as well as chunks of input; the
sponge has a permutation mixing its internal state with chunks of input, then
mixing its internal state while spitting out chunks of output.

With traditional hash functions, security is expressed in terms of number of
output bits: a hash function with an n-bit output is supposed to have n/2 bits of
security, i.e. the easiest attack has a complexity of O(n/2). This corresponds to
having a random oracle output n bits, and attacking it with the generic attack
which relies on the birthday paradox.

But here, expressing its security in such a way obviously wouldn’t make sense:
with an arbitrary-length output, it would mean that we can get an arbitrarily
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high level of security merely by squeezing more bits out of the sponge. Instead,
this is expressed as a single parameter of the sponge construction.

2.1.1. The Keccak-f [b] permutation

The central part of the sponge construction is the permutation. Keccak uses the
Keccak-f [b] permutation, where b is the size of its internal state; this is also called
the width of the permutation. In the variant standardized as SHA-3, b = 1600.
We define two parameters: rate (r) and capacity (c), with the constraint that
r + c = b. The sponge will absorb r bits of input for each invocation of the
permutation by XOR-ing the chunk of input with the first r bits of the internal
state; the rate essentially tells us how fast is the input processed. The last c bits
of the state are never directly touched from the outside, and are never output;
the output is taken again from the first r bits of the state. Capacity is the
single parameter that sums up the security level: c/2 bits for collision resistance,
c bits for preimage and second preimage resistance. Several concrete SHA-3
hash functions are defined with different capacities, denoted SHA3-c: SHA3-224,
SHA3-256, SHA3-384, and SHA3-512. Only the last one, SHA3-512, will be
considered in this thesis.

And now, for the definition of the relevant variant of the permutation itself:
the Keccak-f [1600] is a sequence of operations on a 1600-bit state A, which we
can represent as a three-dimensional array of bits: A[5, 5, 64]. Coordinates x and
y should be taken modulo 5 and coordinate z should be taken modulo 64. If an
index is omitted, this means the statement is valid for all values of the omitted
indices, e.g. A(x,z) refers to the column of bits having coordinates of the form
(x, ∗, z). Figure 2.3 shows the notation used for different parts of the state.

The permutation is an iterated one, consisting of 24 rounds of R, where

R = ι ◦ χ ◦ π ◦ ρ ◦ θ

is composed of five smaller phases:

θ – each bit A(x,y,z) is XOR-ed with the parities of neighbouring columns A(x−1,z)

and A(x,z−1)

ρ – a rotation along the z-axis, i.e. each lane (a 64-bit word) gets cyclically
shifted by a certain amount

π – a permutation within each slice A(z)
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χ – a nonlinear operation, where a bit A(x,y,z) is flipped if the two bits two its
right form a “01” pattern, i.e. it is XOR-ed with A(x+1,y,z) · A(x+2,y,z)

ι – an XOR with a round constant

You may notice how the algorithm is able to do most of the work just by
operations on the 64-bit lanes, and largely independent ones at that: θ works only
in columns, ρ only in lanes, χ only in rows, and π and χ only in slices. In fact,
their composition χ ◦ π merely rearranges the lanes, which implementations do
“for free” by just swapping the lanes’ indices. Only bitwise operations (AND and
XOR) are used, making the Keccak permutation easy to implement in hardware.
Note that bitwise XOR and bitwise AND are occasionally referred to in literature
as addition and multiplication in GF (2), the Galois field of order 2.

For more details on Keccak, see [5].
In the rest of the thesis, I will refer to e.g. input of into π in round 14 and

output of θ in the final round, as π14
i and θ23o , respectively.

2.2. Algebraic fault analysis
Differential fault analysis (DFA) is an established technique for attacking cryp-
tographic algorithms, introduced over twenty years ago in [6]. It assumes that
a fault has occurred at a specific point in the execution of the algorithm, and
analyzes the propagation of a difference between the original state and the new,
faulty state. It has been applied to many well-known algorithms with great suc-
cess, such as DES [6], AES [11, 24], and the SHA-1 compression function [12].
The direct predecessor of the DFA attack was used to break RSA [7]. SHA-3,
likewise, has been shown to be vulnerable to fault injection with DFA, first with
single-bit faults [4], and later with byte faults [15].

However, DFA can be very cumbersome, requiring complex and tedious anal-
ysis of how the differential propagates through the algorithm. Even with an
algorithm such as Keccak, with algebraically simple internals, the differential
propagation is not exactly easy to follow.1

Algebraic fault analysis (AFA) sidesteps this problem. Instead of manually
analyzing the propagation, AFA uses an appropriately constrained SAT solver.
That is, it:

1The reader is certainly invited to give it a try — the byte-fault propagation in [15] is quite
bearable.
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1. encodes (part of) the cryptographic algorithm as Boolean statements

2. encodes the fault model (assumptions about the fault: its position and
effect) as Boolean statements

3. gives the above to the SAT solver as constraints

4. gives the (good output value, bad output value) pair to the SAT solver as
constraints

5. uses the SAT solver to do the work of calculating the implied secret bits

SHA-3 is successfully attacked in [16] using AFA, and the attack is extended
to an even more relaxed fault model (a 32-bit one) than was possible with DFA,
since AFA makes better use of the faulty outputs. A more detailed description
of AFA as it applies to SHA-3 specifically is given in chapter 5.

2.3. Implementation attacks and fault injection
Cryptographic algorithms that are perfectly safe in theory can be successfully
attacked in practice by attacking not the algorithm itself, but its implementation.
Any implementation which exists in the real world is a perfect black box: it can
be observed and interacted with outside of its nominal inputs and outputs.

Implementation attacks can be roughly divided into passive and active ones.
Passive attacks, also called side-channel attacks (SCAs), do not interfere with

the execution of the cryptographic algorithm, but observe the effects the im-
plementation has on its surroundings, which leak secret information. There are
many: power consumption, electromagnetic radiation, timing, even sound. These
(unintended) side effects can be thought of as transmitting secret information over
a noisy channel, hence the name.

Active attacks, on the other hand, interfere with the cryptographic algorithm
somehow. They rely on inducing faulty behaviour, e.g. skipping instructions or
flipping bits, hence the name fault attacks. They inject faults into the operation
of the algorithm, so the practice is called fault injection. The common ones are:

– operating the device outside of its safe operating range (too high/low tem-
perature or voltage, over- or underclocking the device)

– injecting transient voltage spikes in the supply voltage (a.k.a. Vcc glitching)
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– exposing the board to an electromagnetic field, of a sinusoidal wave (har-
monic EMFI) or short pulses (pulsed EMFI)

Since only pulsed EMFI is considered here, in the rest of the text EMFI refers
to pulsed EMFI.

2.4. Genetic algorithms
Evolutionary algorithms (EAs) are metaheuristic optimization algorithms, in-
spired by biological evolutionary processes and phenomena such as mutation, re-
combination, and natural selection. In a way, they simulate the natural process
of evolution: a solution (i.e. point in the solution space) becomes an individual
in the population. These “individuals” are then valued using a fitness function;
better solutions are fitter individuals, with a higher chance of surviving and pro-
creating. Thus the objective function (which we are optimizing) gets mapped to
the fitness function and, over a number of generations, the evolutionary process
takes care of the optimization.

Every generation, a number of individuals are selected from the population to
reproduce, i.e. to become parents; fitter individuals are given preference. Those
individuals are in some way combined to produce offspring (new solutions). There
is a small chance of mutations in the offspring: this allows the introduction of
new elements to the solution, which otherwise may not have ever been generated
from the initial population by just selection and reproduction.

After generating the offspring, the population is (whole or in part) replaced
by the offspring: the next generation.

The outline of an evolutionary algorithm is given below as Algorithm 1.
Mind that this is a fairly general outline. The choice of selection and offspring

generation makes all the difference. Usually, however, offspring generation con-
sists of two phases:

– combining two (or more) parents to produce a child

– mutating the child with some probability p

It is not necessary for the entire population to be replaced in a generation. A
portion of the fittest individuals surviving across generations is called elitism; this
could also be regarded as “cloning” the old solutions into the next generation, so
it fits in the outline given above.

10



Algorithm 1: evolutionary algorithm pseudocode
population← generate initial population
repeat

for individual ∈ population do
evaluate fitness (individual)

end for
parents← select (population)
offspring← generate offspring (parents)
population← offspring

until termination criterion met
return choose best individual (population)

This three-phase algorithm, when we represent the solution as a string of
numbers, is called a genetic algorithm (GA). In analogy to real life (though not
exactly the same), this representation is called the chromosome (or genotype or
individual; they’re interchangeable); multiple chromosomes are combined using
crossover (or recombination) to produce offspring.

However, what exactly falls under genetic algorithms and the exact lines be-
tween GAs and other evolutionary algorithms can at times be a bit vague. That’s
alright, since it’s a metaheuristic. To instance this metaheuristic into a heuristic,
we need to replace these somewhat vague terms (selection, crossover, mutation,
genetic representation) with concrete ones. This is left up to the implementer.
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Figure 2.3: notation for parts of the Keccak state array
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3. Fault injection

One obvious prerequisite for doing fault injection is a physical device running
an actual algorithm to inject faults in. A cryptographic algorithm can be found
easily; a susceptible one, with a bit of literature review. A device to attack, as
well as the necessary equipment for glitching it, can be a bit harder to find.

This chapter is laid out thus: section 3.1 introduces the definitions used in the
rest of the paper; section 3.2 covers the physical setup used for the experiments;
section 3.3 presents the parameters used, and section 3.4 the big motivation for
having a search at all. Sections 3.5 and 3.7 take care of the implicit assumptions
on the search space and our requirements for the algorithm; section 3.6 covers
the impact the underlying cryptographic algorithm on the parameter space; last,
section 3.8 covers some practical implications of EM fault injection for the algo-
rithm.

3.1. Definitions
When discussing the search and possible outputs of the algorithm,

a point is a distinct set of parameters, i.e. a point in the parameter space.

a measurement is the result of a single attempt at glitching the target with
those parameters.

A single point may measured be measured multiple times, since trying the
same parameters multiple times does not necessarily always yield the same re-
sponse. In the rest of this thesis, only single-measurement and five-measurement
points are used.

When counting the faulty measurements (i.e. those resulting in a faulty re-
sponse), we distinguish between:

1. the total number of faulty measurements,
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2. the number of distinct faulty responses (i.e. “unique faulty measurements”).

The difference is that if a measurement results in a before-seen faulty output,
the second one will not be counted this second time around. To better illustrate
this: say we find a set of parameters S1, which is measured five times, with
one of the measurements giving a faulty output h1. Later, we find some other
set of parameters S2 that results in two faulty outputs, h1 and h2. Out of the
ten measurements performed in total, three of these are considered faulty, but
with only two distinct faulty responses: h1 and h2, since h1 is not counted twice.
For the purposes of exploitation, the number of distinct faulty responses is more
interesting.

We classify the board response in one of the following classes:

NORMAL – for normal behaviour, meaning the board performs as if it wasn’t
glitched

RESET – the board did not reply at all, requiring a reset to restore to normal
operation

SUCCESS – the board produces an output/ciphertext/signature/hash different
than the correct one

CHANGING – for each point, 5 measurements are performed. If all measure-
ments are in the same class, the point is put into one of the first three
classes; otherwise it goes into the CHANGING class.

Random search refers to just randomly choosing points to scan. Grid search
is scanning points in a regularly-spaced grid that covers all or part of the search
space. For the purposes of this thesis, random search is the baseline search
algorithm.

3.2. Experimental setup
For the target, a Cortex-M4 STM32F407IG (Riscure “Piñata”) board was used,
running a C implementation of SHA-3. This implementation was taken from the
WolfSSL library [1], so as to have a real-world algorithm instead of a toy one. The
board communicates to a PC by a serial interface and is powered by an external
power supply (3.3 V DC). For inducing an electromagnetic pulse, the Riscure EM
probe is used, as well as their VCGlitcher device that controls it. The board and
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the EM probe are set up on an XYZ table which moves the probe around in space.
The whole setup is controlled by code written in Python; for communicating with
the Riscure equipment, Python bindings for the VCGlitcher C API are used.1

Besides the serial interface, the board has a number of I/O pins which it can
toggle to high or low; the only one here used is the “trigger” pin. This pin is used
to signal to the VCGlitcher device that the cryptographic operation is in progress;
this is used as a reference point for injecting the fault. While this slightly detracts
from the realism of the attack, it greatly simplifies testing. (It does not make
much difference for the vulnerability status of the device, since in real life the
attacker only needs to spend more time figuring out the timing.)

In the case that the board gets stuck in an illegal state after a glitch, it needs
to be reset. The only reliable way to reset this particular board is by cutting
its power, which can take a significant fraction of a second, depending on the
capacitors. A pause of 100 ms was used for this.

The physical dimensions of the chip package are 24 × 24mm Repositioning
error of the XYZ table is 0.05 mm, which gives a spatial grid of at most 480×480.
However, the limiting factor here is most likely the size of the probe tip (and its
internal coil), which is much larger.

All of these will, of course, vary depending on the chip and the equipment
at hand; even for different variants of the Piñata, the capacitors differ. A more
precise XYZ table, a smaller probe (such as in e.g. [20]), or a smaller chip will
give different spatial resolutions.

3.3. Parameters
There are multiple parameters to vary to affect the probability of causing a fault:
position of the probe tip (X, Y, and Z), pulse intensity, time offset of the pulse,
pulse duration, shape and angle of the probe tip, and pulse shape.

In the experiments conducted, only a subset of these are considered:

position – two parameters (X and Y), since the distance from the board (Z)
can be compensated by a change in intensity. The (x, y, z) position in real
space is mapped by the interfacing code to an (x, y) position in the unit
square [0, 1]2 ∈ R.

1Currently, due to the provided DLL being a 32-bit one, a 32-bit Python interpreter is
required. This may change in the future.
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glitch intensity – regulates the voltage of the pulse. The SDK manual suggests
that it is a percentage of power used [22], so it makes sense to map it to
real values in [0, 1].

time offset – between 367 and 375 µs, because that is where the injection point
must be, for the code we are running. The offset is encoded as an integer
value (number of 2 ns ticks).

number of repetitions of the pulse – a primitive form of pulse shape. This
parameter is set to be in the (obviously, integral) range [1, 10].

The pulse duration stays constant at a fixed value of 40 ns. Similarly, the
shape and angle of the probe tip is not varied, since changing those cannot be
easily automated.

Most parameters are within [0, 1], but we can map the other ones to that
interval as well, by taking its “percentage”: a parameter with range [A,B], a
value x ∈ [A,B] is mapped to y = x−A

A−B
, which is in [0, 1]. With everything

mapped to [0, 1]5, we can now define any length or distance to be the standard
Euclidean distance in this image of the parameter space.

3.4. Search space size
One might wonder: why use a heuristic at all? What’s wrong with a “dumb” ap-
proach to parameter optimization? Let’s consider the straightforward approach:
an exhaustive search.

The maximal spatial resolution, as I mentioned above, is 480 × 480 for this
particular setup; a better setup would have an even higher one. For the time
offset, the resolution is 2 ns; for a reasonable range, I’ll put the interval between
367 and 375 microseconds, since this was measured as the interval containing
the fault injection point – this gives us a total of 4 000 different values; for the
glitch intensity, there’s really no good rule for determining the smallest meaningful
increment, but a 1% increment seems a fairly reasonable (if conservative) estimate
based on visual estimates of the results, which would give a range of 100 values;
the repetitions parameter in range [1, 10] gives an extra 10 values.

The total size is therefore 480∗480∗4 000∗100∗10 ≈ 1012. At ≈ 0.16 seconds
per measurement, and five measurements per point, this results in 29 203 years
to conduct an exhaustive search. Even if completely ignoring everything but X,
Y, and offset, an exhaustive search would still take 29.2 years to finish.
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3.5. Some assumptions on the search space
From the viewpoint of the optimization algorithm, the device should be as close as
possible to a black box. That is to say, the algorithm should not have built-in as-
sumptions that would be broken by running it for another device or cryptographic
algorithm. However, I do make some assumptions: the objective function is not a
golf-course. In a golf-course function, the gradient in the fitness landscape doesn’t
lead to optimal solutions, which tend to “pop out of nowhere”, all of a sudden.
Given the nature of EM glitching, the transition between different kinds of be-
haviour should be reasonably gentle; the reasoning behind it is that a very weak
EM pulse will not affect the target at all, and we will observe normal behaviour.
Conversely, a very strong EM pulse will completely dishevel its operation and
even potentially damage it. Consequently, we should expect faulty behaviour
to occur somewhere between those two extremes, i.e. along the class border; in
other words, there are blobs of RESETs in a sea of NORMALs, wrapped in a
thin layer of SUCCESSes and CHANGINGs.

Additionally, offset ranges (min. to max. offset) are set by the user, based on
a rough expectation of the duration of the cryptographic algorithm.

3.6. A note on underlying algorithms
Some of the early scans and tests were done not on the Piñata running SHA3-512,
but Piñata running EdDSA (also taken from WolfSSL). There exists a difference
between their respective search spaces: the parameters and the parameter ranges
are largely the same (there is a difference in the offset range, since EdDSA takes
≈30 ms to run, SHA3-512 only ≈0.4 ms), but underlying calculation and the
“look” of the parameter space is different. In EdDSA, the vast majority of the
time is spent performing a scalar multiplication on the Ed25519 curve, and the
parameter space has one big blob of RESETs, the rest being filled by NORMALs.
For SHA3-512, all the time is spent on the Keccak-f transformation, and the
parameter space has not only the (substantially smaller) blob of RESETs, but
also several blobs composed of mostly CHANGING points, with a number of
RESETs and SUCCESSes. Figure 3.1 shows what the parameter space looks like
for both of these.

CHANGING points (and some other features) were not present from the start;
they were implemented just before switching to SHA-3, hence most scans on
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EdDSA don’t have them, and use single-measurement points instead. The process
of selecting the algorithm and its hyperparameters was not a systematic one with
extensive tuning, but a pragmatic one of choosing the most promising options
within the timeframe.

3.7. Objectives
The requirements for this optimization algorithm are:

Good coverage of the parameter space – since we do not know where the
exploitable faults are located, we need to explore the search space efficiently.

Speed – we require the algorithm to be fast in finding the faults, otherwise there
is no advantage of using it when compared to the baseline.

These two requirements somewhat conflict with each other. Because most of
the parameter space is useless (i.e. has no faults), covering enough space to be
reasonably secure we did not miss anything important means potentially wasting
a lot of measurements.

Usually, the objective function guides the optimization algorithm towards
better solutions, and the algorithm ends when it finds what it considers to be the
best one. Here, we don’t want just a single “best” solution since not every fault
that’s found will also be exploitable, and there are situations where more than
one are required; instead the aim is to obtain multiple good solutions.

3.8. Practical considerations
Commonly, optimization algorithms (and nature-inspired metaheuristics in par-
ticular) rely on a large number of iterations. Another assumption usually made
is that the evaluation of possible solution points is uniform. Here, however, we
have expensive measurements, where the cost of evaluation depends not only on
the properties of the point itself, but also the context of its evaluation. When
considering EM fault injection, the probe tip has to physically move to a differ-
ent point. To do this with sufficient precision requires a non-negligible amount
of time – the exact amount varies depending on the setup, but it can be up to
several seconds per measurement. In comparison, a reset requires just a fraction
of a second (for this board, ≈100 ms to do it reliably). The measurement part
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(a) EdDSA, in the 2 spatial dimensions (b) SHA3-512, in the 2 spatial dimensions

(c) EdDSA, 2 spatial dimensions and in-
tensity

(d) SHA3-512, 2 spatial dimensions and
intensity

(e) EdDSA, but without NORMAL
points for clarity

(f) SHA3-512, but without NORMAL
points for clarity

Figure 3.1: parameter space visualization, for EdDSA and SHA3-512
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itself is even faster – 30 ms or less. Thus, the order in which points are evaluated
matters.

Even with an optimal routing for any batch of N points, splitting the eval-
uation into more batches means more time wasted. For population-based algo-
rithms, this translates to small population sizes being less efficient than large ones.
Additionally, we may want to get a glimpse of the results even before the scan is
finished, especially for long-running scans. In the case of a random or grid scan,
this requires splitting the scan into batches where each covers more or less the
whole parameter space, since scanning points in the optimal (or nearly-optimal)
order results in uneven coverage: as a general rule, a segment the shortest Hamil-
tonian path from any given starting point will not evenly cover the XY-plane,
but instead a small part of it.
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4. Optimization

Now, to deal with the optimization itself.
Since EM fault injection is an expensive optimization problem, I created an

emulator of the board to respond in its stead. While most scans were in the
end done on the actual Piñata board, the emulator helps to predict and visu-
alize behaviour of different algorithms (or the same algorithm, but differently
parametrized) over multiple runs, with only a fraction of the runtime cost. How-
ever, we can only expect this if the behaviour of the emulator closely matches that
of the board. This poses a problem: how do we achieve this? Obviously, without
modelling the chip itself (which would be a large problem in and of itself), the
emulator must rely on samples of the objective function.

The straightforward solution would be to exhaustively sample the parameter
space and use a lookup table, but as mentioned in section 3.4, it’s impossible in
terms of time, and very hard in terms of space (≈ 5 · 1012 measurements!). What
is possible, however, is a lower-resolution grid scan, with interpolation between
points. This was, in fact, performed: the largest of these is a grid scan with 1/40

resolution in the XY-plane, 1/20 resolution in the intensity dimension, 9 offset
values (from 367 µs to 375 µs, with 1 µs step), and with repetitions set to 1. This
gives 41× 41× 21× 9 = 317709 points; with an average of 1.125 s per point, this
takes around 100 hours, or a bit over four days. Given that this is a grid scan,
it greatly simplifies storage and nearest-neighbour lookup: caching it as a bare
NumPy array in a binary file takes up less than 3 MiB of space, the loading takes
just a fraction of a second, and once in RAM, the lookup is as trivial as it gets.
This is relatively easy to extend to k-nearest neighbours.

Another variant, made convenient by the availability of a number of scans of
the parameter space, would be to abandon the notion of a regular grid, aggregate
all those scans, and use that as the underlying information.

In any case, the emulator will be intrinsically limited due to being bound to
actual data.
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4.1. Simple GA
First, a simple genetic algorithm was tried out, with a single elite individual.
The initial population is generated by sampling uniformly at random within the
parameter ranges.

4.1.1. Selection and crossover

Several selection algorithms were used: roulette-wheel selection, 3-tournament
selection, and a variation on roulette-wheel selection with class awareness. This
last one was inspired by the work in [9]; its pseudocode is given below:

Algorithm 2: pseudocode for the class-aware roulette-wheel selection
N ← length(population)
elite size← 1

populationnew ← ∅
for i in range(N − elite size) do

parent1 ← random choice (population)
if there exist individuals /∈ class (parent1) then

parent2 ← random choice (other classes)
else

parent2 ← random choice (population \ {parent1})
end if
child← class-aware crossover (parent1, parent2)
child← mutate (child)
populationnew ← populationnew ∪ {child}

end for

The class-aware crossover here simply returns a point halfway between the
parents, if the parents are from different classes; otherwise it acts as a normal
crossover. The idea behind this is simple: after finding a RESET, use it to locate
the class border area, and concentrate there.

Of the selections, roulette-wheel selection was chosen for further testing. As
it turns out, the class-aware selection did find a part of the class border area
very fast, and converge there; however this was only a very small part of the
border, and the algorithm is not able to “recover” from this convergence, but it
will instead stay on the same small area, nor mapping out the rest of the space.
3-tournament selection was not chosen, since it appeared to be too aggressive,
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i.e. it exerted overly high selection pressure for the problem at hand. It works
by randomly choosing individuals three at a time, in “tournaments”. The lowest-
ranking of the three is discarded, and the other two are used as parents. The
tournaments are held until enough children have been produced.

The “normal” crossover, however, is not a standard GA crossover, but differ-
ent. Its pseudocode is given below in Algorithm 3.

Algorithm 3: pseudocode for custom GA crossover
Input: parent1, parent2, two chromosomes, each a list of FI parameters
Output: child, the resulting child
for each parameter p in range(N − elite size) do

child.p← random value in interval [parent1.p, parent2.p])
end for
return child

For comparison, the standard single-cut crossover is given as Algorithm 4;
the uniform crossover is not much different. In terms of behaviour, it would be
best to consider the geometric interpretation. A vector of k parameters can be
viewed as a point in k-dimensional space. Two such points – the parents – define
an axis-aligned k-dimensional hypercube. The “normal” crossover calculates the
child as a random point from within that hypercube; the standard crossovers,
in contrast, calculate the child as one of the corners of the hypercube. If the
child has l parameters of parent1, it will be at a Hamming1distance of k− l from
parent1, and l from parent2.

Algorithm 4: pseudocode for standard GA crossover
Input: parent1, parent2, two chromosomes, each a list of FI parameters
Output: child, the resulting child
for each parameter p in range(N − elite size) do

child.p← random choice (parent1.p, parent2.p)
end for
return child

1Hamming distance might not be the technically correct term here, but it is easy to see the
1-to-1 correspondence between the edges of this k-dimensional hypercube and the set {0, 1}k of
length-k bitstrings: strings are corners, edges are bitflips.
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4.1.2. Mutation

As for the mutation, its task is to ensure adequate exploration of the search
space. Its exact form shouldn’t make a great difference for the successfulness of
the algorithm, as long as the final algorithm doesn’t have any “blind spots”, i.e.
it doesn’t leave some parts of the search space unreachable by the algorithm. The
pseudocode of the mutation I used for this algorithm is given in Algorithm 5.

Algorithm 5: pseudocode for mutation
Input: pMUT , the mutation probability

Q, an upper limit on the step size
individual, a solution to mutate

Output: individual′, the mutant
individual′ ← copy(individual)
for each parameter P except repetitions do

with probability p:
individual′.P ← individual.P+ random choice from interval [−Q

2 ,
Q
2 ]

clip value of individual′.P to within allowed range
end for
with probability p:

individual′.repetitions← random integer from the allowed range

Its per-parameter nature increases the probability that at least some mutation
will happen. It also means that significant jumps will tend to be mostly axis-
aligned. The effect is somewhat similar to having a traditional crossover: many
points on perpendicular lines, seemingly radiating from a hotspot; however the
effect is weaker than with a single-cut crossover and a standard mutation which
twiddles all the parameters at once. See Figure 4.1 for a picture of this.

4.1.3. Fitness function

Fitness values are set according to the class: SUCCESS has the highest fitness
(10), followed by CHANGING (variable), then RESET (5), and finally, NOR-
MAL (2). CHANGING points’ fitness depends on its underlying measurements:
a mix of NORMAL and RESET points is somewhat better than all measure-
ments being RESET or NORMAL points, and adding SUCCESSful individual
measurements into the mix moves the fitness close to an all-SUCCESS point.
With these requirements in mind, the following formula was chosen for the fit-
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(a) single-cut crossover with a standard all-parameters-simultaneously mutation

(b) the custom within-hypercube crossover with a per-parameter mutation

Figure 4.1: A comparison of the effects of a per-parameter mutation with custom
crossover vs. all-parameter mutation with single-cut crossover. Both runs have 50
generations of 50 units each, and use the same pMUT .
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ness of a CHANGING point:

fitnessCHANGING = 4 + 1.2 ∗NSUCCESS + 0.2 ∗NNORMAL + 0.5 ∗NRESET

The factors 0.2 and 0.5 are chosen in analogy to the values for NORMAL and
RESET (2 and 5, respectively); the other numbers are what they are to provide
nice scaling. For example: 4 NORMAL and 1 RESET measurement give fitness
5.3, which is higher than the fitness of a RESET point (with all 5 RESET mea-
surements). Similarly, 4 SUCCESS and 1 RESET measurements give a fitness of
9.3, which is lower than the fitness of a SUCCESS point (with all 5 SUCCESS
measurements).

4.2. Extending the simple GA
Recall, the early scans did not have a CHANGING class, and the landscape
consisted of blobs of RESETs in a sea of NORMALs. So, a second phase was
added: a series of binary searches to find and map out the border.

The initial GA phase, if it covered most of the search space, can serve to
map out the general landscape. In the second phase, first a point deep within
the RESET blob is found. Since there was only one major blob of RESETs,
this was not difficult: it was implemented as finding the centroid of all RESET
points seen so far. Having found the centroid, a number of seen NORMAL
points are randomly chosen. Now, for each of those NORMAL points, we have
a line connecting it to the RESET centroid. This line must at some point pass
through border between the NORMAL and RESET classes, so a binary search is
performed on that line in order to find it. With a maximal spatial resolution of
480× 480, each binary search requires measuring at most 9 points.

For each binary search, after the intersection of the line with the class border
is found, a small local search is performed to map out that part of the border.
(We consider the class border area to be of interest.)

The third phase, which comes after the binary searches, is a separate local
search phase. It consists of taking very promising points – SUCCESSful ones
– and doing a scan of their neighbourhoods. This phase is merely additional
exploitation of already discovered points, for extra effect.

In this early landscape, this three-phase algorithm makes a lot of sense. First,
map out the general landscape; then map out the border and discover good points;
then focus on exploiting what you have. In a situation where the overwhelming
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majority of the search space are not good points, the local searches make sense:
they are necessary to exploit the little good points there are.

Introducing local search also opens up the question of what should be consid-
ered “close”, i.e. how big is the neighbourhood of a point? There seems to be
no good answer to this question, or at least not one that could be convincingly
justified over other ones. So, I used values that seemed about right, tweaking
them a bit and looking at the results, as well as visually estimating by the size
of landscape features. For lack of a better answer to “what is a neighbourhood
of a point?”, it is “an axis-aligned cube centered on the point, with edge length
CUBE_SIZE = 0.1”.

Figure 4.2 shows one such three-phase scan. The GA phase used 20 genera-
tions of 15 units, with pMUT = 0.01. The second-phase was 20 binary searches
with 40 points scanned around the class border; the second-phase local searches
had a neighbourhood cube of edge length 0.1. The final phase was local searches
around each SUCCESSful point, with cube size 0.02. The effect of the second
phase is visible in the shape of the point clouds.

In the general case where there are multiple blobs of unknown size, number,
and positioning with respect to each other, the situation is more complicated. The
problem of determining even how many blobs there are is nontrivial, especially
with a rather limited amount of information available. (Remember, evaluations
are expensive.) There is also the question of how to pick NORMAL points so
that no other blobs lie on the connecting line. A way to solve all this would
be to segment the search space in “BLOB” and “not BLOB” and so turn it
into a geometric problem, but again, the algorithm has limited information at
its disposal. The introduction of CHANGING points additionally muddles the
notion of the exact class border and brings in more hyperparameters.

While this problem might be an interesting one to solve, it runs the risk of
becoming a significant piece of work by itself. With the given time constraints,
it seemed logical not to pursue this approach for the time being.

4.2.1. Alternative variants of the algorithm

Certain other variants were tried out or under trial: a simple particle swarm
optimization (PSO) algorithm, which turned out to be good at traversing the pa-
rameter space, but would take many more iterations than was reasonable given
the expensive nature of point evaluation; one memetic algorithm, which inter-
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Figure 4.2: an example of the three-phase (GA + binary search + local search)
algorithm
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leaves generations of the GA with local modification of the point was also on
trial, but its development was given low priority since it did not do too well in
initial testing.

4.2.2. Final version

For the final version of the evolutionary algorithm, a variation on the three-
phase version was used; more specifically, the binary search phase was thrown
out, and the hyperparameters were set to values meant to ensure a reasonable
execution time of the algorithm – the EA does not terminate after a fixed number
of evaluations, but the execution time depends on the results it finds.

Additionally, the probe tip was replaced with a smaller, more precise one;
the result of this was that, on random scans, the share of faulty responses fell
almost fivefold, and the share of unique faulty responses slightly increased. A
similar effect occurred for the EA. This is expected: the probe affects not a single
point, but an area. Hitting a smaller area means that points otherwise near,
which would before have affected each other enough not to be distinguishable,
now produce a different effect.

To sum it up in one place, the final version is given below:

1. first phase is a genetic algorithm, with the above-described custom crossover
and mutation, with pMUT = 0.05, and 20 generations of size 50.

2. second phase is local search, which takes 10 randomly chosen points in the
neighbourhood of each SUCCESS point.

Note how the parameters are set to stimulate exploration: both the custom
within-hypercube crossover and the per-parameter mutation promote the many
slight variations so nicely seen in Figure 4.1. A lower number of generations
with a larger population size (and the relatively high mutation rate) prevent
the algorithm from converging too quickly, thus forcing it to spend some time
exploring the search space, which gives a better idea of its shape.

4.3. Parameter optimization results
This section presents the results of injecting faults into SHA3-512.

The duration of the EA is determined by the number of faults it finds. Five in-
dependent runs were conducted, with 2 074, 2 343, 3 353, 3 606, and 5 132 points,
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respectively. Each individual run will be different due to the stochastic nature of
the algorithm, as well as of the target’s response. To obtain statistically mean-
ingful results, the reported values are averages over all runs. On average, in each
run there are 3 301.6 points, of which:

– 662.8 (18.9%) NORMAL

– 496.4 (15.0%) RESET

– 375.2 (11.4%) CHANGING

– 1 807.2 (54.7%) SUCCESS

This also means there are 16 508 individual measurements on average. Out of
these, 9 700.4 (58.8%) are faulty, and 3 288.4 (19.9%) are unique/distinct. Com-
paring this with random search with 3 302 points, we get:

– 2 995.8 (90.7%) NORMAL

– 65.0 (2.0%) RESET

– 232.4 (7.0%) CHANGING

– 8.8 (0.3%) SUCCESS

Again, this would represent 16 510 individual measurements. Out of these,
228.2 (1.3%) are faulty, and 160.8 (1.0%) are unique/distinct. To conclude, when
averaged over 5 runs, the EA algorithm gives 42.5 times more faulty measure-
ments, and 20.5 times more distinct faulty ones. The somewhat lower share of
distinct measurements for the EA algorithm can be explained by many SUCCESS
points being close to each other due to the local search phase, thus being more
likely to cause the same response.

Tables 4.1 until 4.3 contain results for the random search and evolutionary
algorithms when considering the first 500, 1 000, and 2 000 points, respectively.
Note how the results for random search do not change significantly with more
measurements. At the same time, we see that the EA is very successful already
for the smallest case where with only 500 points, and as we add more points, the
percentage of SUCCESS points increases.

Finally, the search space after random search or EA is shown in Figures 4.3a
until 4.3f. Figures 4.3a and 4.3b give results projected down onto the XY-plane,
i.e. by just the X and Y parameters. Figures 4.3c until 4.3f depict depict intensity
as a third parameter. For less clutter, versions without NORMAL points are also
provided. The number of points in case of random search is always 3 302; for the

30



Table 4.1: 500 points.

Random EA

NORMAL 452.6 (90.5%) 315.2 (63.0%)
RESET 9.8 (2.0%) 73.4 (14.7%)

CHANGING 36.0 (7.2%) 79.0 (15.8%)
SUCCESS 1.6 (0.3%) 32.4 (6.5%)

#faults 33.4 (1.3%) 260.8 (10.4%)
#distinct 22.6 (0.9%) 158.8 (6.3%)

Table 4.2: 1 000 points.

Random EA

NORMAL 910.4 (91.0%) 381.8 (38.2%)
RESET 19.6 (2.0%) 198.0 (19.8%)

CHANGING 67.2 (6.7%) 169.2 (16.9%)
SUCCESS 2.8 (0.3%) 251.0 (25.1%)

#faults 58.8 (1.2%) 1 530.4 (30.6%)
#distinct 40.4 (0.8%) 956.6 (19.1%)

Table 4.3: 2 000 points.

Random EA

NORMAL 1 814.6 (90.7%) 541.6 (27.1%)
RESET 36.6 (1.8%) 351.2 (17.6%)

CHANGING 144.2 (7.2%) 285.0 (14.2%)
SUCCESS 4.6 (0.2%) 822.2 (41.1%)

#faults 130.6 (1.3%) 4 606.4 (46.0%)
#distinct 93.4 (0.9%) 2 030.4 (20.3%)
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EA, the run with 3 606 points is shown. Naturally, figures without the NORMAL
points have less points.

32



(a) Random search in 2D (b) GA and local search in 2D

(c) Random search without NORMAL
points

(d) GA and local search without NOR-
MAL points

(e) Random search (f) GA and local search

Figure 4.3: results for EA (GA with local search) and random search
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5. Attacking SHA-3

The ultimate goal of optimizing fault injection parameters is, of course, to do
fault injection attacks. This chapter presents exactly that: a fault attack on
SHA-3 (specifically, SHA3-512) in practice.

5.1. State of the art
To the best of my knowledge, no implementation of SHA-3 has yet been attacked
in practice. The attacks which do exist are only simulated: [4] show that differ-
ential fault analysis (DFA) can be used to recover the complete state in around
80 faults on average, if the attacker is able to inject single-bit faults in the in-
put of the penultimate round (i.e. θ22i ), though they rely on brute-forcing the
last few bits. According to [15] (itself an extension of [14]), this is around 500
single-bit random faults for the whole state. In [15], the attack is generalized to
a single-byte fault model, recovering the state in around 120 random faults.

Algebraic fault analysis (AFA) is more promising: in the progress through [14], [15],
and [16], the authors manage to bring down the number of faults needed to re-
cover the internal state with SHA3-512 down to under 10 with AFA and the
32-bit fault model.

Besides being more efficient at recovering state, AFA has several advantages:

– it does not require analysis of fault propagation through the algorithm,
making it much easier to abstract the internal details.

– the fault model can be easily changed, by just changing the appropriate
constraints.

– perhaps most importantly, it works for more relaxed fault models.
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5.2. Attack description
The attack used here is the one in [16]. Again, like the other papers concerning
fault injection into Keccak, it requires the attacker to be able to inject multiple
faults in the input of round 22 of Keccak. These faults are allowed to affect up to
1 unit of the state, where units are sized 8b, 16b, or 32b, depending on the fault
model. This means that, for example, with a 32-bit fault model and the internal
state A[200], the fault model allows us to fault bytes A[0] through A[3] inclusive,
but not bytes A[1] through A[4], since that crosses the line between two 32-bit
units (A[0] to A[3] is the first such unit, A[4] to A[7] the second, etc.).

The Keccak permutation, by virtue of being a permutation, is invertible. The
same applies to its individual rounds. This means it is enough to recover the
entire state at some point in the execution. As in previous work, the chosen
target state is χ22

i , the input to the nonlinear χ transformation of round 22. For
state recovery, we reused their C++ retrieval code (which uses CryptoMiniSAT
for SAT solving).

The general idea behind AFA on SHA-3/Keccak is simple: use a SAT solver
to do the work for us: all we need is to provide appropriate constraints for it. We
start with 1 600 Boolean variables representing the state (θ22i ) and then provide
constraints:

Fault Model – what kind of a fault do we cause?
There’s a separate set of (up to) 1 600 Boolean variables (∆θ22i ) represent-
ing the induced fault. θ22i ⊕ ∆θ22i is the faulted state, before propagating
through the final two rounds of the algorithm. Depending on what the fault
model is, we add constraints such as “exactly one bit of ∆θ22i is non-zero”,
corresponding to a one-bit fault model, or slightly more verbose ones for
specifying things such as “we faulted a word-aligned 32-bit word”, which
would correspond to a 32-bit fault model in [16].

Keccak – how does the (faulted) internal state propagate?
For Keccak, the internal transformations can be relatively simply encoded
as Boolean expressions. This implicitly tells the solver everything it needs
to know about fault propagation, regardless of the fault model constraints.
There are two cases we consider:

H = ι23 ◦ χ ◦ π ◦ ρ ◦ θ ◦ ι22 ◦ χ ◦ π ◦ ρ ◦ θ(θ22i )
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where H is the correct hash output, and

H ′ = ι23 ◦ χ ◦ π ◦ ρ ◦ θ ◦ ι22 ◦ χ ◦ π ◦ ρ ◦ θ(θ22i ⊕∆θ22i )

where H ′ is the faulty hash output.

Outputs – which are the concrete outputs?
We give the SAT solver the actual values of H and H ′. After so constraining
the SAT solver, we can let it find a solution – an internal state satisfying
all the constraints. Once it finds the first such solution, we ban this newly-
found solution by adding it as an additional constraint, and let the SAT
solver find another one. This process is repeated until no new solutions can
be found.

The bits of the state which are the same in all solutions are the ones we can
recover; as for those which take different values in different solutions, their
values are not entailed by the combined constraints of the fault model, the
algorithm, and the outputs (i.e. the “real” constraints).

Depending on the fault model and the version of SHA-3 (SHA3-512, SHA3-
224, etc.), these constraints may or may not be enough to recover part of
the state. If this happens, additional constraints can be introduced, such
as using two faulty hashes at a time, H ′

1 and H ′
2, at a cost of having extra

Boolean variables, making the problem harder for the SAT solver (this is
Method II from [16]); or, if we can first somehow recover part of the χ23

i bits,
we can use them to additionally constrain the SAT solver (this is Method
III from [16]).

As for the choice of fault model and method: 32-bit fault model and Method
III from [16] was chosen. While the standard approach (Method I – single faulty
output, no extra χ23

i bits) approach would be preferable, it is not possible ac-
cording to the authors, at least when using two (and not more) faults at once.
In principle, there is no limit on the number of faults we can use to constrain
the SAT solver, but increasing this number quickly brings us where running the
solver is very hard, and obtaining another exploitable fault is cheaper than the
extra SAT solving. The main reason for choosing the 32-bit fault model was,
the fact that the target board has a 32-bit word size. This also being the most
relaxed fault model means that any 8-bit or 16-bit faults do not go to waste, but
are also exploited.
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Table IV in [16] neatly presents what is possible in reasonable time with
the current state of the art in SAT solving: going from longer-output SHA-3
functions to shorter-output ones, less information is available to us, and state
retrieval becomes progressively harder. For SHA3-512 in particular, Method I
is still usable in the 8-bit and 16-bit fault models, requiring 45 and 23 faults on
average to recover the state. The 32-bit fault model requires using at least Method
II; this comes at a substantial cost in SAT solving time, but also a reduction in
the number of faults needed: on average 7 faults for Method II, and 6 for Method
III. Intuitively, this is because a fault can only leak so much information; so we
need either more faults, or larger faults.

With the 32-bit fault model, each fault usually allows the recovery of hundreds
of bits, according to [16]. With Method II the distribution is bimodal, with a
part of faults allowing for <100 bits, and the rest around 500 bits; with Method
III the lower mode vanishes, and the upper one stays more-or-less where it is. We
can conclude that, while the addition of extra χ23

i bits does make a difference in
the total number of faults required, it is not large. What it does do, however, is
drastically reduce the time needed for retrieval — by an order of magnitude.

This is the main reason for choosing Method III: it lets us approximate Method
II, with a lot less computing power. Since many more faults were generated for
the purposes of this thesis than is necessary for a single successful attack, great
efficiency was needed to check them all for exploitability. So, the following method
was used:

1. obtain the bottom 640 bits of Keccak state (χ23
i (X, 0, Z) and χ23

i (X, 0, Z)),
not by performing a separate recovery phase, but by using memcpy()

2. generate a single faulty hash that is known to be the result of a good fault
(in the 32-bit fault model); this is H ′

1

3. take a faulty hash generated by the real board; this is H ′
2

4. add those hashes as constraints and run the SAT solver

If the recovery is unsuccessful, this means that the candidate hash H ′
2 was

not an exploitable one. This method allows a O(number of faults to test) time
complexity, which is absolutely needed to check the thousands of faults obtained.
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5.3. Algebraic fault analysis results
The exploitability of all distinct faulty hashes obtained by the evolutionary al-
gorithm, as well as of all those obtained by the random scan, was tested. While
the share of distinct/unique faulty hashes depends on the size of the scan, the
exploitability of a faulty hash does not. For this reason, I calculated the share of
exploitable individual faults on all the samples obtained (with the same hyper-
parameters).

The results are as follows: the EA generated a total of 14 979 distinct faults
(out of 82 540 individual measurements); 106 of these were exploitable 32-bit
faults, for a share of 0.71%. Random search generated 947 distinct faults (out
of 100 000 individual measurements); 110 of these were exploitable 32-bit faults,
for a share of 11.61%. When translated into exploitable faults per individual
measurement, this gives about 1.41 × 10−3 and 1.13 × 10−3 for EA and random
search, respectively – an improvement of 24.6%.

Despite the fact that the EA is still significantly more successful than random
search, we see that actually most of the faults obtained with the EA cannot
be translated into exploitable faults. This results in a decrease between the
performance difference of the EA and random search. Still, such results are not
entirely unexpected: the EA was given no information on the exploitability of a
fault that it could use to guide its search. This could be addressed by having its
fitness function integrate an analysis of fault exploitability.
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6. Conclusion

In the end, the developed algorithm did not turn out to be really complex, partly
due to the short development schedule; however, even though fault injection is
widely used, the amount of work on its parameter optimization is surprisingly
small, and plenty of work still needs to be done. It is therefore not particularly
surprising that the developed algorithm ended up being substantially better than
the baseline: over 20 times more distinct faults per individual measurement than
random search; and almost 25% more exploitable faults compared to random
search.

To my knowledge, there is presently only one other method for EMFI param-
eter optimization, the one given in [17], and described in section 1.2. However,
they consider RESET points to also be faults worth preserving, meaning we can-
not do a direct comparison – their task appears to be an easier one. But if we
look at their best case – keeping 80% of the faults while rejecting 75% of the
chip surface – this is an increase in fault concentration by a factor of merely 3.2,
for a price of a full 2-dimensional grid scan. Considering that the EA developed
here likely runs in a comparable amount of time, it is evident that their EMFISC
approach is, as it stands, inferior.

Since there are few works looking at FI parameter optimization, there is a
number of potentially interesting research topics. The most obvious one is cer-
tainly adding exploitability analysis to the fitness function – filtering out the
non-exploitable SUCCESS points would be a great improvement to this algo-
rithm. I expect that making it run in real-time on a single workstation would not
be easy. One less obvious follow-up topic would be: what is a neighbourhood?
A way to figure out the effective lowest resolution would potentially make the
search space considerably smaller.

And, of course, this algorithm should be tested on other boards as well. As it
turns out, there are good reasons why this particular board is named the Piñata:
one, it is fairly susceptible to being exploited by various means; this makes it an
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excellent practice target for fault injection. Two, like the real thing, it is meant
to take a beating: millions of glitches, day in, day out. This second reason is why
it was chosen – nobody wants a dead board in the middle of a five-day scan – but
the first reason might be the cause for what seems an unusually high number of
faults in total.
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Evolucijske heuristike za pretragu prostora parametara napada
umetanjem pogreške

Sažetak

Kriptografija je u temeljima velikog dijela moderne računalne infrastrukture,
stoga je vrlo bitno da se u nju možemo pouzdati. Sigurnost malih, ugradbenih
uređaja čini jedan dio tog.
Elektromagnetsko umetanje greške (EMFI) je moćna tehnika za izvođenje napada
umetanjem pogreške, ali zahtijeva odabir dobrih parametara u prostoru daleko
prevelikom da bi se mogao iscrpno pretražiti. U ovom radu se iznosi evolucijski
algoritam za pretragu prostora parametara za umetanje greške, kao i logika iza
njegovog razvoja. Ovaj algoritam se potom koristi za pronalazak grešaka koje se
koriste za algebarsku analizu grešaka (AFA) na SHA-3 (Keccak) kriptografskom
heš algoritmu; dana je usporedba rezultata sa slučajnom osnovicom.

Ključne riječi: umetanje pogreške, evolucijski algoritam, SHA-3, algebarska
analiza grešaka, optimizacija parametara



Evolutionary Heuristics for Fault Injection parameter Space Search

Abstract

Cryptography underpins a large part of modern computer infrastructure, mak-
ing its reliability very important. The security of embedded devices and their
tamper-resistance is a small part of this.
Electromagnetic fault injection (EMFI) is a powerful fault injection technique for
conducting fault injection (FI) attacks, however it requires choosing parameters
in a parameter space that’s far too large to perform an exhaustive search, and
presently there appears to be no good method for conducting the search for good
parameters. In this thesis, an evolutionary algorithm for FI parameter search is
presented, along with the rationale used in its development. This algorithm is
used to find faults for an algebraic fault attack (AFA) on the SHA-3 (Keccak)
cryptographic hash algorithm, and its results are compared with the random
baseline.

Keywords: electromagnetic fault injection, evolutionary algorithm, SHA-3, al-
gebraic fault attack, parameter optimization


