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ABSTRACT It has been over two decades since the publication of pioneer works about the power transformer
diagnostics based on monitoring of their acoustic fingerprints. Since then, there has been great progress
in this field and the methods used are as complex as ever. Any unnecessary intervention on a power
transformer implies its temporary disconnection from the power grid. The inability to supply electricity
to the customer means not only financial loss for the utility but also generates a non-material loss, e.g.,
the loss of reputation to the customer. Faster, more accurate, more reliable, and less invasive diagnosis
is the main reason behind development and improvement in this field. The main goal of this paper is to
categorize and review state-of-the art of vibro-acoustic diagnostic methods for power transformers. This
paper opens with a brief note about continuous condition monitoring, after which we overview the causes
of transformer vibrations as well as the collection and preprocessing of diagnostic data. Then, we review
and categorize works related to the acoustic condition assessment of power transformers considering both:
feature extraction in the time, frequency, time-frequency domain, and mathematical modeling and system
identification of dynamic systems.

INDEX TERMS Power transformers, power system faults, power system reliability, fault diagnosis, main-
tenance, acoustic emission, acoustic signal processing, acoustic measurements, acoustic sensors, vibrations.

NOMENCLATURE
AE Acoustic emission.
BREMD Band Restricted Empirical Mode

Decomposition.
BSS Blind Source Separation.
CWT/DWT Continuous/Discrete Wavelet Transform.
DC Direct current.
DFT Discrete Fourier Transform.
EMD Empirical Mode Decomposition.
EEMD Ensemble EMD.
FFT Fast Fourier Transform.
HHT Hilbert-Huang Transform.
HSA Hilbert Spectral Analysis.
HF High frequency.
HV High(er) voltage.
ICA Independent Component Analysis.
LF Low frequency.

The associate editor coordinating the review of this manuscript and
approving it for publication was Shunfeng Cheng.

LV Low(er) voltage.
MFEMD Multiple Frequency EMD.
OLTC On-load tap changer.
PCA Principal Component Analysis.
PD Partial discharge.
PWT Probabilistic Wavelet Transform.
RMS Root Mean Square.
SNR Signal-to-noise ratio.
SOMs Self-Organising Maps.
STFT Short-Time Fourier Transform.
TEO Teager Energy Operator.
TIFROM-BSS Time-frequency ratio of mixtures —

Blind Source Separation.
UHF Ultra high frequency.

I. INTRODUCTION
Preventive maintenance of machinery and other objects is
becoming more and more suppressed by continuous moni-
toring. Such trends are not only noticeable in engineering,
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but in other areas as well, e.g. medicine: there are more
and more systems that provide continuous monitoring of
single human organs and, consequently, early detection of
diseases. There are many reasons for this: on the one hand,
rapid development of technology enables continuous data
monitoring, big data storage, faster, more complex and more
reliable data analysis; development of complex monitoring
systems and their interconnection allows the formation of
data clusters which describe certain physical phenomena as
a result of mechanical, thermal, electromagnetic or other
types of processes inside or outside the observed object.
On the other hand, sensors are getting smaller and less power
intensive, e.g. the development of sensors based on micro-
electro-mechanical systems (MEMS sensors). Furthermore,
easier and faster access to stored data enables an intelligent
approach to condition assessment because it can now be based
on previously gained experiences and allows the application
of artificial intelligence or machine learning. In doing so,
obtained data can be grouped in the appropriate clusters
based on the same object design characteristics which leads
to the formation of databases that can be used in experimental
frameworks for further development of diagnostic methods.

Thus far, this approach has been proven to be reasonable
and justified. The requirements for improved system uptime,
reliability and availability of the future smart grid calls for
the shift from time-based or condition-based maintenance
towards the maintenance based on continuous online moni-
toring of the equipment operating conditions [1]. Increased
requirements also point to the need of the ability of such
monitoring solutions to inform about potential failure even
before it happens aswell as provide ongoingmaintenance rec-
ommendations. An excellent paper on transition from offline
to online transformer winding deformation diagnostics is one
from Bagheri et al. [2], where they classify winding defor-
mations, give an overview of both offline and online methods
and then address practical problems of their implementation.

A continuous online monitoring system has to meet several
goals. One of the most important goals is that the applied
methods should not interfere with the normal operation of
the monitored object. Also, they should not require any
special mode of operation. Many published papers on this
subject (and this seems like a trend in the modern diagnostic
approach) are about the analysis of acoustic signals. This is
quite logical because the collection of such data sets generally
represents a non-invasive method.

One can state that the most sensitive part of a power
transformer is the on-load tap changer (OLTC). This conclu-
sion stems from several surveys carried out on the national
and international level that studied the reliability of power
transformers. First survey conducted by CIGRÉ published
in 1983 [3] analysed data from 13 countries. Data has shown
that about 41% of failures were due to the OLTC (Fig. 1).
Given that the OLTC contacts are the only movable part
of the transformer and that every mechanical movement is
accompanied by occurrences such as friction which cause
wear & tear and ultimately damage to the contacts, it is no

FIGURE 1. Power transformer failure location analysis from 1983
report [3] and 2015 report [4] .

wonder that OLTC is a very common cause of failure. Besides
OLTC, common causes of failures on power transformers are
short circuits and deformations of its windings. According to
the aforementioned study, core, windings and OLTC failures
constitute 63% of all observed failures. Some newer compiled
failure statistics [4] (transformer failure data from 22 coun-
tries) show progress in the reliability of the OLTC (27%), but
there is still a high percentage of failures connected to wind-
ings (40%) and core (3.4%) (see Fig. 1). This is precisely the
reason why this paper focuses on vibro-acoustic diagnostic
methods for these three parts of the transformer.

Precisely speaking, vibro-acoustic methods should also
include acoustic methods related to partial discharge (PD)
detection. Partial discharge causes occasional breakdowns
in electrical insulation. PD activity causes several physical
effects including optical (light), thermal, chemical, electro-
magnetic and other phenomena. Such breakdowns in turn
also cause the appearance of the acoustic waves that can be
monitored by appropriate sensors placed on the tank of the
transformer. However, issues related to PD are beyond the
scope of this paper.

Rest of the paper is structured as follows: in section II
a brief overview of causes behind transformer vibrations is
given; in section III, diagnostic data collection and prepro-
cessing are discussed; sections IV and V are the focus of
the work and here the literature on vibro-acoustic methods
for condition assessment of power transformers is surveyed.
In section VI, the surveyed literature is summarised in a table
format and taxonomy is provided. Section VII concludes this
paper. In the end, in Section VIII, we provide a glimpse
towards future.

II. CAUSES OF TRANSFORMER VIBRATIONS
Main cause of transformer core vibrations ismagnetostriction-
a property of ferromagneticmaterial to change its shape under
the influence of a magnetic field. Magnetostrictive stress vs.
magnetic induction curve of iron can be approximated with a
quadratic formula (Fig. 2) since the magnetostrictive stress is
proportional to the square of the magnetic induction [5]–[7].
Thus, it also correlated to the square of the applied voltage.
On the other hand, current through the transformer windings
induces axial, radial and combined Lorentz forces which try
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FIGURE 2. Iron magnetostriction as a function of induction—taken
from [6] .

to compress and stretch the windings, respectively [5]–[7].
Lorentz forces are proportional to the square of the current.
Voltages and currents are mutually dependent and since they
cause transformer core and windings vibrations, respectively,
bulk of the works in this field treat the problem of diagnosing
these two vibrations simultaneously.

Transformer core and windings vibrations propagate
through the transformer oil and reach the transformer housing
which will also, in turn, start vibrating. The viscosity of trans-
former oil as well as any rigid structures (reflection) affect
the propagation of vibrations towards the chassis. Therefore,
all these issues must be taken into account when choosing
the appropriate sensors and points for sensor placement to
perform the measurements.

Motion of the OLTC contacts will cause vibrations that can
be sensed on the OLTC housing. Ageing of the contacts or
early occurrence of a defect (deformation) cause changes in
the vibration pattern. Therefore, by analysing these signals
it is possible to establish a diagnostic method which can be
used to evaluate the condition of the OLTC contacts, without
disassembling its chamber. It is possible to detect faults in
the OLTC tap selector and the diverter switch by means of
vibration measurements.

III. DIAGNOSTIC DATA COLLECTION
AND PREPROCESSING
A. DIAGNOSTIC DATA COLLECTION
In the majority of the surveyed literature, the authors used
commercial accelerometers for recording vibration signals.
These sensors typically have a limited linear frequency
bandwidth as well as a resonance bandwidth with the cor-
responding resonance frequency. The frequency of observed
phenomena should be adjusted to the bandwidth of the sensor.

It is important to note that the mounting method of the sensor
to the object can directly affect the accelerometer’s HF oper-
ating range, e.g. the characteristics of M608A11 commercial
accelerometer provided in the manufacturer documentation
(Fig. 3).

FIGURE 3. Effects of mounting configurations on high-frequency
response for commercial accelerometer M608A11 [8].

Thus, for accurate diagnostics, it is crucial to choose not
only the appropriate sensors but also to pay attention to
the mounting method and how it affects the sensor’s fre-
quency response. Furthermore, the ability to synchronise
measurements when multiple sensors are used is also cru-
cial. Additionally, different physical phenomena canmanifest
themselves in the acquired signals and, as will be shown later,
a lot of authors employed auxiliary measurements in their
acquisition systems (e.g. OLTC motor current, temperature,
OLTC motor rotor angle in [9]). The location of the sensors
is also very important and in many papers authors sought
the optimal sensor location by trying to maximise signal-
to-noise ratio (SNR) or by mounting the sensor as close to
the source of vibrations as possible. Since the sensors are
mounted on HV objects, additional precautions in the form of
electrical insulation can be taken if necessary. For example,
Sanz-Bobi et al. [10] covered every electrical contact with
silicone and every sensor cable was inserted in a fibreglass
envelope to address the insulation and electromagnetic issues
for the sensors installed inside a transformer.

Hydro-Québec’s experiences in OLTC diagnostics have
been reported in [11]. They used a vibro-acoustic sensor
mounted on the OLTC tank as close as possible to the OLTC
diverter switch. OLTC motor current was used for trigger-
ing the tap change measurement. Field experience showed
that the vibro-acoustic signature is significantly affected by
ambient temperature, and it was reported that a switching
time of a healthy OLTC is increased by 26 ms at ambient
temperature of −11◦C compared to the ambient temperature
of 27◦C and that this could be erroneously interpreted as a
faulty condition. The recorded signature was compensated
for the temperature using first-order time-realignment tech-
nique [12]. Alongside accelerometers and OLTC motor cur-
rent measurements, Brikci et al. [13] also used a high-speed
camera to record OLTC movement and dynamic resistance
measurements.
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To summarise, the following issues must be addressed in
order to conduct quality diagnostics of a power transformer:
• sensor mounting method;
• synchronisation of measurements if multiple sensors are
utilised;

• prediction and understanding of underlying physical
phenomena which can be manifested in the collected
signals;

• sensor location;
• sensor insulation.
Experimental results demonstrate that for the proper diag-

nostics of transformer core and windings based on vibro-
acoustic measurements it is usually enough to observe the
frequency spectrum in the range up to 1 kHz [14], [15],
although harmonics up to 2 kHz were observed in [16]
and [17]. On the other hand, OLTC diagnostics require
observation of a higher frequency range-up to 10 kHz [18],
although some authors [19]–[21] observed a much higher
frequency spectra (even up to several hundreds of kHz) in
order to be able to apply some digital filtration techniques,
or to be able to observe not only acoustic events of the
mechanical origin, but also other events, e.g. emergence of
electric arc or events related to PD activity. PD analysis is
usually performed in the UHF spectrum (300 MHz–1 GHz).
However, during the process of PD inside the transformer
tank, some part of the electrical energy from the PD pulse
(about 1–5%) is converted to the mechanical energy, which
results in the emission of the acoustic wave [22]. This fact
is used by acoustic emission partial discharge monitoring
methods, where emitted waves are captured by piezo-electric
sensors mounted on the external wall of the transformer tank.
The dominant frequencies observed of recorded PD signals
typically lie in the range of 70 kHz to 180 kHz [23], which are
quite higher when compared to the signals generated by trans-
former vibrations or OLTC operation. Besides accelerome-
ters, some researchers also used other types of sensors such
as hydrophone [19] or strain gauge sensors [24].

In [25], a 2 mm thick fibre-optics vibration sensor was suc-
cessfully installed in the gap between the windings of a power
transformer to measure axial vibration. The sensor accurately
registered vibration frequencies between 5 Hz and 1000 Hz.
Kung et al. noted that by splicing a single mode fibre to the
Fabry-Perot cavity, the whole fibre acts as a vibration sensor
and can function without a ‘‘diving board’’.

An interesting study was conducted in [19] where the
authors compared samples that were gathered simultaneously
from several sensor types mounted in/on the OLTC. Besides
the standard accelerometer, a hydrophone and a wide-band
contact transducer were used as well. Power density spec-
trum analysis showed a number of differences between these
signals. The signal recorded with the hydrophone contained
frequencies with the largest share in the band 0–50 kHz
and such a signal is not reliable for establishing diagnostics
because the transducer is very sensitive to electromagnetic
interference in that frequency range due to the current through
OLTC’s contacts. On the other hand, a signal acquired with a

wide-band transducer, that contains frequency components in
the range 10 kHz–500 kHz is the best choice for OLTC diag-
nostics as it also allows analysis of acoustic emission (AE)
signals during current flow and electrical discharges when
higher frequency components are present. However, time
domain plot shows that hydrophone captures events that are
not so evident in the signal gathered with contact sensor
types. Also, by using a hydrophone immersed in oil it is
possible to avoid contact problems demonstrated in Fig. 3.
Beltle and Tenbohlen [26] also used a hydrophone immersed
in transformer oil and an accelerometer mounted on the
transformer’s tank. Although the hydrophone shows better
SNR compared to the accelerometer, the inaccessibility of
insulation oil as a medium in which the hydrophone should
be immersedmakes this sensor less attractive compared to the
contact sensor types. Signal acquired with an accelerometer
contains low frequencies in the range 0–10 kHz and thus it
only allows analysis of AE signals of the mechanical origin.
However, the accelerometer is the most commonly used type
of sensor in the vibro-acoustic OLTC diagnostics.

Finally, accelerometer output is usually a voltage signal
that contains some unwanted frequency content. That is the
reason why this signal needs to be passed through a series
of high pass and low-pass hardware or software filter. Filter
designer should pay special attention to the accelerometer
resonant frequency, at which its’ maximum sensitivity is
achieved. These sensors require external supply and their
output signal is usually measured in mV so proper gain is
also required in the signal acquisition stage.

B. DIAGNOSTIC DATA PREPROCESSING
In the data preprocessing stage, the goal is to transform
recorded data in order to facilitate further analysis and com-
parison. Diagnostic data are usually collected from multi-
ple sensors. Therefore, one should take into account that
acquired signals should be synchronised. This leads to the
conclusion that the acquisition system should be designed
so that it includes reliable trigger sources. Normalisation of
the collected data is also very important, as it allows easier
comparison. Data preprocessing stage can be roughly divided
into the following sequence of steps:

1) Removing DC offset.
2) Normalising the amplitude.
3) Isolating the individual events.
4) Resampling the signals.
5) Synchronization of signals.
6) Signal envelope extraction.
DC offset can be removed through a high-pass filter or by

subtracting the mean value of the signal from each sample.
(1) normalises the recorded signal to obtain unit amplitudes:

xn[k] =
x[k]

max {|x|}
; k ∈ {1, . . . ,N } , (1)

where x, x[k], xn[k] are the recorded signal amplitude array
ofN samples, amplitude of the k th sample and the normalised
amplitude of the k th sample, respectively. If the recorded
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signal containsmultiple events, e.g. switching between differ-
ent tap positions in OLTC, then it useful to split the recording
into multiple signals each corresponding to a certain tap
transition, i.e. one signal for transition from tap 0 to tap 1,
one signal for transition from tap 1 to tap 2, etc.

If different recording systems with different sampling fre-
quencies have been used, in order to compare the two signals,
it is necessary to resample them to a common sampling
frequency. One common method of resampling is by using
a rational conversion factor L/M which first increases the
sampling frequency L times and then reduces the sampling
frequency M times. L/M is basically a ratio between the
two sampling frequencies. From signal theory, it is known
that each of the above steps has to be complemented by an
appropriate filter: interpolation filter and anti-aliasing filter.
Block diagram of such a resampling technique for small
rational factors is shown in Fig. 4 [27], where L and M
are the upsampling and downsampling blocks, respectively.
HI (z) and Hd (z) are interpolation and anti-aliasing filters,
respectively. Fin and Fout are the sampling rate of input and
output signal, respectively.

FIGURE 4. Resampling with a rational conversion factor [27] .

Since both HI and Hd filters are cascaded and operate at
the same sampling frequency, both of these low-pass filters
can be combined into a single low-pass filter H (z) with the
stopband edge frequency equal to (2):

ωsT = max
{π
L
,
π

M

}
. (2)

In order to completely synchronise two signals, a discrete
cross-correlation method can be used (3). Cross-correlation
is a measure of similarity of two functions and is similar to a
convolution of two functions.

(x1 ∗ x2) [n] :=
∞∑
−∞

x∗1 [m]x2[m+ n], (3)

where x∗1 is a complex-conjugate of x1 and m is a discrete
time-shift.

High complexity and nonlinearity is observed in the results
shown in numerous papers dealing with OLTC diagnostics.
That is the main reason why researchers attempt to simplify
these signals while at the same time trying to keep as much
useful diagnostic material as they can. The most common
approach is the extraction of the signal envelope from the
analysed vibration fingerprint. There are several methods that
allow one to do that. Most commonly used method is the
Hilbert transform [28]. Other noted methods include signal
squaring with low pass filtering, usage of TEO, RMS enve-
lope or Peak envelope using spline interpolation over local
maxima separated by at least N samples.

The complete OLTC operation for one tap transition usu-
ally takes around a few seconds, while the most interest-
ing diagnostic interval, the one correlated with the OLTC
diverter switch operation, usually takes much less (from
40ms to 250ms). As this is a very short period of time, and by
taking into consideration OLTC position in relation to other
elements of the substation, in most cases it is not necessary
to take into account the impact of other machines on the
collected vibration signals. However, it should be noted that
in the case of audio-based diagnostics, challenges arise with
transformer energising because the audio signals will become
contaminated by the noise produced by the transformer and
related equipment. The same applies to the analysis of the
vibration or audio signals gathered from a transformer tank.
The interval in which these data are collected is usually much
longer and signals can be affected by other machinery. Such
cases include switching on/off oil pumps, cooling systems,
OLTC, etc. All these occurrences impact diagnostic signals
and special care should be taken here.

C. DATA ANALYSIS AND DECISION STAGE
According to the surveyed literature, two basic approaches
are used in this stage:
• the extraction of relevant features from the gathered data
set and decision making process based on observing
their values in:
– time domain;
– frequency domain;
– time-frequency domain;

• mathematical modelling and system identification fol-
lowed by the decision-making process based on the
selected model.

Therefore, in the following sections these approaches are
analysed separately: for both the OLTC and core/windings
diagnostics. Table 1 shows a summary of different meth-
ods used for vibroacoustic condition assessment and their
applications.

IV. EXTRACTION OF RELEVANT FEATURES
The extraction of relevant features leads to reduced data
dimensionality. It is often necessary to use some kind of
decision making process in order to classify the data based on
the extracted features. Methods such as PCA can also lead to
the additional data dimensionality reduction. Sejdic et al. [29]
have organised feature extraction and decision making using
signal processing techniques according to Fig. 5.

Here, a classification of feature extraction methods in
three subgroups has been made, depending on the domain in
which the collected data are analysed. The reader will notice
that various signal processing techniques (e.g. Wavelet and
Fourier transforms, TEO, HHT, etc.) are often used in the
surveyed literature and therefore they are often mentioned
throughout this text. No special introduction to these tech-
niques will be written because it is beyond the scope of this
paper, however the reader is referred to the following litera-
ture [28], [30]–[34] or any other signal processing textbook.
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TABLE 1. Comparison of used methods for vibro-acoustic condition assessment.

FIGURE 5. Signal processing techniques for feature extraction and
decision making [29].

A. TIME DOMAIN
The length of recorded signals from OLTC, as well as
their shape, allows extraction of some diagnostic features
by observing these signals only in the time domain. On the
other hand, signals recorded from the transformer tank usu-
ally require some kind of transformation which allows easier
feature extraction.

1) OLTC
The first experiences in this field were described in [35]–[38].
In addition to the OLTC vibration signals, the motor cur-
rent was also recorded which was used for triggering the
recording device. What was perceived here is that mechanical
and electrical events manifest themselves through signals
in completely different frequency bands—electrical events,
such as the appearance of an electric arc, are associated with
higher frequencies, while mechanical events, such as friction

and synchronisation problems, are associated with lower fre-
quencies. High complexity of the acoustic fingerprint was
noted, so the authors resorted to envelope extraction using
the Hilbert transform. To separate electrical and mechanical
events, this transform was performed on two different data
sets separated. It was suggested that the decision stage should
be based on the comparison between new and previously
obtained records (online testing) or on the comparison of
records without any OLTC load (offline testing). Combina-
tion of both methods was suggested as the best practice. It is
possible to draw some conclusions this way, but this method
requires experienced and knowledgeable testing personnel,
which is usually not the case in the field. It is precisely
why such requirements have led to the further evolution of
the diagnostic methods towards smarter systems that would
enable easier detection of potential issues.

DWT and TEO were used in [39]–[41] for envelope
extraction to reduce complexity after collecting the vibra-
tion fingerprint. Properties derived from the auto-correlation
function were used as input parameters for Self-Organising
Maps (SOMs), which is a type of an artificial neural net-
work used to classify and organise data. Experience showed
that vibration fingerprint varies for each OLTC tap position
and SOMs automatically classify the data according to their
similarities. A priori knowledge was used to train the SOMs
to carry out this automatic data classification. This principle
implies that a large number of tests should be carried out
on the objects that are in the healthy as well as those in the
faulty state. Moreover, for objects that are in the faulty state,
one should have a priori knowledge about the type of defect
present. Five different OLTC conditions were observed that
were used as classifiers in the SOMs:
• normal condition;
• weak springs;
• worn moving contacts;
• worn moving and fixed contacts;
• weak springs plus worn contacts.

Moreover, it was noticed that an alteration of OLTC condition
is most often a gradual process rather than a sudden change.
Crossing the defined threshold value of OLTC condition cri-
terion activates an alarm that something is wrong. The main
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purpose of the design was to avoid false alarms. This design
was successfully tested on a system that was in operation for
three years at the time.

In [42], experiments were conducted on a transformer that
was removed from the operation, so the authors were able
to record vibration fingerprints for all 10 OLTC tap posi-
tions. Hilbert transform and a low-pass filter with a cut-off
frequency based on Kolmogorov’s complexity measure were
used for signal envelope extraction. As there was no reference
vibration fingerprint for the tested OLTC, one way to perform
diagnostics is to compare different tap positions. The goal
is to find a tap position that is most correlated with all the
others. Finding such a position allows the comparison of the
vibration fingerprint for each individual tap positions with
that one. By doing so, the authors concluded that there are
some differences between tap positions caused by their fre-
quent use. This approach can be used to perform diagnostics
in cases whenmeasurement history is not available. However,
it should also be noted that some OLTC tap positions are
used more than others, which also implies that their wear will
be more pronounced and all this will cause the differences
between their vibration fingerprints.

Secic and Kuzle [43] proposed a diagnostic method based
on signal fractal properties. Higuchi’s algorithm was used
on a signal envelope of a simulated OLTC vibration model
from [44] to estimate the fractal dimension of the signal.
By changing the model parameters, contact ageing was sim-
ulated and the results showed increasing differences between
the estimated fractal dimension of a new and old OLTC
contacts. This method can be used for diagnosing contact
degradation and to distinguish between different mounting
methods. However, no validation on OLTC contacts whose
condition is a priori known has been conducted nor was the
proposed algorithm tested for OLTC failure detection.

2) CORE/WINDINGS
A diagnostic technique based on time domain analysis of
vibration stationarity was proposed in [45]. Vibration sta-
tionarity analysis is based on recurrence plot analysis where
recurrence means a time in which the trajectory returns to a
location it has visited before. System determinism is chosen
as the transformer health criterion which is defined as the
ratio of recurrence points that form diagonal structures to all
recurrence points. The authors state that the system determin-
ism value of a healthy transformer should be close to 1.

B. FREQUENCY DOMAIN
Vibration fingerprints obtained from OLTC display a non-
stationary character and very high complexity. Frequency
analysis therefore may not be the best tool for the analy-
sis of these processes. Nevertheless, several authors have
approached the problem from this perspective.

1) OLTC
In the frequency domain analysis of vibro-acoustic finger-
prints of an OLTC, three papers have been found which

differ in the type of decision making process utilized for the
detection of the OLTC condition.

Rastgoufard et al. [24] observed sufficient differences
between contacts in good and bad condition by observing the
frequency spectrum of vibration signals recorded by strain
gauge sensors mounted on the main drive arm of OLTC.
Automatic detection of the OLTC condition was achieved
with unsupervised fuzzy logic.

Bhuyan et al. [46] measured the dynamic resistance of
OLTC contacts alongside the OLTC vibration fingerprint.
The authors manually identified five different regions in the
frequency spectrum using FFT which are separately used to
distinguish contacts in good and bad shape, and contacts with
increased electrical arcing. They showed that it is possible
to recognise arcing and various defects in a single phase tap
changer.

Hussain et al. [47] measured the OLTC motor current
alongside the OLTC vibration fingerprint. An automatic
expert diagnostic system was designed based on these signals
and a knowledge database based on field experience. The
main purpose of this system is to solve complex problems
through reasoning based on a set of rules which minimises
errors that can be caused by human factors in the decision
making process.

2) CORE/WINDINGS
Significantly more papers deal with transformer core/
windings vibration analysis in the frequency domain [10],
[16], [17], [48]–[55]. Here, their conclusions and contribu-
tions are summarised.

Core/windings vibrations appear at multiple frequencies
up to several kHz and the magnitudes of those frequency
components are dependant on the external temperature. These
frequencies appear as even, odd and rational multiples of
the fundamental frequency and generally the most dominant
components are 100 Hz and its integer multiples. Vibra-
tions are highly correlated with the transformer loading and
100 Hz, 200 Hz and 300 Hz components are most sensitive
to the loading of the transformer. Vibrations with frequen-
cies <100 Hz are usually the product of cooling systems
and oil pumps operation. Core vibrations caused by magne-
tostriction are non-linearly proportional to the applied voltage
while the winding vibrations are non-linearly proportional
to the current. Munir et al. [48] reported the dependency of
vibrations to the square of the current, while Aidi et al. [52]
found that the nonlinear properties of the insulation between
the windings make the relation closer to the cubic represen-
tation. To separate the core (magnetostriction) and windings
(Lorentz forces) vibrations it is best to do the measurements
under no-load and under normal loading conditions [17]
because the vibrations under normal loading are caused
by both of those phenomena. Guo et al. [53] showed that
even multiples of fundamental frequency harmonics appear
under fastened core and odd multiples under slack core.
Odd harmonics appear both under fastened and loose wind-
ings, but the intensity is different between the two cases.
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Some guidelines regarding the core/windings vibration mea-
surements were also defined in several papers [16], [17], [52]:
• reduction of the external noise can be achieved by:
insulation between the sensor shell and the transformer’s
tank, shielding of the transmission cables and grounding
of the measurement system;

• noise from the power supply lines can influence the
measurements;

• measurement points should have a high correlation with
the load current to better reflect vibration characteristics
of the windings;

• when arranging themeasurement points, one should take
into account the structural features and flat surfaces of
the transformer for better signals;

• stiffeners or other complex structures should be avoided;
• the sum of first four harmonics, the total harmonic dis-
tortion and the ratio between the amplitudes of the 50 Hz
and 100 Hz harmonic are sufficient to establish good
diagnostics and the estimation of the remaining service
life of the transformer;

• best mounting position is at the top of the transformer
oil tank with auxiliary measurement point at the side of
the tank.

Li et al. [56] tackled the issues concerning laboratory
testing due to the restrictions on the available power in the
laboratory, but also the inability to dissipate large amounts
of energy. They suggested a setup consisting of a current
limiting resistor, a voltage regulator and a universal trans-
former whose LV side is connected to the LV side of the tested
transformer.

Hong et al. [45] presented several health metrics based on
DFT decomposition in the frequency domain.

As it was mentioned earlier in this paper, mounting
method of an accelerometer impacts its frequency response.
Additionally, the accelerometer is in direct contact with
a high voltage objects and therefore it must be properly
shielded from electromagnetic interference. This is why
Zheng et al. [57] used a laser Doppler vibrometer to study the
vibration of the windings. Four cases were studied: normal
operating condition, different clamping pressures, loose insu-
lation blocks and loose core clamping. Several conclusions
have been drawn:
• radial vibration pattern of a healthy transformer is
approximately bilaterally symmetric, while the radial
vibration pattern of a transformer with faulty windings
becomes asymmetric;

• looseness of winding clamping pressures or insulation
block looseness are manifested as a change in vibration
patterns at dominant frequencies;

• looseness in core clamping pressure doesn’t affect the
vibration pattern as much so the spatial variance cannot
be used to determine the severity of the core looseness,
but it is still detectable by observing the winding vibra-
tion distribution.

Very interesting observations were given in [26], [54],
and [55]. These papers analyse the impact of geomagnetically

induced currents and coupling effects between nearby AC
and HVDC transmission lines on transformer vibrations. The
Sun emits solar wind, which is basically low-density plasma
that consists mostly of electrons, protons and alpha particles.
These charged particles travel through the earth’s atmosphere,
causing variations in the intensity of the electrical field and
creating a DC that can flow through the transformer’s neutral.
A similar effect is created by surrounding single-pole HVDC
systems with the earth as a return conductor. The flow of
DC causes increased magnetostriction, and may also lead
to saturation of the transformer. Increased magnetostriction
causes an increase of vibration intensity and additional losses
through the occurrence of higher harmonics and reduction
of reactive power. The conclusions of these studies are the
following:
• 50 Hz component is present in the measured signal in the
case when there is a DC flowing through the transformer
neutral. This component is not present when there is no
neutral current;

• amplitudes of the second and fourth harmonics increase
as the DC increases;

• the shape and the intensity of the vibration fingerprint is
significantly influenced by the DC;

• frequency analysis has shown shifting of the dominant
harmonic and appearance of higher harmonics when the
DC exists;

• authors propose monitoring additional inputs for condi-
tion assessment of the transformer: transformer load and
DC through neutral.

C. TIME-FREQUENCY DOMAIN
This approach is mostly used in the analysis of the vibration
signals gained from the OLTC that show high non-stationary
behaviour. By observing such signals, one can state that
Fourier analysis is not the best processing technique, not even
the STFT, which by the introduction of the time window
localises the Fourier transform of function f (t) around the
instant of time t = u where the function can be considered
stationary. Because of the character of the recorded signal,
the used time window should be very narrow in order to
consider this process stationary around the point t = u.
The problem lies in the unavoidable Heisenberg uncertainty
principle, which associates the width of the time window
with the maximal width of the window in the frequency
domain. The narrowing of the time window inevitably leads
to the expansion of this window in the frequency domain,
and to greater uncertainty in defining the frequency content
or the complete loss of information (presence of a lower
frequency). On the other hand, a too wide time window
leads to a loss in precision. This is the reason why wavelet
transform is used, in which the time window length is based
on the appropriate frequency. This approach allows for an
increase of the resolution while still satisfying the Heisenberg
uncertainty principle. The selection of the optimal mother
wavelet (kernel wavelet) plays a great role in the application
of the wavelet transform. Several developed methods are
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based on the similarity of the observed signal and the mother
wavelet. However, some studies show that such an approach
is not always optimal. This is why several other techniques
have been developed in order to get to the best solution,
e.g. second generation Wavelets [58], which avoid eventual
problems regarding the selection of the mother wavelet.

1) OLTC
CWT was used in [59]–[63] for the feature extraction from
the OLTC vibration fingerprint. Kang and Birtwhistle [40]
did a field evaluation over a period of three years with
SOMs for data classification. They identified the establish-
ment of reference vibration fingerprint as a practical problem
in order to apply the monitoring system on a different OLTC.
Viereck and Saveliev [63] showed several time-frequency
images of the OLTC switching operation where different
phenomena were clearly marked such as: preselector and
diverter switch operation; transformer buzzing and 50 Hz
disturbances of an energised transformer; impact of sensor
mounting method; tap selector squeaking anomaly.

DWT was used in [18] and [64]–[68]. Based on the
research conducted in [64] and [65], several accomplishments
were pointed out by the authors:
• ability to differ between new and old (used) contacts;
• distinguishing vibration fingerprints of different tap
positions;

• distinguishing between the following types of failures:
loose contact springs, broken contact bar, worn out tap
selector contacts and damaged tap selector contacts.

Filho and de Almeida [66] used SOMs for data classification
to group data into 6 different clusters based on the wear level,
faulty condition, etc. The main advantage of this method is
that it provides information on the gradual degradation of the
contacts condition, and that such info can be used by an online
monitoring system.

In [68], besides OLTC vibration, a high frequency current
transducer was used for measurement of the arcing signal for
improved diagnostics. This signal was used as an additional
diagnostic information that helps to clearly identify events
in the OLTC switching operation that are manifested in the
vibration fingerprint. Modified form of wavelet transform,
called Probabilistic Wavelet Transform (PWT) [69] was used
for segmenting arcing signals and noise.

Besides the obviously popular wavelet transform, several
papers were found in which time-frequency domain was
used but in which the authors approached the matter dif-
ferently [9], [20], [21], [70]–[73]—the following methods
or their combinations have been used or mentioned: EMD,
Hilbert Transform, HHT, HSA, EEMD, BREMD, MFEMD.
These methods were used to tackle the problems of highly
non-stationary nature of the signals and to improve the pre-
cision of the diagnostics. CWT, DWT and STFT have also
been used in [20], [21], [71], and [72] for the extraction of
the diagnostic material. Li et al. [73] reported the shortcom-
ings of the existing vibro-acoustic diagnostic methods when
electrical faults without obvious mechanical vibration are

being diagnosed, such as contact terminals fault and contact
resistance anomaly. They proposed a method based on mea-
suring the current waveform of an OLTC, for which they state
it contains rich diagnostic information. Two faulty OLTCs
have been analysed and their time-frequency spectrum shows
rich frequency content compared to a healthy OLTC whose
waveform is mainly composed of 50 Hz component.

FIGURE 6. Field setup of condenser microphones for recording the OLTC
audio signature.

So far, all the surveyed research used accelerometers or
AE sensors which require direct contact with the transformer
or must be put inside the tank in the case of hydrophones.
From our experience, the audio-based diagnostics is a rel-
atively unresearched area which in our opinion is worth
exploring. A method of recording the audio signal of the
OLTC using an array of condenser microphones (Fig. 6) was
tested in [74]–[76]. These papers deal with the extraction of
the useful diagnostic material from a mixture of different
audio signals and correlating audio signature with a vibra-
tion signature. Fast Independent Component Analysis Blind
Source Separation (FastICA-BSS) was used to separate the
useful diagnostic material from the surrounding noise. Some
distortion in the estimated signal is unavoidable, and the real
question is if this distortion will prevent diagnostic infor-
mation extraction method in performing its task and how
much it will affect the results. Using proper data extraction
techniques and comparing original and estimated signals or
using the OLTC reference audio fingerprint recorded in the
de-energised state are some ways to tackle this issue.

2) CORE/WINDINGS
Classical ICA-based BSS recovers the different physical
sources of a system given a set of external measurements
assuming statistical independence of the sources. However,
sources of transformer vibrations are highly correlated due to
the mutual dependence of voltage (core) and current (wind-
ings). Therefore, Jing et al. [77] proposed a modified BSS
algorithm named TIFROM-BSS (Time-frequency ratio of
mixtures—blind source separation) which was used to sep-
arate the core and windings vibrations.

HHT was also used in [78] and [79], but in these papers
it was applied on vibration signals obtained from the trans-
former tank. Xiong and Ji [78] concluded that for healthy
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FIGURE 7. Fundamental frequency vibration variation between two
samples [88].

transformers dominant frequencies in the Hilbert spectrum
are 100 Hz, 200 Hz and 400 Hz, while for defected
transformers the intensity of LF and HF components is
amplified and for medium frequencies (oscillations around
400 Hz) it is decreased. These differences increase as the
transformer defect is greater—the looser the core’s clamp
bolt is, the greater the frequency and energy content. In [79],
before implementation of HHT, Wavelet Packet Decompo-
sition (WPD) was used to minimise noise influence and
to remove unwanted components from the signal. HHT is
much more effective when it is preceded by WPD since in
that case it is much easier to spot dominant frequencies and
their time distribution. Hilbert spectrum showed dominant
frequencies that are integer multiples of fundamental system
frequency (50 Hz). Basically, the time-frequency domain
approach shows similar frequency content to the one in papers
in which the authors used pure frequency approach. How-
ever, this method probably has an advantage over the pure
frequency approach as the time dependent frequency content
can be observed along with the load variations in time.

In [80], a transient method was proposed in which the
vibration signals are collected during switching the trans-
former from offline to idle mode. Aside normal operating
condition, three more cases were studied: core with loose
screws fixing the upper yoke, core with loose screws fixing
both upper and lower yokes and core with loose screws
fixing both yokes with simultaneous reduction of HV wind-
ings’ clamping pressure. The advantages of this method are:
immunity to loading current magnitude, significant inde-
pendence between the vibro-acoustic signals and the type,
power and construction technology of the transformer, elimi-
nation of disturbances from oil and air circulation appliances,

insignificant influence of transducer mounting position. The
downside of this method is that the transformer must be out of
service, but this time is only around 10 minutes compared to
several hours needed for offline diagnostics. The aforemen-
tioned defects can be easily discerned in the time-frequency
spectrogram since each defect has idiosyncratic amplitudes
and dominant harmonics.

V. MATHEMATICAL MODELLING AND
SYSTEM IDENTIFICATION
Dynamic model of a system can be created either by knowing
the physical description of the system or through a technique
called system identification by using a predefined model
structure (linear, nonlinear, time-variant/invariant, black box,
grey box) and observed data (i.e. measurements of input
and output signals). System identification is a widely used
technique in online condition monitoring systems.

The condition monitoring system uses this model through
the simulation process to generate reference outputs that can
be compared to the outputs of the real system, under the
same input conditions. If the identification procedure was
carried out correctly and the model parameters match the real
system, then high deviation between output of the mathemat-
ical model and real system should trigger alarm activation
because this means that for some reason the system is not
behaving the way it is supposed to. For basic overview of
system identification, the reader is referred to [81]–[84].

A. OLTC
In [44] and [85], OLTC vibration fingerprint was modelled as
a second-order spring-damper system (4):

m
d2x(t)
dt2

+ c
dx(t)
dt
+ kx(t) = 0, (4)

where, x(t), m, c and k are the linear displacement, mass,
damping factor and spring constant, respectively. System
exhibits an underdamped behaviour and a sum of three under-
damped sine waves was used to approximate the vibration
signals (5):

a(t) =
3∑
i=1

Aie−αi(t−t0i) cos(ωi(t − t0i)), (5)

where a(t), Ai, αi, t0i are the vibration signal estimate,
amplitude, damping coefficient and time delay (phase shift),
respectively. The authors reported that using less than 3 sine
waves is not precise enough and for more than 3, the algo-
rithm becomes too slow without significant improvements

TABLE 2. Categorisation of the vibro-acoustic diagnostic techniques.
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TABLE 3. Taxonomy of the OLTC diagnostics literature.

in precision. Following signal preprocessing, estimated
parameters were amplitude, damping coefficient and the
phase shift with minimisation of mean square error as the
criterion (objective function). Genetic algorithm was used
for optimisation of the criterion in [44] while Prony’s anal-
ysis was used in [85]. Both of these methods have a low
computational cost. However, it is noted in [85] that some
contacts operate only a few times during their life cycle and

in such cases Prony’s method may not be able to establish
good diagnostics.

Chaos theory was used for OLTC diagnostics in both [86]
and [87] for distinguishing contacts with weak spring condi-
tion from those in good condition. For practical application,
external influences such as temperature and load variations
will affect the results, and they should also be taken into
account.
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TABLE 4. Taxonomy of the transformer core/windings diagnostics literature.

B. CORE/WINDINGS
Construction of a numerical model based on aforementioned
spring damper concept was used to monitor tank vibra-
tions in [6], [7], [89]. Basically, the used model was quite
simple—it was constructed as the sum of the vibrations
caused by the transformer core (proportional to applied volt-
age squared) and windings (proportional to load current
squared). An additional variable was used to take into account

temperature influence. The mathematical model is shown
as (6):

vtank,100 = (α + βθto)i250 + (γ + δθto)u250, (6)

where vtank,100, i50, u50 are the complex variables that
represent the tank vibration model at 100 Hz frequency,
transformer current and voltage fundamental frequency
components, respectively. α, β, γ , δ are transformer
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geometry-specific complex parameters obtained from mea-
surements. θto is the temperature measured at the top of
the oil.

For other potential sources of vibrations, such as oil pumps
and fans that don’t work in continuous mode of operation,
a different set of model parameters can be used in order
to describe the system when such elements are turned on
because they shift the dominant frequencies in the frequency
spectrum of the recorded signal. The proposed model was
experimentally validated on a real system in [7]. A deforma-
tion of the transformer winding lead to a significant increase
in model error.

Jing et al. [90] and Hong et al. [91] use standard
Hammerstein-Wiener model type for nonlinear systems.
These models are often used for systems where the input-
output relationship can be decomposed into serial connection
of static nonlinear input-output blocks and a dynamic linear
block. Identification of the model parameters in [91] was
done with a neural network. By using a neural network, it is
possible to have less a priori knowledge of the system and
that nonlinearity does not need to be predefined.

Winding condition assessment based on principal com-
ponent analysis was proposed in [45] and [88] using the
mathematical model of transformer core/winding vibrations
from [6], [7]. Total vibration depends on the power factor
between the fundamental voltage and current [45], [88], [89],
thus the currents and voltages must be treated as complex
variables. In practice, if the power factor angle fluctuation is
less than 0.02 radians, the transformer current is the only fac-
tor that contributes to the total winding variation. Therefore,
two close samples of transformer vibrations can be used to
separate the winding vibration from the total vibration. This
principle is illustrated in Fig. 7, where vtotal,i, vcore,i, vwinding,i
are the total vibration signal, core and winding vibration sig-
nals of sample i, respectively. The winding vibration variation
from sample i to sample i + 1 is denoted with 1vw and β is
the phase angle between the total vibration signals i and i+1.
Winding vibration variation can then be expressed as (7):

1vw =
√
v2total,i + v

2
total,i+1 − 2vtotal,ivtotal,i+1 cosβ. (7)

Works [92]–[95] deal with the electromagnetic vibration
noise analysis of core and windings of a power transformer
using finite element modelling. Additionally, Hu et al. [92]
and Bouayed et al. [93] combined electromagnetic field anal-
ysis with mechanical field analysis and acoustic analysis.
FFT analysis of the electromagnetic forces has shown that
the most prominent harmonics are again 100 and 200 Hz,
respectively. Furthermore, the core magnetostriction depends
only on the magnetic induction and that the frequency of core
magnetostriction is twice as that of the magnetic induction,
i.e. twice the fundamental grid frequency.

VI. SUMMARY
Surveyed literature is categorised in Table 2 according to
the type of analysis (time domain, frequency domain, time-
frequency domain or mathematical modelling and system

identification) and according to the observed transformer
element (OLTC or core/windings). Note that some works
also fall into multiple categories when more than one anal-
ysis technique has been used. Taxonomies of the OLTC and
core/windings diagnostic techniques are given in Table 3 and
Table 4, respectively.

VII. CONCLUDING REMARKS
This paper provides an overview of the current state-of-the-art
in vibro-acoustic condition monitoring of power transformers
with the focus on OLTC and transformers’ winding/core
diagnostics which are three elements that are responsible for
over 70% of the all transformer failures according to the
international statistics.

Non-invasive diagnostics are superior over the classical
approach as it doesn’t interfere with the regular operation of
the object being tested. This opens a possibility of implemen-
tation of the continuous monitoring systems that will provide
insights into the health condition of the monitored equipment
at any moment, or inform about potential failure before it
even happens. It can also provide the ongoing maintenance
recommendations. In this sense, the logical choice is the
capturing and analysis of the audio and vibrating signals
produced by the tested object during its regular mode of
operation. For that reason, this paper paid special attention to
recent advancements in audio and vibration signal processing
techniques and decisionmaking processes whose complexity,
but also the reliability is increasing with the advancements in
research and development.

Audio/vibration-based diagnostics can contribute to the
safety of test personnel and to the reduction of the labour
costs. If these methods really prove effective, they will be
welcomed by the utilities. However, it cannot be said that
there is no resistance in adapting these methods in the field.
The nature of this resistance can sometimes be rational. For
instance, some utilities are not ready for big investments in
the condition monitoring systems, but will rather turn to the
short term solutions which can include engagement of the
external consultants for one-time condition assessment of
their currently installed equipment. Sometimes, these reasons
can also be totally irrational. Engineers who are used to one
way of thinking are often reluctant to change their habits.
When asked about his opinion on online monitoring systems,
the head of the test department in one of the big utilities
in USA (with 20+ years of experience in diagnostics and
testing) gave an interesting answer: ‘‘I don’t want to spend
my time testing a monster that tests the monster’’, showing
the complete distrust in the continuous monitoring systems,
their communication channels, and the decision processes
based on the artificial intelligence. He also believes that
the human factor and its experience are still inevitable in
terms of making decisions. Likewise, field engineers are just
accustomed to the on-site diagnostics that can provide instant
information about the need to conduct maintenance and the
instant info on the possibility of re-commissioning after the
maintenance procedure. From all of the above, it’s easy to
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conclude that online monitoring systems will not be able to
suppress classic diagnosticmethods for a long time. However,
the two approaches to the object condition assessment do not
necessarily have to compete with each other. They may also
complement each other, which will eventually lead to greater
reliability and lower the risk of possible failures.

The combination of invasive and non-invasive diagnos-
tic methods is already used, even in the offline monitoring
approach. A typical example is the simultaneous measure-
ment of the OLTC dynamic resistance and the vibration sig-
nals which is already implemented in some solutions. The
last option for utilities is always disassembling the tested
object. Therefore, any confirmation that leads to a better
understanding of the health of the tested object is always
welcomed. In terms of offline condition assessment, the goal
is to spend as little time as possible in the test field. For
that reason, in case of an offline test, we believe that the
audio-based diagnostics can contribute to a faster test setup,
as it doesn’t require any connection with the object being
tested. In addition to avoiding problems that may result
from poor contact of the sensor with the test object, audio-
based diagnostics allow greater location possibilities and
even the possibility of recording the signals from a certain
distance. We also believe that audio-based diagnostics could
also enable ‘‘easily portable’’ recording systems that could be
used for collecting the diagnostic material only for a certain
period of time from one object during its regular exploitation
after which the recording system can be easily transferred to
another location. This can be seen as a much cheaper alterna-
tive to permanently installed monitoring systems. However,
there are still some challenges in audio-based diagnostics that
need to be overcome. These challenges are reflected in the
unavoidable influence of the machine environment which is
reflected through a mixture of the useful diagnostic material
with surrounding sounds. However, the rapid development
of the source separation techniques is promising and will
certainly contribute to the application of these methods in the
future.

Every diagnostic procedure must be followed by a good
understanding of the physical processes that are taking place
both within and around the test object. Good diagnostics
imply not only the analysis of the signals, feature extrac-
tion and their classification, but also the understanding why
something happens at a certain point in time and what could
cause such phenomena. Therefore, simulation models that
describe physical processes can greatly help in their under-
standing. Various computer programs that allow these kinds
of simulations evolve daily and greatly facilitate this task. The
obvious development of the signal processing techniques is
reflected in the analysis of the acoustic signals in transform-
ers’ condition assessment. The evolution of these techniques
allows the extraction of the features from signals that express
a highly non-stationary behaviour. The same applies to future
classification and pattern recognition methods. The obvious
problem is the lack of the relevant fingerprints for different
transformer/OLTC types. One way to increase the reliability

of the already developed diagnostic methods and the future
developments is to establish the relevant acoustic signature
database that could be used by researchers and the utilities.
That way the performance comparison between different
methods could lead to the adaptation of the most reliable
techniques. This obviously requires collaboration between
the researchers and the industry.

VIII. WHAT DOES THE FUTURE HOLD?
We can not talk about the future without mentioning the fifth
generation (5G) cellular network technology that provides
broadband access. Wireless data transfer at speeds exceeding
1 Gbps at very low latency rates opens up a whole new
spectrum of possibilities. 5G will also have a big impact on
machinery diagnostics. Although there is already a possibility
of rapid transmission of large amounts of data and their
storage in the cloud, 5G will simply standardise the approach
and impose itself as an unavoidable factor in many fields.
Greater connectivity and data access from various remote
locations will allow experts to share their experiences and
revolutionise the diagnostic process.

For this reason, methods of collecting data which will not
interfere with the regular operation of the transformer, OLTC
or any other test object, such as those based on audio and
vibration signal measurements, will become more and more
interesting. Obviously, with the amount of the data being
collected, big data and cloud computing are the technologies
that will dominate the next decade in the field of diagnos-
tics. The artificial intelligence will also become an inevitable
factor in decision-making processes. Rapid development and
progress of neural networks and deep learning comes at the
right moment and will definitely have a big impact on future
developments.

In any case, one interesting and exciting period is ahead
of us.

REFERENCES
[1] G. J. Paoletti and G. Herman, ‘‘Monitoring of electrical equipment failure

indicators and zero-planned outages: Past, present and future maintenance
practices,’’ in Proc. Ind. Appl. Soc. 60th Annu. PetroleumChem. Ind. Conf.,
Sep. 2013, pp. 1–9.

[2] M. Bagheri, M. S. Naderi, and T. Blackburn, ‘‘Advanced transformer
winding deformation diagnosis: Moving from off-line to on-line,’’ IEEE
Trans. Dielectr. Electr. Insul., vol. 19, no. 6, pp. 1860–1870, Dec. 2012.

[3] Working Group 12.05, ‘‘An international survey on failures in large power
transformers in service,’’ CIGRÉ, Paris, France, Tech. Rep. ELT_088_1,
1983. [Online]. Available: https://e-cigre.org/publication/ELT_088_1-an-
international-survey-on-failures-in-large-power-transformers

[4] Working Group A2.37, ‘‘Transformer reliability survey,’’ CIGRÉ, Paris,
France, Tech. Rep. 642, 2015. [Online]. Available: https://e-cigre.org/
publication/642-transformer-reliability-survey

[5] A. Belahcen, ‘‘Magnetoelasticity, magnetic forces and magnetostriction
in electrical machines,’’ Ph.D. dissertation, Dept. Elect. Commun. Eng.,
Helsinki Univ. Technol., Espoo, Finland, 2004.

[6] B. Garcia, J. C. Burgos, and A. M. Alonso, ‘‘Transformer tank vibration
modeling as a method of detecting winding deformations-part I: Theoret-
ical foundation,’’ IEEE Trans. Power Del., vol. 21, no. 1, pp. 157–163,
Jan. 2006.

[7] B. Garcia, J. C. Burgos, and A. M. Alonso, ‘‘Transformer tank vibration
modeling as a method of detecting winding deformations-part II: Experi-
mental verification,’’ IEEE Trans. Power Del., vol. 21, no. 1, pp. 164–169,
Jan. 2006.

83928 VOLUME 7, 2019



A. Secic et al.: Vibro-Acoustic Methods in the Condition Assessment of Power Transformers

[8] A. Collet and M. Källman, ‘‘Pipe vibrations measurements,’’ Energiforsk,
Stockholm, Sweden, Tech. Rep. 2017:351, Feb. 2017.

[9] J. Liu, G. Wang, T. Zhao, L. Shi, and L. Zhang, ‘‘The research of
OLTC on-line detection system based on embedded and wireless sensor
networks,’’ in Proc. IEEE Int. Conf. High Voltage Eng. Appl. (ICHVE),
Sep. 2016, pp. 1–4.

[10] M. A. Sanz-Bobi, A. Garcia-Cerrada, R. Palacios, J. Villar, J. Rolan, and
B. Moran, ‘‘Experiences learned from the on-line internal monitoring of
the behaviour of a transformer,’’ in Proc. IEEE Int. Electr. Mach. Drives
Conf. Rec., May 1997, pp. TC3/11.1–TC3/11.3.

[11] P. Picher, S. Riendeau, M. Gauvin, F. Léonard, L. Dupont, J. Goulet, and
C. Rajotte, ‘‘New technologies for monitoring transformer tap-changers
and bushings and their integration into a modern IT infrastructure,’’
in Proc. CIGRE Symp., Aug. 2012, pp. 1–9.

[12] F. Léoçnard, M. Foata, and C. Rajotte, ‘‘Vibro-acoustic signature treat-
ment process in high-voltage electromechanical switching system,’’
U.S. Patent 6 215 408 B1, Apr. 10, 2001.

[13] F. Brikci, P.-A. Giguére, M. Soares, and C. Tardif, ‘‘The vibro-acoustic
method as fast diagnostic tool on load tap changers through the simul-
taneous analysis of vibration, dynamic resistance and high speed camera
recordings,’’ in Proc. CIGRÉ Condition Monitor., Diagnosis Maintenance,
Oct. 2015, pp. 1–9.

[14] M. Beltle and S. Tenbohlen, ‘‘Vibration analysis of power transformers,’’
in Proc. 18th Int. Symp. High Voltage Eng., Aug. 2013, pp. 1816–1821.

[15] S. Wu, W. Huang, F. Kong, Q. Wu, F. Zhou, R. Zhang, and Z.
Wand, ‘‘Extracting power transformer vibration features by a time-scale-
frequency analysismethod,’’ J. Electromagn. Anal. Appl., vol. 2, pp. 31–38,
Jan. 2010.

[16] J. Shengchang, S. Ping, L. Yanming, X. Dake, and C. Junling, ‘‘The vibra-
tion measuring system for monitoring core and winding condition of power
transformer,’’ in Proc. Int. Symp. Elect. Insulating Mater., Nov. 2001,
pp. 849–852.

[17] C. Bartoletti, M. Desiderio, D. D. Carlo, G. Fazio, F. Muzi, G. Sacerdoti,
and F. Salvatori, ‘‘Vibro-acoustic techniques to diagnose power transform-
ers,’’ IEEE Trans. Power Del., vol. 19, no. 1, pp. 221–229, Jan. 2004.

[18] E. Rivas, J. C. Burgos, and J. C. Garcia-Prada, ‘‘Condition assessment of
power OLTC by vibration analysis using wavelet transform,’’ IEEE Trans.
Power Del., vol. 24, no. 2, pp. 687–694, Apr. 2009.

[19] A. Cichoń and S. Borucki, ‘‘Diagnostics of technical condition on load tap
changers by acoustic emission method using different types of measuring
transducers,’’ in Proc. Int. Conf. High Voltage Eng. Appl., Sep. 2012,
pp. 621–624.

[20] A. Cichoń, T. Borucki, T. Boczar, and D. Zmarzly, ‘‘Characteristic of
acoustic emission signals generated by electric arc in on load tap changer,’’
in Proc. Int. Symp. Electr. Insulating Mater., Sep. 2011, pp. 437–439.

[21] A. Cichoń, P. Fra̧cz, T. Boczar, and D. Zmarzły, ‘‘Detection of defects in
on-load tap-changers using acoustic emission method,’’ in Proc. IEEE Int.
Symp. Elect. Insul., Jun. 2012, pp. 184–188.

[22] W. Sikorski andW. Ziomek, ‘‘Detection, recognition and location of partial
discharge sources using acoustic emission method,’’ in Acoustic Emission,
W. Sikorski, Ed. Rijeka, Croatia: IntechOpen, 2012, ch. 3.

[23] Z. Deheng, T. Kexiong, and J. Xianhe, ‘‘The study of acoustic emission
method for detection of partial discharge in power transformer,’’ in Proc.
2nd Int. Conf. Properties Appl. Dielectric Mater., Sep. 1988, pp. 614–617
vol.2.

[24] P. Rastgoufard, F. Petry, B. Thumm, and M. Montgomery, ‘‘Application
of fuzzy logic pattern recognition in load tap changer transformer main-
tenance,’’ in Proc. Annu. Meeting North Amer. Fuzzy Inf. Process. Soc.,
Jun. 2002, pp. 389–394.

[25] P. Kung, R. Idsinga, J. B. Fu, H. C. V. Durand, C. S. Yang, and
M. I. Comanici, ‘‘Online detection of windings distortion in power trans-
formers by direct vibration measurement using a thin fiber optics sensor,’’
in Proc. IEEE Elect. Insul. Conf. (EIC), Jun. 2016, pp. 576–578.

[26] M. Beltle and S. Tenbohlen, ‘‘Usability of vibration measurement for
power transformer diagnosis and monitoring,’’ in Proc. IEEE Int. Conf.
Condition Monitor. Diagnosis, Sep. 2012, pp. 281–284.

[27] M. Abbas, ‘‘On the implementation of integer and non-integer sampling
rate conversion,’’ Ph.D. dissertation, Dept. Elect. Eng., Linköping Univ.,
Linköping, Sweden, 2012.

[28] J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement
Procedures, 4th ed. Hoboken, NJ, USA: Wiley, 2010.

[29] E. Sejdić, I. Djurović, and J. Jiang, ‘‘Time–frequency feature representa-
tion using energy concentration: An overview of recent advances,’’ Digit.

Signal Process., vol. 19, no. 1, pp. 153–183, Jan. 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S105120040800002X

[30] E. Kvedalen, ‘‘Signal processing using the teager energy operator and other
nonlinear operators,’’ Ph.D. dissertation, Dept. Inform., Univ. Oslo, Oslo,
Norway, May 2003.

[31] A. N. Akansu, W. A. Serdijn, and I. W. Selesnick, ‘‘Emerging
applications of wavelets: A review,’’ Phys. Commun., vol. 3, no. 1,
pp. 1–18, Mar. 2010. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1874490709000482

[32] L. Chun-Lin, ‘‘A tutorial of the wavelet transform,’’ Dept. Elect. Eng., Nat.
Taiwan Univ., Taipei, Taiwan, 2010.

[33] MathWorks. Continuous and Discrete Wavelet Transforms. Accessed:
Jun. 13, 2018. [Online]. Available: https://www.mathworks.com/help/
wavelet/gs/continuous-and-discrete-wavelet-transforms.html

[34] T. Strohmer. Local Time-Frequency Analysis and Short Time Fourier
Transform UC Davis. Accessed:Jun. 14, 2018. [Online]. Available: https://
www.math.ucdavis.edu/ strohmer/research/gabor/gaborintro/node3.html

[35] T. Bengtsson, H. Kols, L. Martinsson, B. Stenestam, M. Foata, F. Léonard,
C. Rajotte, and J. Aubin, ‘‘Acoustic diagnosis of tap changers,’’ CIGRÉ,
Paris, France, Tech. Rep. 12-101, 1996.

[36] M. Foata, T. Bengtsson, H. Kols, L. Martinsson, B. Stenestam, F. Léonard,
C. Rajotte, and J. Aubin, ‘‘On-line acoustic monitoring of tap changers,’’
in Proc. EPRI V Substation Equip. Diag. Conf., Feb. 1997, pp. 1–6.

[37] P. Kang and D. Birtwhistle, ‘‘Analysis, application of condition monitoring
and diagnostic techniques for on load tap changers,’’ in Proc. Australas.
Univ. Power Eng. Conf., 1997, pp. 1–6.

[38] M. Foata, R. Beauchemin, and C. Rajotte, ‘‘On-line testing of on-load tap
changers with a portable acoustic system,’’ in Proc. IEEE 9th Int. Conf.
Transmiss. Distrib. Construct., Oct. 2000, pp. 293–298.

[39] P. Kang, D. Birtwhistle, J. Daley, and D. McCulloch, ‘‘Noninvasive on-line
condition monitoring of on load tap changers,’’ in Proc. IEEE Power Eng.
Soc. Winter Meeting. Conf. Proc., vol. 3, Jan. 2000, pp. 2223–2228.

[40] P. Kang and D. Birtwhistle, ‘‘Condition monitoring of power transformer
on-load tap-changers. I. Automatic condition diagnostics,’’ IEE Proc.
Gener., Transmiss. Distrib., vol. 148, no. 4, pp. 301–306, Jul. 2001.

[41] P. Kang and D. Birtwhistle, ‘‘Condition monitoring of power transformer
on-load tap-changers. II. Detection of ageing from vibration signatures,’’
IEE Proc. Gener., Transmiss. Distrib., vol. 148, no. 4, pp. 307–311,
Jul. 2001.

[42] J. Seo, H. Ma, and T. K. Saha, ‘‘Vibration measurement and signal
processing for condition assessment of OLTC of transformer,’’ in Proc.
IEEE PES Asia–Pacific Power Energy Eng. Conf. (APPEEC), Nov. 2015,
pp. 1–5.

[43] A. Secic and I. Kuzle, ‘‘On the novel approach to the on load tap changer
(OLTC) diagnostics based on the observation of fractal properties of
recorded vibration fingerprints,’’ in Proc. 17th Int. Conf. Smart Technol.,
Jul. 2017, pp. 720–725.

[44] E. F. Simas F, L. A. L. de Almeida, and A. C. de C. Lima, ‘‘Vibration
monitoring of on-load tap changers using a genetic algorithm,’’ in Proc.
IEEE Instrum. Meas. Technol. Conf., vol. 3, May 2005, pp. 2288–2293.

[45] K. Hong, H. Huang, Y. Fu, and J. Zhou, ‘‘A vibration measurement system
for health monitoring of power transformers,’’ Measurement, vol. 93,
pp. 135–147, Nov. 2016.

[46] R. Bhuyan, A. R. Mor, P. Morshuis, G. C. Montanari, and W. Erinkveld,
‘‘Analysis of the arcing process in on-load tap changers by measuring the
acoustic signature,’’ in Proc. IEEE Elect. Insul. Conf. (EIC), Jun. 2014,
pp. 193–197.

[47] A. Hussain, S.-J. Lee, M.-S. Choi, and F. Brikci, ‘‘An expert system for
acoustic diagnosis of power circuit breakers and on-load tap changers,’’
Expert Syst. Appl., vol. 42, no. 24, pp. 9426–9433, Dec. 2015.

[48] B. S. Munir, J. J. Smit, and I. G. M. R. Rinaldi, ‘‘Diagnosing winding and
core condition of power transformer by vibration signal analysis,’’ in Proc.
IEEE Int. Conf. Condition Monit. Diagnosis, Sep. 2012, pp. 429–432.

[49] Z. Berler, A. Golubev, V. Rusov, V. Tsvetkov, and C. Patterson, ‘‘Vibro-
acoustic method of transformer clamping pressure monitoring,’’ in Proc.
IEEE Int. Symp. Elect. Insul., Apr. 2000, pp. 263–266.

[50] J. Shengchang, L. Yongfen, and L. Yanming, ‘‘Research on extraction
technique of transformer core fundamental frequency vibration based
on OLCM,’’ IEEE Trans. Power Del., vol. 21, no. 4, pp. 1981–1988,
Oct. 2006.

[51] S. A. Rikardo, C. B. Bambang, C. Sumaryadi, T. D. Yulian, S. E. Arief,
and S. F. I. Kharil, ‘‘Vibration monitoring on power transformer,’’ in Proc.
Int. Conf. Condition Monit. Diagnosis, Apr. 2008, pp. 1015–1016.

VOLUME 7, 2019 83929



A. Secic et al.: Vibro-Acoustic Methods in the Condition Assessment of Power Transformers

[52] L. Aidi, W. Zebo, H. Hai, Z. Jianping, and W. Jinhui, ‘‘Study of vibration
sensitive areas on 500kV power transformer tank,’’ in Proc. IEEE 10th Int.
Conf. Ind. Inform., Jul. 2012, pp. 891–896.

[53] S. Guo, K. Long, Z. Hao, J. Ma, H. Yang, and J. Gan, ‘‘The STUDY on
vibration detection and diagnosis FOR distribution transformer in oper-
ation,’’ in Proc. China Int. Conf. Electr. Distrib. (CICED), Sep. 2014,
pp. 983–987.

[54] H.Ma, J. He, B. Zhang, R. Zeng, S. Chen, and L. Cao, ‘‘Experimental study
onDCbiasing impact on transformer’s vibration and sound,’’ inProc. IEEE
Int. Symp. Electromagn. Compat., Aug. 2008, pp. 1–4.

[55] J. He, Z. Yu, R. Zeng, and B. Zhang, ‘‘Vibration and audible
noise characteristics of AC transformer caused by HVDC system
under monopole operation,’’ IEEE Trans. Power Del., vol. 27, no. 4,
pp. 1835–1842, Oct. 2012.

[56] K. Li, H. Xu, Y. Li, Y. Zhou, H. Ma, J. Liu, and J. Gong, ‘‘Simulation
test method for vibration monitoring research on winding looseness of
power transformer,’’ in Proc. Int. Conf. Power Syst. Technol., Oct. 2014,
pp. 1602–1608.

[57] J. Zheng, J. Pan, and H. Huang, ‘‘An experimental study of winding vibra-
tion of a single-phase power transformer using a laser Doppler vibrome-
ter,’’ Appl. Acoust., vol. 87, pp. 30–37, Jan. 2015.

[58] W. Sweldens, ‘‘The lifting scheme: A construction of second generation
wavelets,’’ SIAM J. Math. Anal., vol. 29, no. 2, pp. 511–546, 1998.

[59] P. Kang and D. Birtwhistle, ‘‘Condition assessment of power transformer
on-load tap-changers using wavelet analysis,’’ IEEE Trans. Power Del.,
vol. 16, no. 3, pp. 394–400, Jul. 2001.

[60] P. Kang and D. Birtwhistle, ‘‘Condition assessment of power transformer
onload tap changers using wavelet analysis and self-organizing map:
Field evaluation,’’ IEEE Trans. Power Del., vol. 18, no. 1, pp. 78–84,
Jan. 2003.

[61] P. Kang and D. Birtwhistle, ‘‘Characterisation of vibration signals using
continuous wavelet transform for condition assessment of on-load tap-
changers,’’ Mech. Syst. Signal Process., vol. 17, no. 3, pp. 561–577,
May 2003. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0888327002915256

[62] F. Poza, P. Marino, S. Otero, and V. Pastoriza, ‘‘Instrumentation system for
industrial transformers,’’ in Proc. 10th Int. Conf. Control, Autom., Robot.
Vis., Dec. 2008, pp. 1929–1933.

[63] K. Viereck and A. Saveliev, ‘‘Acoustic tap-changer analyses using continu-
ous wavelet transformation,’’ in Proc. IEEE/PES Transmiss. Distrib. Conf.
Expo. (T&D), May 2016, pp. 1–5.

[64] L. A. L. de Almeida, M. Fontana, F. A. Wegelin, and L. Ferreira, ‘‘A new
approach for condition assessment of on-load tap-changers using discrete-
wavelet transform,’’ in Proc. IEEE Instrum. Meas. Technol. Conf. Proc.,
vol. 1, May 2005, pp. 653–656.

[65] E. Rivas, J. C. Burgos, J. C. Garcia-Prada, ‘‘Vibration analysis using
envelope wavelet for detecting faults in the OLTC tap selector,’’ IEEE
Trans. Power Del., vol. 25, no. 3, pp. 1629–1636, Jul. 2010.

[66] E. F. S. Filho and L. A. L. de Almeida, ‘‘Self-organized classification of
on-load tap changers acoustic signatures,’’ in Proc. IEEE Instrum. Meas.
Technol. Conf., May 2008, pp. 1051–1056.

[67] T. B. Shanker, H. N. Nagamani, and G. S. Punekar, ‘‘Acoustic emission
signal analysis of on-load tap changer (OLTC),’’ in Proc. IEEE 1st Int.
Conf. Condition Assessment Techn. Elect. Syst. (CATCON), Dec. 2013,
pp. 347–352.

[68] J. Seo, H. Ma, and T. K. Saha, ‘‘A joint vibration and arcing measurement
system for online condition monitoring of onload tap changer of the power
transformer,’’ IEEE Trans. Power Del., vol. 32, no. 2, pp. 1031–1038,
Apr. 2017.

[69] J. Seo, H. Ma, and T. Saha, ‘‘Probabilistic wavelet transform for partial
discharge measurement of transformer,’’ IEEE Trans. Dielectr. Electr.
Insul., vol. 22, no. 2, pp. 1105–1117, Apr. 2015.

[70] R. Duan and F.Wang, ‘‘Fault diagnosis of on-load tap-changer in converter
transformer based on time–requency vibration analysis,’’ IEEE Trans. Ind.
Electron., vol. 63, no. 6, pp. 3815–3823, Jun. 2016.

[71] A. Cichoń, S. Borucki, and T. Boczar, ‘‘Diagnosis of the non-concurrent
operation of the on-load tap changer contacts by the acoustic emission
method,’’ Arch. Acoust., vol. 36, no. 4, pp. 823–830, Dec. 2013. [Online].
Available: http://acoustics.ippt.gov.pl/index.php/aa/article/view/146

[72] H. Majchrzak, A. Cichoń, and S. Borucki, ‘‘Application of the acous-
tic emission method for diagnosis in on-load tap changer,’’ Arch.
Acoust., vol. 42, no. 1, pp. 29–35, 2016. [Online]. Available: http://
acoustics.ippt.gov.pl/index.php/aa/article/view/1713

[73] Z. Li, Q. Li, Z. Wu, J. Yu, and R. Zheng, ‘‘A fault diagnosis method for on
load tap changer of aerospace power grid based on the current detection,’’
IEEE Access, vol. 6, pp. 24148–24156, 2018.

[74] A. Secic, K. Jambrosic, and I. Kuzle, ‘‘Blind source separation as an
extraction tool of the useful diagnostic material in on load tap changer
audio based diagnostics,’’ in Proc. IEEE PES Innov. Smart Grid Technol.
Conf. Eur., Oct. 2018, pp. 1–6.

[75] A. Secic, N. Hlupić, and I. Kuzle, ‘‘Using a non-linear least square curve
fitting method for better understanding of ICA algorithm capabilities
in audio based OLTC diagnostic,’’ in Proc. Medit. Conf. Power Gener.,
Transmiss., Distrib. Energy Convers., Nov. 2018, pp. 1–6.

[76] A. Secic and I. Kuzle, ‘‘Audio-based on-load tap changer diagnostics:
Correlation of sound and vibration fingerprints,’’ in Proc. Int. Symp. Ind.
Electron., Nov. 2018, pp. 1–6.

[77] J. Zheng, H. Huang, K. Hong, J. Zhou, J. Liu, and Y. Zhou, ‘‘Blind source
separation of vibration signals for fault diagnosis of power transformers,’’
in Proc. ICIEA, Hangzhou, China, Jun. 2014, pp. 412–417.

[78] W. Xiong and R. Ji, ‘‘Nonlinear time series analysis of transformer’s core
vibration,’’ in Proc. 6th World Congr. Intell. Control Automat., vol. 2,
Jun. 2006, pp. 5493–5496.

[79] S. Wu, W. Huang, F. Kong, Q. Wu, and P. Zhu, ‘‘Vibration features
extraction of power transformer using an time-scale-frequency analysis
method based on WPT and HHT,’’ in Proc. IEEE 6th Int. Power Electron.
Motion Control Conf., May 2009, pp. 2577–2581.

[80] S. Borucki, ‘‘Diagnosis of technical condition of power transform-
ers based on the analysis of vibroacoustic signals measured in tran-
sient operating conditions,’’ IEEE Trans. Power Del., vol. 27, no. 2,
pp. 670–676, Apr. 2012.

[81] J. Swevers. Introduction to System Identification. Accessed:
Jun. 14, 2018. [Online]. Available: https://people.mech.kuleuven.be/ jsw-
evers/h04x3a/lecture_c2_c3.pdf

[82] L. Ljung, System Identification: Theory for User, 2nd ed.
Upper Saddle River, NJ, USA: Prentice Hall, 1999.

[83] D. Chinarro, System Engineering Applied to Fuenmayor Karst Aquifer
(San Julian de Banzo, Huesca) and Collins Glacier (King George Island,
Antarctica), 1st ed. New York, NY, USA: Springer, 2014.

[84] MathWorks. System Identification Overview. Accessed: Jun. 14, 2018.
[Online]. Available: https://www.mathworks.com/help/ident/gs/about-
system-identification.html

[85] E. A. Wegelin, R. S. Magalhaes, L. A. L. de Almeida, and M. Fontana,
‘‘Condition monitoring of power transformers using acoustic signal
Prony’s analysis,’’ in Proc. IEEE Instrum. Meas. Technol. Conf. Proc.,
vol. 2, May 2005, pp. 1384–1387.

[86] X. Zhou and F. H. Wang, ‘‘Research on chaotic dynamic characteristics
of onload tap changers,’’ in Proc. IEEE PES Gen. Meeting Conf. Expo.,
Jul. 2014, pp. 1–5.

[87] R. Duan and F. Wang, ‘‘Mechanical condition monitoring of on-load tap-
changers using chaos theory amp; fuzzy c-means algorithm,’’ in Proc.
IEEE Power Energy Soc. Gen. Meeting, Jul. 2015, pp. 1–5.

[88] K. Hong, H. Huang, and J. Zhou, ‘‘Winding condition assessment of power
transformers based on vibration correlation,’’ IEEE Trans. Power Del.,
vol. 30, no. 4, pp. 1735–1742, Aug. 2015.

[89] B. García, J. C. Burgos, and Á. M. Alonso, ‘‘Winding deformations detec-
tion in power transformers by tank vibrations monitoring,’’ Electr. Power
Syst. Res., vol. 74, no. 1, pp. 129–138, 2005.

[90] B. Luo, F. H. Wang, and Z. J. Jin, ‘‘A tank vibration model for online
monitoring of power transformer,’’ in Proc. IEEE Power Energy Soc. Gen.
Meeting, Jul. 2013, pp. 1–5.

[91] Z. Jing, H. Hai, and P. Jie, ‘‘A hammerstein-type Fourier neural network-
based identification with application to transformer vibration system mod-
elling,’’ in Proc. IEEE 10th Conf. Ind. Electron. Appl. (ICIEA), Jun. 2015,
pp. 1974–1979.

[92] J. Hu, D. Liu, Q. Liao, Y. Yan, and S. Liang, ‘‘Electromagnetic vibration
noise analysis of transformer windings and core,’’ IET Electr. Power Appl.,
vol. 10, no. 4, pp. 251–257, Apr. 2016. [Online]. Available: http://digital-
library.theiet.org/content/journals/10.1049/iet-epa.2015.0309

[93] K. Bouayed, L. Mebarek, V. Lanfranchi, J.-D. Chazot, R. Marechal,
and M.-A. Hamdi, ‘‘Noise and vibration of a power transformer
under an electrical excitation,’’ Appl. Acoust., vol. 128, pp. 64–70,
Dec. 2017.

[94] Q. Li, X. Wang, L. Zhang, J. Lou, and L. Zou, ‘‘Modelling methodology
for transformer core vibrations based on the magnetostrictive properties,’’
IET Electr. Power Appl., vol. 6, no. 9, pp. 604–610, Nov. 2012.

83930 VOLUME 7, 2019



A. Secic et al.: Vibro-Acoustic Methods in the Condition Assessment of Power Transformers

[95] J.Marks, S. Vitolina, and R. Liepniece, ‘‘Modelling of vibrations caused by
magnetostriction in magnetic core of large power transformers,’’ in Proc.
IEEE 58th Int. Sci. Conf. Power Elect. Eng. Riga Tech. Univ. (RTUCON),
Oct. 2017, pp. 1–5.

[96] Q. Li, T. Zhao, L. Zhang, and J. Lou, ‘‘Mechanical fault diagnostics of
onload tap changer within power transformers based on hidden Markov
model,’’ IEEE Trans. Power Del., vol. 27, no. 2, pp. 596–601, Apr. 2012.

[97] N. Mussin, A. Suleimen, T. Akhmenov, N. Amanzholov, V. Nurmanova,
M. Bagheri, M. Naderi, and O. Abedinia, ‘‘Transformer active part fault
assessment using Internet of Things,’’ in Proc. 2nd Int. Conf. Comput.
Netw. Commun., Sep. 2018, pp. 169–174.

[98] A. G. Deakin, J. W. Spencer, D. H. Smith, D. Jones, N. Johnson, and
G. R. Jones, ‘‘Chromatic optoacoustic monitoring of transformers and their
onload tap changers,’’ IEEE Trans. Power Del., vol. 29, no. 1, pp. 207–214,
Feb. 2014.

[99] Z. Liu, X. Xia, S. Ji, Y. Shi, F. Zhang, Y. Fu, and Z. Jiang, ‘‘Fault diagnosis
of OLTC based on time-frequency image analysis of vibration signal,’’
in Proc. Condition Monitor. Diagnosis (CMD), Sep. 2018, pp. 1–6.

[100] S. Borucki, A. Cichoń, H. Majchrzak, and D. Zmarzły, ‘‘Evaluation
of the technical condition of the active part of the high power trans-
former based on measurements and analysis of vibroacoustic signals,’’
Arch. Acoust., vol. 42, no. 2, pp. 313–320, 2016. [Online]. Available:
http://acoustics.ippt.gov.pl/index.php/aa/article/view/1816

[101] Y. Zheng, W. He, F. Wang, and S. Li, ‘‘Vibration monitoring of converter
transformer onload tap-changer using phase space reconstruction and
poincare section,’’ in Proc. 4th Int. Conf. Electr. Power Equip. Switching
Technol. (ICEPE-ST), Oct. 2017, pp. 365–369.

[102] M. Bagheri, A. Zollanvari, and S. Nezhivenko, ‘‘Transformer fault con-
dition prognosis using vibration signals over cloud environment,’’ IEEE
Access., vol. 6, pp. 9862–9874, 2018.

ADNAN SECIC (S’17) received the bachelor’s and
master’s degrees in automatic control and elec-
tronics from the Faculty of Electrical Engineer-
ing, University of Sarajevo, in 2008 and 2014,
respectively. He is currently pursuing the Ph.D.
degree in electrical engineering with the Depart-
ment of Energy and Power Systems, Faculty of
Electrical Engineering and Computing, University
of Zagreb. Since 2008, he has beenwithDVPower,
Sweden, where he is currently an R&D Engineer.

His research interests include invasive and noninvasivemethods for condition
assessment of power system equipment, with the focus on high voltage circuit
breakers, transformers, and on-load tap changers.

MATEJ KRPAN (S’17) received the bachelor’s
and master’s degrees in electrical power engineer-
ing from the Faculty of Electrical Engineering
and Computing, University of Zagreb, in 2014
and 2016, respectively. He is currently pursuing
the Ph.D. degree in electrical engineering with
the Department of Energy and Power Systems,
Faculty of Electrical Engineering and Computing,
University of Zagreb.

His research interests include power system
dynamics, stability and control, the integration of large-scale renewable
energy sources, and grid frequency support from wind power plants and
power system inertia.

IGOR KUZLE (S’94–M’97–SM’04) is currently
a Full Professor and the Head of the Depart-
ment of Energy and Power Systems, Faculty of
Electrical Engineering and Computing, University
of Zagreb. His current research interests include
problems in electric power systems dynamics and
control, unit commitment, maintenance of electri-
cal equipment, power system analysis, smart grids,
and the integration of renewable energy sources.

He was the Project Leader of more than 60 tech-
nical projects for industry and electric power companies. He published three
books and more than 200 journals and conference papers including technical
studies for utilities and private companies. He serves in ten international
journals as a Member of Editorial Board or an Associate Editor.

VOLUME 7, 2019 83931


	INTRODUCTION
	CAUSES OF TRANSFORMER VIBRATIONS
	DIAGNOSTIC DATA COLLECTION AND PREPROCESSING
	DIAGNOSTIC DATA COLLECTION
	DIAGNOSTIC DATA PREPROCESSING
	DATA ANALYSIS AND DECISION STAGE

	EXTRACTION OF RELEVANT FEATURES
	TIME DOMAIN
	OLTC
	CORE/WINDINGS

	FREQUENCY DOMAIN
	OLTC
	CORE/WINDINGS

	TIME-FREQUENCY DOMAIN
	OLTC
	CORE/WINDINGS


	MATHEMATICAL MODELLING AND SYSTEM IDENTIFICATION
	OLTC
	CORE/WINDINGS

	SUMMARY
	CONCLUDING REMARKS
	WHAT DOES THE FUTURE HOLD?
	REFERENCES
	Biographies
	ADNAN SECIC
	MATEJ KRPAN
	IGOR KUZLE


