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ABSTRACT: Enzymatic modification, using a protease from
Bacillus licheniformis (Subtilisin A), was carried out on
polyamide 6.6 (PA6.6) fabric to make it more amenable to
water-based nanocoatings used to impart electrical con-
ductivity. The modified PA6.6 fibers exhibit a smoother
surface, increased hydrophilicity due to more carboxyl and
amino groups, and larger ζ-potential relative to unmodified
polyamide. With its improved hydrophilicity and surface
functionality, the modified textile is better able to accept a
water-based nanocoating, composed of multiwalled carbon
nanotubes (MWCNT) stabilized by sodium deoxycholate
(DOC) and poly(diallyldimethylammonium chloride) (PDDA), deposited via layer-by-layer assembly. Relative to unmodified
fabric, the enzymatically modified fibers exhibit lower sheet resistance as a function of PDDA/MWCNT-DOC bilayers
deposited. This relatively green technique could be used to impart a variety of useful functionalities to otherwise difficult-to-
treat synthetic fibers like polyamide.

■ INTRODUCTION

Polyamide 6.6 represents one of the most widely used
synthetic materials due to its low cost, lightweight, high
strength, and very good abrasion, chemical, and creep
resistance.1,2 These properties allow polyamide to be used in
numerous applications, such as seat belts, carpet, upholstery,
and clothing,1,3 where impact resistance and strength are
required. Like most polymers, PA6.6 is electrically insulating
and frequently results in accumulation of potentially harmful
static charge.4 Electrically conductive textiles can be used as
electromagnetic interference shielding, antistatic flooring and
ceiling materials, radar cross-section reducing protective fabrics
for stealth technology, and wearable electrodes for continuous
health monitoring.5−7

Carbon nanotubes (CNTs) are among the most frequently
exploited nanoparticles for imparting electrical conductivity.
Several techniques are known for preparing CNT thin films,
such as spray coating, dip coating, spin coating, vacuum
filtration, electrophoretic deposition, sputter deposition,
chemical vapor deposition, and layer-by-layer (LbL) assem-
bly.8−13 LbL assembly is a highly tailorable nanocoating
technique, involving alternate exposure of a substrate to

oppositely charged polyelectrolyte solutions or suspensions,
giving rise to a multilayer thin film.14 This simple, inexpensive,
and environmentally benign technique, which is carried out at
atmospheric pressure and room temperature, uses dilute
aqueous solutions. The variety of the different ingredients
that can be used for this technique, such as polyelectrolytes,
inorganic particles, organic nanomaterials, and renewable
macromolecules, makes it possible to create nanocoatings
with impressive functionality.15,16 LbL assembly has been used
to impart a variety of properties, including antimicrobial17,18

and antifouling,19 flame retardant,20 anticorrosion,21 gas
barrier,22 drug delivery,23 and electrical conductivity,9−13,24−27

on various substrates. Several studies of LbL modification of
polyamide fibers have been conducted to impart flame
retardancy28−32 and sensor activity33 and to improve the
durability of a polyamide reverse osmosis membrane.34

Although LbL assembly is a very simple and promising
technique, effective deposition on nylon fibers remains a
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challenge. The major problem is poor interfacial adhesion
between the substrate and the polyelectrolyte solutions/
suspensions, which depends on the charge of the polyelec-
trolytes, pH and ionic strength of the solution, as well as the
hydrophilicity and surface charge of the substrate.15 Polyamide
fibers are relatively hydrophobic because they have insufficient
functional groups on their surfaces.35−38 Several processes have
been reported to functionalize nylon by chemical and physical
methods.3,39 Harsh chemical methods include alkaline or acid
hydrolysis, can have a negative environmental impact, and
cause damage to the fabric structure.40 UV radiation and
plasma activation are “clean” methods,41,42 but functionaliza-
tion is uneven and often accompanied by surface damage.
Moreover, these techniques require complex machinery that is
very expensive. Enzymatic modification of the polyamide
surface is another chemical (biochemical) treatment performed
under mild, environmentally benign conditions.39 Enzyme
treatment saves water, energy, and chemicals, and uses
processing equipment currently available in the textile
industry.43 Proteases,35−38 amidases,44 and cutinases39,45,46

have been successfully used to hydrolyze polyamide fibers.
In the present study, a previously reported enzymatic

modification was employed to improve the hydrophilicity
(wettability) of PA6.6 fabric.38 By introducing additional
surface carboxyl and amino groups, polyamide fibers achieved
conductivity with fewer deposited bilayers (BLs) than
unmodified polyamide. Although enzymatic modification of
PA6.6 is well known, it has never been combined with layer-by-
layer (LbL) deposition to impart functionality to textiles.
Enzymatically modified PA6.6 exhibits increased wettability

and higher ζ-potential relative to unmodified fabric. Layer-by-
layer deposition of poly(diallyldimethylammonium chloride)
(PDDA)- and sodium deoxycholate (DOC)-stabilized multi-
walled carbon nanotubes (MWCNT) results in electrically
conductive fibers. The enzymatically modified fabric exhibits a
more uniform nanocoating and higher conductivity with fewer
layers deposited, relative to the unmodified fabric. This type of
natural modification of synthetic fibers could be used as a
means to more effectively deposit water-based treatments for
greater functionality.

■ RESULTS AND DISCUSSION

Enzymatic Modification of Fabric. Enzymatic modifica-
tion of the PA6.6 fabric was carried out using protease that acts
under mild working conditions: 60 °C, pH 6.8, and a 60 min
treatment time.38,45,46 During this treatment, the hydrophobic
surface of PA6.6 should be hydrolyzed through hydrolytic
cleaving of the peptide bonds, producing carboxyl and amino
groups, as shown in Figure 1. Successful enzymatic
modification is imperative for producing conductive polyamide
fabric with fewer nanotube-based bilayers deposited. The
effectiveness of this process is confirmed through changes in
polyamide surface morphology, fabric wettability, and surface
charge.
Scanning electron microscopy (SEM) images of PA6.6 fibers

before and after enzymatic modification are shown in Figure 2.
Unmodified fibers show some residual polymer, as well as
impurities, probably remaining from the extrusion process
(Figure 2a). After enzymatic modification, residual polymer
and impurities are removed, making the surface of the fibers

Figure 1. Enzymatic hydrolysis of PA6.6 by protease enzyme.

Figure 2. SEM images of (a) unmodified and (b) enzymatically modified PA6.6 fibers.
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smoother, without any irregularities. The smooth and clean
surface of these modified PA6.6 fibers is one confirmation that
the enzymatic treatment is effective.
The hydrophilicity of the enzymatically modified PA6.6

fabric was evaluated by determining the time it takes for a drop
of Triton X-100 nonionic surfactant solution to be completely
absorbed into the fabric, as well as by analyzing the shape of
the water drop 3 min after the drop touches the surface of the
fabric. The results in Figure 3 indicate that the unmodified

fabric needs an average time of 3358 s to completely absorb
the drops, while the modified PA6.6 fabric exhibits improved
wettability and thus lower drop absorption time. During the
observation of the drops wetting the unmodified PA6.6 fabric,
it appeared that the drops actually evaporated rather than
being absorbed into the fabric.

The influence of the enzyme concentration on the
wettability of the enzymatically modified PA6.6 is also
illustrated in Figure 3. With increasing enzyme concentration,
fabric wettability increases. Modified PA6.6 fabric with 5%
overweight of the fabric (owf) enzyme exhibits an 8.7-fold
increase in wettability, while those modified with 10 and 20%
(owf) display 10.1- and 11.7-fold wettability increases,
respectively, compared to the unmodified fabric. Although
the 20% (owf) enzyme-treated textile achieves the highest
wettability, the 10% (owf) concentration is used for further
investigation, due to high cost and diminishing benefit from
higher concentration. The treatment with the enzyme
concentration of 5% (owf) imparts similar wettability to the
fabric compared to that of 10% (owf), but the standard
deviation of the average value is much higher. The images of
the water drop taken 3 min after touching the surface of the
fabric reveal higher water-absorbing ability of the modified
PA6.6 fabric, compared to the unmodified one, as shown in
Figure 3b,c. These tests further confirm the successful
modification of PA6.6 due to the greater hydrophilicity
shown here from the presence of amino and carboxyl groups.
The scheme of enzymatic modification (Figure 1) indicates

that the enzymes hydrolyze molecules of PA6.6, producing
carboxyl and amino groups. Dyeing the fabric is a good
method for determining the presence of these functional
groups.38,47 Methylene blue is a positively charged basic dye
for determining the presence of carboxyl groups, while acid
orange 7 is a negatively charged acid dye for assessing the
presence of amino groups. The intensity of the dyeing is a
good indicator of the amount of functionality existing on the
surface.38,45,50,51 The images and the K/S values of unmodified
and modified PA6.6 fabric, dyed with methylene blue and acid
orange 7 (Table 1), clearly show differences between
unmodified and modified samples. The modified fabric exhibits
more intense color and higher K/S values after dyeing with
both dyes. The same trend of higher K/S values of enzyme-
modified relative to unmodified polyamide was reported
previously when protease, acylase, and cutinase were used for
successful modification of polyamide fibers.36,38,45 These

Figure 3. (a) Wettability determined by the drop absorption time
using 1 cm3/dm3 Triton X-100 solution. Images of the water drop 3
min after being deposited on (b) unmodified PA6.6 fabric and (c)
enzymatically modified PA6.6 fabric.

Table 1. Amount of Carboxyl and Amino Groups on PA6.6 Fabric Determined by Dyeing
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results indicate that, upon enzymatic modification, new
carboxyl and amino groups were introduced.
ζ-Potential and isoelectric point (IEP) are also good

indicators of functionality existing on the surface of PA6.6,
as shown in Figure 4. These results reveal that, upon enzymatic

treatment, new carboxyl and amino groups are introduced.
Enzymatically modified fabric has almost twice the positive and
2.5× the negative surface charge relative to the unmodified
fabric. This increase of the positive ζ-potential and the
decrease of the negative ζ-potential are due to the introduction
of carboxyl and amino groups during the enzymatic treatment.
Indeed, this confirms the presence of the carboxyl, responsible
for the negative charge, and the amino, responsible for the
positive charge of the fabric surface, on PA6.6 fabric. The curve
patterns of ζ-potential as a function of pH of the unmodified
and enzymatically modified polyamide are similar to those of
nylon modified by the acylase enzyme.36 The isoelectric points
of the unmodified and enzymatically modified fabric are at pH
3.45 and 3.6, respectively. Enzymatically modified PA6.6 has a
greater IEP as a result of more positive amino groups created
during the enzymatic hydrolysis.
Deposition of Conductive Nanocoating on Fabric. A

multilayer nanocoating composed of PDDA and MWNT-
DOC9−11 was used to impart electrical conductivity to PA6.6
fabric. The layer-by-layer deposition of the coating is shown
schematically in Figure 5a. Figure 5b shows sheet resistance of
the fabric. The unmodified and modified samples have almost
the same sheet resistance values after being coated with two
and three PDDA/MWCNT-DOC bilayers. With 4 BL
deposited, the unmodified PA6.6 fabric has almost the same
value of sheet resistance as those coated with two and three
bilayers, while the enzymatically modified fabric exhibits a
substantially decreased sheet resistance (i.e., higher con-
ductivity). After coating with 5 to 7 BL, the sheet resistance
of both fabrics continues to decrease, but the enzymatically
modified PA6.6 exhibits progressively lower sheet resistance
than the unmodified sample. These results suggest that the
percolation threshold of the enzymatically modified system is
at or above 4 BL, while that of the unmodified fabric is at or
above 5 BL.
The percolation threshold is a characteristic for inhomoge-

neous conductors, such as polymer composites containing
electrically conductive filler (e.g., carbon nanotubes). The
conductive composites begin to transition from insulator to
conductor as more conductive filler is added to the insulating

polymer matrix. This critical concentration of conductive filler
where interconnected network is formed is known as the
percolation threshold.48,49 PDDA/MWCNT-DOC bilayers
form a version of this type of nanocomposite (i.e., conductive
MWCNT within insulating PDDA). As compared to
previously reported studies, the sheet resistance values for
the present enzymatically modified nylon are an order of
magnitude greater, but these studies either used more
hydrophilic textile (e.g., polyester/cotton blend) or a different
type of carbon nanotubes (e.g., single-walled carbon nano-
tubes).50,51 It is well established that more hydrophobic textiles
are more difficult to coat, which typically leads to worse
deposition and higher sheet resistance values.52−54 Further-
more, altering the type of carbon nanotube in these LbL-
deposited coatings has been shown to improve sheet
resistance.11 While these LbL coatings yield higher sheet
resistances than other studies, it is believed that changing the
carbon nanotube type would make the sheet resistances
competitive with these other studies.
Images of the conductive fabric, coated with two PDDA/

MWCNT-DOC bilayers, are shown in Figure 6. Although
nanotubes are present on the surface of both types of fabric,
the enzymatically modified sample has substantially greater
amount of MWCNT. The lower-magnification micrographs
indicate that a conductive network that contains more PDDA
than MWCNT is formed on the surface of the unmodified
fabric (Figure 6c). This nanocoating is observed as a
continuous film on the surface of the fabric, with
interconnecting fibers and PDDA. The conductive network
of the enzymatically modified sample covers each fiber more
individually than that observed on the unmodified PA6.6
(Figure 6d). The fabric coated with four bilayers is similar to
the two-bilayer coating for the unmodified PA6.6 fabric
(Figure 6e). The conductive network of the enzymatically
modified fabric exhibits greater MWCNT content and
intertube bridges (Figure 6f), but this 4 BL coating still
conformally covers each individual fiber.

Figure 4. ζ-Potential of unmodified and enzymatically modified
PA6.6 fabric.

Figure 5. (a) Schematic procedure for deposition of a conductive
coating on unmodified and enzymatically modified PA6.6 fabric using
the PDDA/MWCNT-DOC multilayer system. (b) Sheet resistance as
a function of the number of PDDA/MWCNT-DOC bilayers
deposited.
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■ CONCLUSIONS
Enzymatic modification is demonstrated as a straightforward
process for achieving good hydrophilicity of PA6.6 fibers that is
responsible for more effective deposition of a conductive
multilayer nanocoating. Successful modification of PA6.6 is
demonstrated by its smoother surface, increased hydrophilicity,
more carboxyl and amino groups, and more positive charge
above pH 3.6 (and more negative charge below pH 3.6) than
the unmodified fabric. This greater hydrophilicity and surface
charge improve the ability of the modified PA6.6 textile to
accept a water-based, functional nanocoating. Layer-by-layer
deposition of PDDA/MWCNT-DOC bilayers reduced sheet
resistance of modified fabric at a greater rate than the
unmodified PA6.6. The conductive network on the surface of
the modified fabric had a better morphology from that on the
unmodified sample. The nanocoating covers each enzymati-
cally modified fiber conformally, with more MWCNT present
that creates interfiber bridges. This mild and environmentally
friendly treatment could likely be used to impart functionality
to a variety of hydrophobic synthetic fibers.

■ EXPERIMENTAL SECTION
Substrate and Materials. PA6.6 plain-weave 80 g/m2

fabric, supplied by Seattle Fabric (Seattle, WA), was used as
the substrate for modification. Protease from Bacillus lichen-
iformis, Subtilisin A (EC number 3.4.21.62), sodium phosphate
buffer [Na2HPO4 (disodium phosphate), NaH2PO4 (sodium
dihydrogen phosphate)], Triton X-100 (nonionic surfactant),

Na2CO3, methylene blue (C.I. 52015 cationic dye), acid
orange 7 (C.I . 15510 anionic acid dye), poly-
(diallyldimethylammonium chloride) (Mw, 100−200 kg/mol,
20 wt % aqueous solution), and sodium deoxycholate (≥97%)
were purchased from Sigma-Aldrich (Milwaukee, WI). Multi-
walled carbon nanotubes were obtained from Bayer Material
Science (12−15 nm outer diameter and 4 nm inner diameter
and 1+ μm length; C ≥ 95 wt %; Leverkusen, Germany). The
enzyme has 2.4 U/g activity. One unit hydrolyzes casein to
produce a color equivalent to 1.0 mmol (181 μg) of tyrosine
per minute at pH 7.5 at 37 °C (color by the Folin−Ciocalteu
reagent). All solutions were prepared with 18.2 MΩ deionized
(DI) water. The conductive recipe consisted of a positively
charged, aqueous solution of 0.25 wt % PDDA, and a
negatively charged dispersion of 0.05 wt % MWCNT stabilized
with 2.0 wt % DOC.10,11 Prior to use, the anionic solution was
sonicated at 20 W for 30 min and slowly stirred for 0.5 h, while
the cationic solution was rolled for a minimum of 12 h to
ensure full dissolution.9 All of the solutions were used without
altering their pH.

Enzymatic Modification of PA6.6 Fabric. The PA6.6
fabric was first washed in a bath of 2 cm3/dm3 Triton X-100
and 2 g/dm3 Na2CO3 with a 30:1 liquor ratio (LR), at 50 °C
for 60 min, to remove all impurities.45 After that, the fabric was
rinsed twice with distilled water at 50 °C for 15 min.
Enzymatic modification was done in a bath with 30:1 LR at pH
6.8 (0.1 M phosphate buffer), using 5, 10, and 20%, on weight
of the fabric (owf), protease enzyme at 60 °C for 60 min,

Figure 6. SEM images of (a), (c) unmodified and (b), (d) enzymatically modified PA6.6 fabric coated with two bilayers of PDDA/MWCNT-
DOC. SEM images of (e) unmodified and (f) enzymatically modified PA6.6 fabrics after deposition of a 4 BL nanocoating.
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according to a previously described procedure.38,45,55,56 The
products of enzymatic hydrolysis were removed by treating the
fabric with 2 cm3/dm3 Triton X-100 and 2 g/dm3 Na2CO3 at
50 °C for 60 min.35 The modified fabric was rinsed twice with
distilled water at 50 °C for 15 min, rinsed in running cold tap
water for 5 min, and dried in open air.
Layer-by-Layer Deposition. Multilayered nanocoatings

were deposited using a home-built automated dipping
system.57 The PA.6.6 fabric was first immersed into a 0.25
wt % solution of PDDA for 5 min. The fabric was then
submerged in DI water for 1 min. The same dipping and
rinsing procedure was carried out with 0.05 wt % MWCNT in
2 wt % solution of DOC. This cycle marks one bilayer
deposited. The immersion times were reduced to 1 min for the
subsequent deposition cycles, which were repeated until the
desired number of bilayers were deposited.
Characterization of Enzymatically Modified Fabric.

Images of the fabric were collected using a JEOL (Akishima,
Tokyo, Japan) JSM-7500 field emission scanning electron
microscope. Prior to imaging, a 5 nm Pt/Pd coating was
applied to the surface of the nylon fibers to minimize charging.
Fabric wettability (hydrophilicity) was determined by measur-
ing the time it takes for a drop of 1 cm3/dm3 Triton X-100
solution to be completely absorbed into the fabric, according
to the procedure described in the AATCC 79-2000 standard.
The presented results are mean values of 10 measurements.
Surface wettability was evaluated using a CAM 200 optical
contact angle and surface tension meter (KSV Instruments,
Ltd., Monroe, CT). This goniometer is equipped with an
autodispenser, a video camera, and drop-shape analysis
software. A drop of water (5 μL) was pictured 3 min after
deposition onto the fabric surface.
The fabric was dyed with methylene blue and acid orange 7

for determining carboxyl and amino groups present. Methylene
blue dyeing was done in a bath, with LR 100:1, 0.02 g/dm3

methylene blue in Britton−Robinson buffer (pH 7.1−7.4) at
30 °C for 30 min, in an Incubating Mini Shaker (VWR,
Radnor, PA) at 150 rpm. Acid orange 7 dyeing was done in a
bath with LR 100:1, 0.02 g/dm3 acid orange 7, pH 3 (adjusted
by 1 M HCl) at 30 °C for 30 min in the VWR Incubating Mini
Shaker at 150 rpm. The stained fabrics were washed in a bath
with LR 100:1, 1 cm3/dm3 Trixton X-100, at room
temperature for 10 min and then rinsed in running cold tap
water for 10 min and air-dried. The color strength (K/S) of the
stained samples was measured with a reflection spectropho-
tometer (X-Rite Color i7 spectrophotometer, Grand Rapids,
MI), using illuminant D65 with a 10° standard observer. The
K/S was calculated from the reflectance values using the
Kubelka−Munk equation

K S
R

R
/

(1 )
2

2

= −

where R is the reflectance, K is the absorption coefficient, and S
is the light scattering coefficient. The presented results are the
mean values of five measurements. Images of the dyed PA6.6
fabrics are provided for visualization of the qualitative
differences between the unmodified and enzymatically
modified samples. A Brookhaven-Paar (Brookhaven, NY)
electrokinetic analyzer was used to determine the ζ-potential
and isoelectric point (IEP) of the fabric in a 0.001 M
potassium chloride solution.58 A range of pH values of the
electrolyte solution was investigated up to a maximum of pH

11, achieved with 0.1 M sodium hydroxide, and then reduced
(ca. 1 pH unit) with 0.1 M hydrochloric acid.

Characterization of Nanocoated Conductive Fabric.
To assess the electrical properties of the coated fabric, sheet
resistance was measured using a Signatone Pro4 Four-Point
Probe (Gilroy, CA), with 0.4 mm probe tip diameter and 1.0
mm tip spacing, connected to a E3644A DC power supply
(Agilent Technologies Inc., Santa Clara, CA), with an
operating voltage of 10 V and a 2400 Keithley Multimeter
(Cleveland, OH).11 Voltage and current values were collected
by LabVIEW (National Instruments Inc., Austin, TX), using an
SCB-68 Shield I/O Connecter Block. The reported sheet
resistance is the average of five measurements.
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