
C3PO : Cipher Construction with Cartesian genetic PrOgramming
Stjepan Picek

Delft University of Technology
s.picek@tudelft.nl

Karlo Knezevic
University of Zagreb, Faculty of Electrical Engineering and

Computing
karlo.knezevic@fer.hr

Domagoj Jakobovic
University of Zagreb, Faculty of Electrical Engineering and

Computing
domagoj.jakobovic@fer.hr

Ante Derek
University of Zagreb, Faculty of Electrical Engineering and

Computing
ante.derek@fer.hr

ABSTRACT
In this paper, we ask a question whether evolutionary algorithms
can evolve cryptographic algorithms when no precise design crite-
ria are given. Our strategy utilizes Cartesian Genetic Programming
in the bi-level optimization setting with multiple populations trying
to evolve a cryptographic algorithm and break it. To challenge our
design paradigm, we consider a number of scenarios with varying
criteria on the system and its security. We are able to obtain inter-
esting results in several scenarios where the attacker is not able to
understand the text with more than a random chance. Interestingly,
our system is able to develop various versions of one-time pads,
which are the only systems that ensure perfect secrecy. Although
our system is far from practical, we consider it interesting since it
gives good results that are also human-readable.

CCS CONCEPTS
• Security and privacy → Block and stream ciphers; • Com-
puting methodologies → Discrete space search;

KEYWORDS
Cryptography, Cartesian Genetic Programming, Block ciphers, Bi-
level optimization
ACM Reference Format:
Stjepan Picek, Karlo Knezevic, Domagoj Jakobovic, and Ante Derek. 2019.
C3PO : Cipher Construction with Cartesian genetic PrOgramming. In Ge-
netic and Evolutionary Computation Conference Companion (GECCO ’19
Companion), July 13–17, 2019, Prague, Czech Republic. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3319619.3326869

1 INTRODUCTION
Cryptography is the science and engineering skill of designing cryp-
tographic algorithms – ciphers. In symmetric key cryptography, all
communicating parties use the same secret key [10]. The parties
combine the message (plaintext) they want to exchange with the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3326869

secret key through a series of transformations in order to obtain
the encrypted message (ciphertext). Those transformations can be
done only on the key, which is then a posteriori combined with the
plaintext, or on both plaintext and the key at the same time. Such
transformations enabling secure communication constitute a cryp-
tographic algorithm, commonly known as a cipher. The process of
designing a cipher is usually very complex since the designers need
to follow a number of principles in order to create a secure cipher.
In the design phase, it is necessary to consider both the properties
of individual cipher components as well as the whole cipher. At the
same time, that cipher needs to be tested against many possible at-
tacks (e.g., differential cryptanalysis [2] or linear cryptanalysis [13])
in order to gain confidence in its strength. Although computers
are extensively used in the design process to test certain parts of
the cipher, the design of modern ciphers is mostly done by human
experts.

In this paper, we pursue the goal of the automatic design of
ciphers. In order to evolve ciphers, we use evolutionary algorithms,
more precisely, Cartesian Genetic Programming (CGP) [17]. We
believe such automatic cipher design is very interesting as 1) an
exercise to explore what are the limits of evolutionary algorithms
in modern cryptography and 2) a source of inspiration for new ci-
phers or their components. The automatic evolution of ciphers is a
difficult task. That difficulty stems from the facts that we aim to de-
velop a cipher that is easily usable by legitimate parties (commonly
denoted as Alice and Bob [10]). At the same time, the malicious
party (commonly known as Eve) should not be able to eavesdrop on
that communication unless she has the key. In order to be as generic
as possible (i.e., to allow the evolutionary algorithm to freely de-
sign a cipher), we impose no (or, as limited as possible) criteria on
how the communication should happen. This constitutes a huge
search space of solutions where 1) one side (we denote our cipher
designer as Alice) generates a cipher and 2) Eve must not be able to
understand the message since she does not have the key. Note, Eve
knows both plaintexts and corresponding ciphertexts, which aims
our setting into an attack model called the Known Plaintext Attack
(KPA) [10]. Ideally, Eve would be able to use that information to
develop some attack better than just random guessing. It is impor-
tant to note that in the same way as we do not impose criteria in
the evolution of ciphers, we also do not impose criteria on how Eve
would attack the evolved ciphers.

Recently, Abadi and Anderson used two neural networks (Alice
and Bob) to construct a cipher and a third network (Eve) to attack

1625

https://doi.org/10.1145/3319619.3326869
https://doi.org/10.1145/3319619.3326869

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Stjepan Picek, Karlo Knezevic, Domagoj Jakobovic, and Ante Derek

it, thus having adversarial environment between the first two net-
works and the third one [1]. The only constraints they imposed in
the design process is that legitimate parties need to find a cipher
such that they are able to communicate while Eve cannot decipher
it. This should be possible to obtain since Eve has a much more
difficult task because she does not know the secret key, while the
legitimate parties know it. Abadi and Anderson were able to ob-
tain interesting results, i.e., they found a way for Alice and Bob to
communicate while Eve not being able to decipher that commu-
nication, but their approach has issues. While Eve was not able
to decipher the communication with significantly better chances
than random guessing (i.e., 50% of plaintext characters correctly
guessed), Alice and Bob communicated “successfully” but their er-
ror was only somewhat lower than 50%. Next, since the cipher is
a neural network architecture, no proper analysis of the design
is actually possible. In the same way as it is difficult (impossible)
to interpret the way Alice and Bob communicate, it is difficult to
understand what is Eve doing so there is no guarantee the system
is successful simply because Eve was not able to learn good attack
strategies (i.e., the cipher could be insecure but Eve is just not able
to break it).

Instead of neural networks, we use Cartesian Genetic Program-
ming which is also a graph-based representation model; however,
CGP solutions, when they form a sequence of instructions, are
(potentially) understandable by human designers. We do not use
the scenario where Alice and Bob independently try to develop
the same cipher, since we do not see a practical justification for it.
Indeed, it is sufficient that only one party generates a cipher and
then shares it with all legitimate parties. Our setting uses bi-level
optimization for Alice and Eve. Finally, since the design of a cipher
also depends on its intended use, we set this as a constraint in our
process. Indeed, the evolutionary algorithm (or any other technique)
cannot guess how we might use the cipher. Consequently, we aim
to design symmetric key ciphers where the difficulty of breaking
them does not come from mathematically hard problems (like in
the public key cryptography) but from the repetition of simpler
operations. We are able to show our design strategy works over a
number of different settings and produces solutions (i.e., ciphers)
where the attacker best strategy is simply random guessing. At
the same time, our solutions are short enough so it is possible to
analyze them. Interestingly, even when not imposing any specific
design constraints, our approach still finds some general paradigms
of good cipher design (e.g., it is important to use the key – although
this sounds trivial it is still a result obtained solely by the evolution
process). Once we are able to automatically design a cipher, the
question still remains why to use it. We emphasize that due to a
lack of proper cryptanalysis, there must be a serious concern about
the strength of such evolved ciphers that would prohibit them from
being actually used.

The main contributions of this paper are:
• To the best of our knowledge, we are the first to consider such
an open-ended cipher evolution process with evolutionary
algorithms.

• We design a full system namedC3PO where Alice can design
ciphers considering various criteria and cipher characteris-
tics.

• We show that bi-level CGP is able to construct ciphers that
Eve cannot break.

2 SYMMETRIC KEY CRYPTOGRAPHY
The plaintext P or message is the information that Alice and Bob
wish to exchange. The encryption is a process of applying a trans-
formation E to the plaintext P . After it, only an authorized party
should be able to read the message. The ciphertextC is the result of
encryption performed on plaintext using a cryptographic algorithm
(cipher). The decryption is a process of applying a transformation
D to the ciphertext C in order to obtain the plaintext.

A cryptographic algorithm (cipher) is a mathematical function
used for encryption and decryption (ciphers are also used for other
actions but those are outside the scope of this paper). From the
attacker side, there are several models one can consider on the basis
of an attacker’s access to the system under attack. For instance, the
attacker can have access only to the ciphertext (commonly known as
Ciphertext-only attack). We can consider a more powerful attacker
that has access to both ciphertexts and accompanying plaintexts.
Such a model is called the Known Plaintext Attack (KPA) and is
the model we assume Eve can use in this paper. Note, there are
more powerful models than KPA but we consider them less relevant
here since such models use specific attacks that Eve does not know.
We note that a very powerful cryptanalysis technique called linear
cryptanalysis is actually KPA.

Let us assume that Alice and Bobwant to exchange somemessage
they need to keep secret, i.e., that no one else can read it. They
have only an insecure channel to communicate through. Alice could
encrypt her message and send it encrypted over an insecure channel
to Bob. If Bob has the same key as Alice, he can decrypt and read
the message. At the same time, Eve cannot decrypt the message
if she does not know the key. If Alice and Bob want to keep their
communication private they need either to keep the key secret or
the algorithm secret. Already in the 19th century, A. Kerchoff stated
that a cryptosystem should be secure even if everything about the
system, except the key, is publicly known [8].

For a computationally secure cryptosystem, C. Shannon deduced
it should follow the confusion and diffusion principles [24]. The
confusion principle means that the cipher output statistics should
depend on the cipher input statistics in a manner too complicated to
be exploited by the attacker. The confusion principle is related to the
notion of nonlinearity since the attacker cannot easily approximate
a cipher with a set of linear equations if the cipher possesses enough
nonlinearity. More precisely, if a system is linear (i.e., S is a linear
transformation) then S(a) + S(b) = S(a + b). If S is a nonlinear
transformation, S(a) + S(b) , S(a + b) and in general, even if
we know the result of S(a) and S(b), we do not know the result
of S(a + b). To measure the nonlinearity of a function, we need
to measure its distance (e.g., the Hamming distance) to all linear
and affine functions [3]. The diffusion principle relates to the fact
that each digit of the input and each digit of the secret key should
influence many digits of the output. This principle can be modeled
through a general concept of avalanche criterion: a single bit change
at the input must change at least half of the bits of the output (in
the case exactly half of the bits must change then we talk about the
strict avalanche criterion [26]).

1626

C3PO : Cipher Construction with Cartesian genetic PrOgramming GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

Symmetric key cryptography can be divided into block and
stream ciphers. The main differences between them is that given a
messageM and a ciphertext C when working with block ciphers it
is hard to reconstruct the encryption transformation. When work-
ing with stream ciphers, the encryption transformation is easy and
the security relies on the changing of that transformation for every
symbol. One-time pad (OTP) is the only cryptographic system that
ensures perfect secrecy, i.e., that no attacker can break it, provided
that some rules are followed: the keys need to be 1) at least the
same size as the plaintext, 2) random, 3) kept in secrecy, and 4)
never reused.

3 RELATEDWORK
Among the various heuristic techniques adopted for the problem of
evolving Boolean functions (often used in stream ciphers) one can
find simulated annealing [5], genetic algorithms [15], genetic pro-
gramming and Cartesian genetic programming [18], particle swarm
optimization [12], and immunological algorithms [21]. All those
approaches follow the same line of reasoning: they define certain
important cryptographic criteria that Boolean functions need to ful-
fill and they incorporate them in fitness functions. Next, researchers
use heuristics to generate Substitution boxes (S-boxes) to be used
in block ciphers. Examples use simulated annealing with hill climb-
ing [4], genetic algorithms [14], genetic programming [19], Cartesian
genetic programming [20], and gradient descent method[7]. Similar
as for the Boolean functions, fitness functions contain specific prop-
erties that an S-box should possess. When considering the design
of full ciphers, we can distinguish two options: in the first one, the
design follows precise criteria defining the behavior of a cipher,
while in the second direction, the process is more open-ended since
there are no specific constraints. Examples in the first avenue en-
compass the design of pseudorandom number generators where
the fitness function uses various types of randomness testing to
evaluate whether the constructions offer sufficient randomness.
The approaches use genetic programming [11] and Cartesian genetic
programming [22]. A block cipher called Wheedham is designed
by genetic programming where a fitness function ensures sufficient
nonlinearity in the cipher [6].

Besides evolutionary computation, there are a number of papers
belonging to the neural cryptography domain. There, a usual goal
is to develop a key exchange protocol [23]. Still, such systems do
not offer security as for instance shown by Klimov et al. [9]. Finally,
adversarial neural networks are used to design a cipher where the
only constraints are that Alice and Bob need to be able to exchange
messages while Eve should not be able to eavesdrop on them [1].
As far as we are aware, this is the first attempt to build a whole
cipher in such an “open” design style where Eve is also considered.

4 EXPERIMENTAL SETTING AND RESULTS
4.1 General Cipher Design Principles
As already stated in Section 1, our goal is the automatic design
of ciphers where we do not impose criteria on how the cipher
should be designed. Described as succinctly as possible, we want a
cipher that legitimate parties can use to communicate and that the
attacker cannot break. Everything else should (in an ideal case) be
designed by the evolutionary process. It is not difficult to see that

some additional questions need to be answered since evolutionary
algorithms (EAs) cannot know the answers a priori.

(1) Who evolves our ciphers? In the evolution process, we do
not use two parties (Alice and Bob) to evolve a cipher but
only Alice. We see no reason to add additional work on the
evolution process and make Bob guess what Alice finds. Cor-
rectly guessing the cipher is extremely difficult and just adds
errors to legitimate parties communication. Additionally,
there is no reason to limit communication to only two legiti-
mate parties. In the system where one side develops a cipher
and other sides need to guess it in order to communicate,
adding more parties means even more error in the legitimate
communication. Additionally, we do not want our cipher
to be a secret, but only the key as in accordance with the
Kerckhoff’s principle, so Alice can develop a cipher and then
simply send it over an insecure network.

(2) What kind of a cipher do we need, public key algorithm or
symmetric key algorithm? In this paper, we consider only
symmetric key algorithms.

(3) Does our algorithm use the key or not? Both options are
possible: for instance, block/stream ciphers use keys while
hash functions do not use them. We require that our designs
use the key.

(4) Does the cipher operate on bits or blocks of bits? Although
this seems like a detail that could be left to EA to decide, our
experiments show that if we allow EA to operate on a bit
level, it will not group those bits into blocks. We decide to
work with blocks and consequently, to design block ciphers.

(5) What is the size of plaintext, ciphertext, and key? We con-
sider a scenario where all have the same size and that is
either 4 bits or 8 bits.

Note, all decisions given above are our design choices and not
something devised due to some constraints on EA. Indeed, we could
have decided to work on stream ciphers or hash functions and EA
should still be able to produce results. While 4 or 8 bits can look
too small a size to be practical, it is easy to apply the same cipher to
any number of bits in parallel and arrive at more practical sizes. Of
course, since we consider each block separately, there is no diffusion
between the blocks, but we do not consider this as a problem at
this phase. Finally, although it is common for block ciphers to be
iterated [10], i.e., to operate in a number of rounds in order to
improve their security, we consider only a single round. Trivially,
each new round adds a certain amount of security to the cipher
but we measure here the security only with respect to Eve. Then,
if Eve cannot break a single round cipher, there is no reason to
add more rounds since Eve will not be able to break them. If Eve is
able to break a single round, then adding rounds would make the
attacks more difficult. Still, our experiments show there are many
designs with a single round strong enough so Eve cannot break
them. Consequently, we see no need to consider multiple rounds at
this point.

Besides these general constraints, our experiments indicated
arguments for several additional constraints that are more specific.
If we require our cipher to be bijective, i.e., invertible, we need to
explicitly encode this constraint. This may seem like a limitation but
is actually logical since EA does not know whether there is another
side (or sides) that need to be able to decrypt the ciphertext by

1627

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Stjepan Picek, Karlo Knezevic, Domagoj Jakobovic, and Ante Derek

inverting the encryption procedure. We note this is not an absolute
requirement since any function can become invertible if used with
the Feistel structure [10].

Once the evolution process is finished and we have the cipher
that Eve was not able to break, we would require some assurance
that our cipher is strong. If Eve cannot break the cipher, there are
two possible extremes: 1) the cipher is strong and that is the reason
Eve cannot break it, or 2) Eve did not learn any good way to analyze
the cipher, so although the cipher is weak, she didn’t break it. In
order to gain some assurance that the cipher is strong and that Eve
is a capable attacker, we measure the confusion and diffusion as
given by nonlinearity and avalanche criterion, respectively.

4.2 Cartesian Genetic Programming
In Cartesian Genetic Programming (CGP), a program is represented
as an indexed graph. The terminal set (inputs) and node outputs
are numbered sequentially. Node functions are also numbered sepa-
rately. CGP has three parameters to be chosen by the user: number
of rows nr , number of columns nc , and levels-back l [16].

In our experiments, for the number of rows we use a value of
one and for the levels-back parameter, we use the same value as for
the number of columns. Therefore, the maximal number of nodes in
CGP is equal to the number of columns. The number of node input
connections nn is two and the number of node output connections
no is one. A maximal node arity is two. The function set in all
experiments is AND, OR, NOT, XOR, ROR, and ROL (rotation one
bit right and left). All functions are vectorial, which means their
arguments are vectors of the same size as the result vector. All
functions operate on the bit level, i.e., AND function is defined as
AND(®x, ®y) = (x0 AND y0, ..., xn AND yn). Each CGP genotype has
two inputs and a single output. Depending on a model, inputs are
fed by vectors of plaintext and key or plaintext and ciphertext, and
output vector is ciphertext or the guessed secret key.

The population size for CGP equals five in all our experiments.
For CGP individual selection, we use a (1 + 4) selection strategy
in which offspring are favored over the parent when they have a
fitness less than or equal to the fitness of the parent. We use a single
active gene mutation where individual genes are mutated until an
active gene (i.e., a gene contributing to at least one output node) is
affected.

4.2.1 Bi-level optimization. Bi-level optimization is a special
kind of optimization where one problem is embedded within an-
other one [25]. The outer optimization task is commonly referred
to as the upper-level optimization task, and the inner optimization
task is commonly referred to as the lower-level optimization task.
In our case, Alice does the upper-level optimization task referring
to Eve’s lower-level task.

When evaluating each individual in the upper-level population
(each Alice), a new lower-level population (of Eves) is created. The
chosen Alice individual’s cipher is used to generate training set
pairs of plaintext and ciphertext; this training set is used at the
lower level to evaluate lower-level individuals. After the lower-level
evolution is terminated, the best solution from the lower level is
used to estimate the fitness of Alice, i.e., the upper-level individual.

The same evolutionary algorithm and the same representation is
used at both levels, but the fitness functions and termination criteria

Algorithm 1 Alice and Eve evaluation by bi-level optimization.
Input: Xtrain = {Pi , Ki }N – training dataset, Xtest = {P ′

i , K
′
i }

M – test
dataset, I – iterations
π = 0
repeat

C = encrypt (Xtrain , Alice)
ΠσEve = Eve1, ..., Eveσ
for ∀Eve in ΠσEve do

Evei = build model ({P ,C }N)

end for
Eve = best model in ΠσEve
C ′ = encrypt (Xtest , Alice)
K̂ ′ = find secret key ({P ′,C ′ }M , Eve)
calculate costAlice based on K̂ ′ and K ′

inc (π)
until π < I

Table 1: Parameters for CGP.

Parameter Value

Genotype length 20/40 nodes (4/8 bits)
Input/Output nodes 2/1
Evolutionary selection (1+4)
Mutation type single active gene
Function set AND, OR, NOT, XOR, ROR, ROL
Maximum evaluations 25 000/50 000 (Alice/Eve)
Runs per experiment 30

are different. In our case, the size of the lower-level population is
σ = 3, and the lower-level termination criterion is the number of
evaluations. This process is illustrated in Algorithm 1.

4.3 Common Parameters and Datasets
All CGP parameters are given in Table 1. In all experiments, the
number of independent trials for each configuration is 30. We use
two datasets depending on the message length that can be n = 4
and n = 8 bits. Here, both the message and the secret key are of the
same length. The message and the secret key consist of uniformly
distributed binary values. After a tuning phase, we set the number
of nodes in CGP for 4-bit messages to 20 and for 8-bit messages to
40 nodes. To encrypt a message block consisting of n bits with a key
consisting of n bits as well, we use vectorial functions that produce
n bits of ciphertext. Consequently, Alice consists of 2 input nodes
and 1 output node. Eve has information about the pairs of plaintext
and ciphertext so she also has 2 input nodes and 1 output node,
where output represents the secret key used in the encryption. Our
encryption algorithm always outputs ciphertexts of the same size as
is the plaintext. For the 4-bit messages, the training dataset contains
P = 150 messages and K = 10 keys (N = 150, training set size),
while testing dataset contains P ′ = 50 messages and K ′ = 6 keys
(M = 50, testing set size). For the 8-bit messages, the training dataset
contains P = 400messages andK = 50 keys (N = 400) while testing
dataset contains P ′ = 100 messages and K ′ = 10 keys (M = 100).
All pairs plaintext/key are selected uniformly at random. We divide
our evolution process into a number of evaluations E and iterations
I . A single iteration I represents a process where all parties undergo
E evaluations. Training and testing set is regenerated after each
iteration. In all our experiments, the evolution does I = 50 iterations.
We set the number of evaluations E to 25 000 for Alice and 50 000 for
Eve. By performing a larger number of evaluations for Eve, we give

1628

C3PO : Cipher Construction with Cartesian genetic PrOgramming GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

her an advantage over Alice in order to build as powerful attack
as possible, which in turn helps evolving stronger ciphers. In total,
each experimental run has at least 1 250 000 evaluations for each of
the populations.

4.4 Cost Functions
We use the L1 distance to measure the difference between the
actual key K and the guessed key K̂ ′. The L1 distance is defined
as d

(
K, K̂ ′

)
=

∑n
i=1 |Ki − K̂ ′

i |, where n equals the message/key
length. Alice’s costA expression represents Eve’s error where the
global optimum is reached when half (on average) of the decrypted
message bits are wrong. If Eve is correct in only half the bits, that
essentially means she is random guessing (independent coin toss
for each message bit), which is the optimal scenario from Alice’s
perspective. Note, if Eve would be wrong in significantly more than
half the bits, we could simply invert her guesses (swap all 0s for 1s
and vice versa), which would make her wrong in significantly less
than half of the bits. The second component cryptoAliceEve describes
the simultaneous fulfillment of cryptographic properties. Alice’s
cost function is measured by Eve and then, in a bi-level optimization
sent to Alice.

costAlice =
���n2 − d(K, K̂ ′Eve)

��� + cryptoAliceEve . (1)

costEve =min(d(K, K̂ ′Eve),n − d(K, K̂ ′Eve)). (2)

cryptoAliceEve = N̂L +�di f f + bijectivity. (3)
The bijectivity property equals 0 if Alice constructs a non-bijective
cipher and 1 otherwise. The nonlinearity NL and diffusion di f f
are statistically measured with a subset of secret keys from the
training set. To reduce the NL and di f f time complexity, we ran-
domly choose 3 keys and calculate cipher’s nonlinearity and dif-
fusion, where N̂L = min{NLkeyi } and �di f f = min{di f fkeyi }.
Since the parameters values have different co-domains, we scale
N̂L and �di f f to the interval [0,n], using transformation scaled =

n
optimal−value

optimal . The best possible nonlinearity value for 4 bit mes-
sages is 4 and for 8 bit messages is 112. The highest diffusion for
each bit of the output is equal to n2

2 because, for each message,
there exist n messages differing in only 1 bit, which should have
cipher difference in n

2 bits. Since we are minimizing our fitness
functions, the obtained nonlinearity and diffusion are subtracted
from the best possible values.

5 RESULTS
We divide our experiments into five scenarios with respect to the
cryptographic cost from Alice’s perspective. The first scenario con-
siders Eq. (1) with Eq. (3) set to 0, i.e., a setting where Alice tries to
evolve a system where Eve would make a mistake on as close to
the half of bits as possible. In the second scenario, we additionally
consider Alice’s diffusion, in the third scenario nonlinearity, and
in the fourth scenario bijectivity. Finally, we combine the second,
third, and fourth scenario into the fifth scenario. The results for
all scenarios are given in Tables 2 and 3, and Figures 1a–3b. The
best obtained values over all scenarios are given in bold style. Note
that in Table 3, the value keys broken we aim to maximize and

number o f wronд key bits we aim to make as different from n/2 as
possible (since for both of those columns we consider the situation
from Eve’s perspective). In Tables 2 and 3, there are two columns for
costEve that show different results. In Table 2, we give costEve as
measured in upper-level optimization from Alice, while in Table 3,
we give costEve as measured in lower-level optimization from Eve.
For the column active nodes , we do not give any values in bold
style since we do not optimize the size of the network nor we as-
sume that one size is better than some other (in general, if evolved
cipher/Eve’s attack are strong, then as small number of active nodes
as possible would potentially ease human interpretability of the
results).

5.1 Scenario 1
In this scenario, cryptoAliceEve is set to 0 in Eq. (1) and only Eve’s L1
measure is optimized. For Eve, the aim is to guess as many bits
as possible (or as few bits as possible, see Eq. (2)). Then, the best
solution from Eve’s lower-level population is used to calculate the
fitness for the current Alice candidate. In Table 2, when considering
4-bit setting, Alice evolves a cipher that is small (as can be observed
by the number of active nodes) but the cipher is relatively weak
since Eve is able to guess the most bits from all scenarios. Next, we
see that both diffusion and nonlinearity are bad. This indicates that
our ciphers are not providing a lot of security. Additionally, we can
observe that the evolved ciphers are most of the time not bijective.

The setting with 8 bits displays a similar behavior, where values
are slightly larger but also the range of obtainable values is much
larger. At the same time, Eve’s cost shows only a small increase
from 4-bit setting to 8-bit setting when compared with Alice. Still,
Eve is again for 8-bit setting the least successful when considering
Scenario 1. This means that Eve is able to perform significantly
better than the random guess. This fact coupled with a relatively
small increase in the number of active nodes suggests that for 8-bit
setting, Alice would require longer evolution process in order to
evolve strong ciphers.

In Table 2, we show the situation after Eve’s evaluation where
we see that she is able to break the largest number of keys for 4-bit
setting but the number of wrong key bits is close to n/2, which
indicates that most of the time she is not much better than the
random guess.

For 8-bit setting, we see that the number of broken keys is smaller
than for 4-bit setting but that she deviates slightly more from the
random guess performance. This suggests that Eve needs longer
evolution process to cope with the larger key/message size.

5.2 Scenario 2
In this scenario, besides Eve’s L1 measure, the fitness component
cryptoAliceEve includes the diffusion. When considering Alice’s per-
formance as given in Table 2, we see a significant change when
compared with Scenario 1. Alice’s cost is reduced, which means
she is developing better ciphers (i.e., those that are more difficult
for Eve) but she also needs more active nodes on average. Since
we optimize for diffusion, we see that for both 4 and 8 bits, the
diffusion significantly improves, which also improves the value for
cryptoAliceEve . The ciphers are never bijective (both for 4 and 8 bits)
and the nonlinearity decreases. This indicates that if we optimize for

1629

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Stjepan Picek, Karlo Knezevic, Domagoj Jakobovic, and Ante Derek

Table 2: Alice, average results for all scenarios.

N Scenario average ± standard deviation
costAlice costEve cryptoAliceEve active nodes diffusion nonlinearity bijectivity

4 bits

1 11.20 ± 2.43 0.81 ± 0.17 10.38 ± 2.40 4.60 ± 2.36 6.63 ± 1.56 3.60 ± 1.20 0.13 ± 0.33
2 8.91 ± 0.46 0.76 ± 0.24 8.15 ± 0.39 5.16 ± 2.33 0.30 ± 0.78 4.00 ± 0.00 0.00 ± 0.00
3 7.14 ± 1.29 0.78 ± 0.15 6.35 ± 1.29 5.30 ± 1.91 3.91 ± 0.51 0.40 ± 1.20 0.00 ± 0.00
4 7.03 ± 0.46 0.76 ± 0.13 6.26 ± 0.44 3.23 ± 2.01 4.53 ± 0.88 4.00 ± 0.00 1.00 ± 0.00
5 1.09 ± 0.88 0.68 ± 0.16 0.41 ± 0.89 10.00 ± 1.50 0.56 ± 0.36 0.14 ± 0.71 1.00 ± 0.00

8 bits

1 21.68 ± 3.78 1.11 ± 0.15 20.56 ± 3.76 7.73 ± 3.35 26.48 ± 4.08 105.60 ± 19.20 0.20 ± 0.40
2 16.95 ± 0.82 1.08 ± 0.11 15.86 ± 0.82 9.96 ± 2.40 0.07 ± 0.36 109.87 ± 11.48 0.00 ± 0.00
3 11.76 ± 1.37 1.08 ± 0.11 10.67 ± 1.36 15.20 ± 2.48 9.04 ± 3.62 5.87 ± 7.71 0.00 ± 0.00
4 15.35 ± 0.32 1.10 ± 0.10 14.25 ± 0.28 5.70 ± 3.11 25.00 ± 1.12 112.00 ± 0.00 1.00 ± 0.00
5 10.40 ± 1.13 1.06 ± 0.11 9.33 ± 1.12 13.16 ± 2.92 5.34 ± 4.46 112.00 ± 0.00 1.00 ± 0.00

Table 3: Eve, average results for all scenarios.

N Scenario average ± standard deviation
costEve active nodes keys broken number of wrong key bits

4 bits

1 0.78 ± 0.51 7.40 ± 3.08 4.20 ± 1.83 1.97 ± 1.14
2 1.23 ± 0.21 8.10 ± 2.79 2.80 ± 1.72 2.02 ± 0.26
3 1.14 ± 0.34 7.93 ± 2.93 2.63 ± 1.68 1.91 ± 0.59
4 0.86 ± 0.54 6.96 ± 2.62 3.56 ± 2.06 1.80 ± 1.03
5 1.17 ± 0.33 6.63 ± 2.18 2.40 ± 1.94 1.96 ± 0.22

8 bits

1 1.98 ± 1.05 14.16 ± 6.58 3.76 ± 3.66 4.14 ± 2.09
2 2.66 ± 0.72 17.26 ± 4.28 1.66 ± 2.64 3.67 ± 1.01
3 2.82 ± 0.20 17.50 ± 3.98 1.10 ± 1.42 3.96 ± 0.42
4 1.62 ± 1.39 12.36 ± 5.55 5.06 ± 4.48 4.00 ± 2.63
5 2.77 ± 0.32 18.60 ± 3.65 1.53 ± 1.82 3.81 ± 0.72

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

0

2

4

6

8

10

12

14

A
li
ce

co
st

va
lu
e
(n

is
4
b
it
s)

(a) n = 4.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

8

10

12

14

16

18

20

22

24

26

A
li
ce

co
st

va
lu
e
(n

is
8
b
it
s)

(b) n = 8.

Figure 1: Alice’s cost function values.

diffusion, we lose on nonlinearity. Considering Eve’s performance
in Table 3, we see that the cost increases, which means this scenario
is more difficult for her. She also needs more active nodes, is able to
break fewer keys, and is closer to the random guess behavior than
for Scenario 1.

5.3 Scenario 3
This scenario considers Eve’s L1 measure and nonlinearity in the
cryptoAliceEve term. In Table 2, we observe that as expected, non-
linearity is significantly better than in the previous scenarios. At
the same time, apart from the diffusion, the other components are
largely not affected. As in the previous cases, bijectivity is not ob-
tained, which again indicates that this property is not intrinsic to

1630

C3PO : Cipher Construction with Cartesian genetic PrOgramming GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

0

0.5

1

1.5

2

2.5

3

3.5

4

E
ve
’s

av
er
a
g
e
k
ey

b
it
er
ro
r
(n

is
4
b
it
s)

(a) n = 4.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

0

1

2

3

4

5

6

7

8

E
ve
’s

av
er
a
g
e
k
ey

b
it
er
ro
r
(n

is
8
b
it
s)

(b) n = 8.

Figure 2: Eve’s average key bits error.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

0

1

2

3

4

5

6

S
ec
re
t
k
ey
s
fo
u
n
d
(n

is
4
b
it
s)

(a) n = 4.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

0

2

4

6

8

10

S
ec
re
t
k
ey
s
fo
u
n
d
(n

is
8
b
it
s)

(b) n = 8.

Figure 3: Eve’s found keys in test set.

the design of Alice’s cipher. The sizes for ciphers that Alice evolves
are very similar for Scenario 2 and 3, which means that the prop-
erties are similar in complexity to add to the cipher design. When
considering the results from Alice’s perspective, it is difficult to
say whether Eve has more problems for Scenario 2 or Scenario 3
since the results are very similar. Still, Alice’s cost is lower than for
Scenario 2, which suggests that high nonlinearity contributes more
to strong ciphers than high diffusion. When considering the results
from Eve/s perspective (Table 3), we see that for 4-bit setting she is
able to improve the results when compared to Scenario 2, but for
8-bit setting her results are worse, i.e., the cost increases. For both
4-bit and 8-bit setting, the number of keys broken decreases when
compared to Scenarios 1 and 2. For the 4-bit setting, the number

of the wrong key bits shows she is moving away from random
guessing while the situation for 8-bit setting is opposite.

5.4 Scenario 4
This scenario considers the bijectivity property while optimizing
Eve’s L1 measure. As it can be seen in Table 2, when explicitly
included as a criterion, CGP can easily adapt and provide a bijective
cipher. It is important to remember that the bijectivity is not tested
and guaranteed on the whole domain, but only on the generated
plaintext dataset. Interestingly, in 4-bit setting, making a cipher
bijective is still causing similar problems for Eve despite the fact
that diffusion and nonlinearity are not as good as for Scenarios 2
and 3. From the evolved solutions perspective, this scenario requires
the least number of active nodes among all considered scenarios.

1631

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Stjepan Picek, Karlo Knezevic, Domagoj Jakobovic, and Ante Derek

Figure 4: Example of an evolved cipher obtained by Alice.

From Table 3, we observe that Eve does not require many active
nodes to reach the second best result for 4-bit setting and the best
result for 8-bit setting. For 8-bit setting, she is able to break the most
keys from all considered scenarios. Interestingly, for 4-bit setting,
we see that she is the furthest from random guessing while for
8-bit setting, she is on average random guessing. Still, the highest
deviation value in this case indicates she is able to either display
excellent behavior or she simply gets stuck and cannot do anything
better than the random guess. The number of active nodes suggests
that Eve is able to do good attacks with relatively small networks
(which, in turn, suggests that Alice is probably not constructing
strong ciphers).

5.5 Scenario 5
In this scenario, we optimize Eve’s L1 measure, as well as nonlin-
earity, diffusion, and bijectivity. From Table 2, we see that evolved
ciphers are bijective and with good diffusion, although not as good
as in Scenario 2. When considering 4-bit setting, we see we are also
able to obtain the best possible nonlinearity while for 8 bits we did
not obtain nonlinear functions. This means that the problem is sim-
ply too difficult or that the evolution process was too short when
considering all conditions. Still, even with such differing results
for those two settings, we see Alice’s cost is the smallest from all
considered scenarios and that Eve has the biggest difficulties there.
In fact, when considering the results from Alice’s perspective and
Eqs. (1), (2), and (3), we see that for both 4-bit and 8-bit setting, the
results are the best from all considered scenarios.

When considering this scenario from Eve’s perspective as given
in Table 3, Eve’s cost is the second highest for both 4-bit and 8-
bit settings, which means that there are scenarios more difficult
for Eve (those considering only diffusion and only nonlinearity,
respectively). Interestingly, for the 4-bit setting, Eve uses the least
active nodes while for the 8-bit scenario she uses the most active
nodes. This indicates that she is somewhat “deceived” for the 4-bit
case to think the problem is easy. Both the number of the keys
broken and the number of wrong key bits indicate Scenario 5 not
to be the most difficult one for Eve.

5.6 General Observations
We consider Scenario 5 to be the best for Alice (and consequently
the worst for Eve) since all statistical indicators for cryptographic
properties are balanced, which can be seen in Table 2. Additionally,
Eve is makingmistakes inmany bits, whichmeans that this scenario

is difficult for her. Interestingly, while our results clearly show
that Scenario 5 is the best for Alice, it is not straightforward to
conclude it is the worst for Eve. Indeed, Table 3 clearly shows the
only instance where Scenario 5 is the worst one for Eve is for 4-bit
setting when considering the number of keys broken.

For Scenario 1, where evolution has the least guidance, the results
are still not too bad from Alice’s perspective. Still, a high standard
deviation value tells us that the quality of evolved ciphers differs
significantly.

In Figure 1, we depict the results for all 5 scenarios, 4-bit and
8-bit setting. There, it is easy to see that the first scenario is the
worst one, scenarios 2–4 are similar, and Scenario 5 is the best
one. It is interesting to note that in several scenarios, we obtained
the one-time pad cipher and its variants, which is the only cipher
providing the perfect secrecy.

In Figure 2, we depict Eve’s average key bit errors and we can see
that while the values are indeed around n/2, which indicate random
guessing, Scenario 1 has ≈ ±1 from n/2 while other scenarios differ
less from that value. Figure 3 depicts the number of keys broken.
For 4-bit setting, the results are more similar with a small advantage
for Scenario 3, while for 8-bit setting, Scenarios 2, 3, and 5 exhibit
similar behavior. Finally, we depict one cipher operating on 4 bits
evolved by Alice in Figure 4.

6 CONCLUSIONS
In this paper, we investigate how to automatically evolve ciphers
with CGP and bi-level optimization. Our results show that we are
able to develop ciphers that are (relatively) resilient against Eve’s
attacks and that use only a small number of active nodes, which
makes them easier to interpret. Once we add more properties that a
cipher needs to fulfill, the results are naturally improved. Eve is not
able to be significantly more successful than if she would be random
guessing.We consider this to be only a proof of a concept that shows
EA has potential as an automatic cipher builder. Naturally, to obtain
something useful in practice, more experiments and improvements
are necessary.

In future work, we will consider more variations in the number
of evaluations and/or size of CGP graph. Besides that, we notice that
our cost function is often too strict, which results in getting stuck
in local optima. To remedy that, we aim to design cost functions
that gradually add constraints during the evolution process and do
not impose all of them from the beginning of the evolution process.

1632

C3PO : Cipher Construction with Cartesian genetic PrOgramming GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

REFERENCES
[1] Martín Abadi and David G. Andersen. 2016. Learning to Protect Communi-

cations with Adversarial Neural Cryptography. CoRR abs/1610.06918 (2016).
arXiv:1610.06918 http://arxiv.org/abs/1610.06918

[2] Eli Biham and Adi Shamir. 1991. Differential Cryptanalysis of DES-like Cryp-
tosystems. In Proceedings of the 10th Annual International Cryptology Conference
on Advances in Cryptology (CRYPTO ’90). Springer-Verlag, London, UK, 2–21.
http://dl.acm.org/citation.cfm?id=646755.705229

[3] Claude Carlet. 2010. Vectorial Boolean Functions for Cryptography. In Boolean
Models and Methods in Mathematics, Computer Science, and Engineering (1st ed.),
Yves Crama and Peter L. Hammer (Eds.). Cambridge University Press, New York,
USA, 398–469.

[4] John A. Clark, Jeremy L. Jacob, and Susan Stepney. 2005. The design of S-boxes
by simulated annealing. New Generation Computing 23, 3 (Sept. 2005), 219–231.
https://doi.org/10.1007/BF03037656

[5] John A. Clark, Jeremy L. Jacob, Susan Stepney, SubhamoyMaitra, andWilliamMil-
lan. 2002. Evolving Boolean Functions SatisfyingMultiple Criteria. In INDOCRYPT
2002 (LNCS), Alfred Menezes and Palash Sarkar (Eds.), Vol. 2551. Springer, 246–
259.

[6] J. C. Hernandez-Castro, J. M. Estevez-Tapiador, A. Ribagorda-Garnacho, and B.
Ramos-Alvarez. 2006. Wheedham: An Automatically Designed Block Cipher
by means of Genetic Programming. In 2006 IEEE International Conference on
Evolutionary Computation. 192–199. https://doi.org/10.1109/CEC.2006.1688308

[7] Oleksandr Kazymyrov, Valentyna Kazymyrova, and Roman Oliynykov. 2013. A
Method For Generation Of High-Nonlinear S-Boxes Based On Gradient Descent.
Cryptology ePrint Archive, Report 2013/578. (2013).

[8] A. Kerckhoffs. 1883. La cryptographie militaire. Journal des Sciences Militaires
(1883), 161–191.

[9] Alexander Klimov, Anton Mityagin, and Adi Shamir. 2002. Analysis of Neural
Cryptography. In Advances in Cryptology — ASIACRYPT 2002, Yuliang Zheng
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 288–298.

[10] Lars R. Knudsen and Matthew Robshaw. 2011. The Block Cipher Companion.
Springer. I–XIV, 1–267 pages.

[11] Carlos Lamenca-Martinez, Julio Cesar Hernandez-Castro, Juan M. Estevez-
Tapiador, and Arturo Ribagorda. 2006. Lamar: A New Pseudorandom Number
Generator Evolved by Means of Genetic Programming. In Parallel Problem Solving
from Nature - PPSN IX. Springer Berlin Heidelberg, Berlin, Heidelberg, 850–859.

[12] Luca Mariot and Alberto Leporati. 2015. Heuristic Search by Particle Swarm
Optimization of Boolean Functions for Cryptographic Applications. In GECCO
Companion ’15. ACM, 1425–1426.

[13] MitsuruMatsui and Atsuhiro Yamagishi. 1993. A newmethod for known plaintext
attack of FEAL cipher. In Proceedings of the 11th annual international conference

on Theory and application of cryptographic techniques (EUROCRYPT’92). Springer-
Verlag, Berlin, Heidelberg, 81–91. http://dl.acm.org/citation.cfm?id=1754948.
1754958

[14] W. Millan, L. Burnett, G. Carter, A. Clark, and E. Dawson. 1999. Evolutionary
Heuristics for Finding Cryptographically Strong S-Boxes. In Information and
Communication Security. LNCS, Vol. 1726. Springer Berlin Heidelberg, 263–274.

[15] William Millan, Andrew Clark, and Ed Dawson. 1998. Heuristic Design of
Cryptographically Strong Balanced Boolean Functions. In EUROCRYPT ’98. 489–
499.

[16] Julian F. Miller (Ed.). 2011. Cartesian Genetic Programming. Springer Berlin
Heidelberg.

[17] Julian F. Miller and Peter Thomson. 2000. Cartesian Genetic Programming. In
EuroGP. 121–132.

[18] Stjepan Picek, Domagoj Jakobovic, Julian F. Miller, Elena Marchiori, and Lejla
Batina. 2015. Evolutionary Methods for the Construction of Cryptographic
Boolean Functions. In Genetic Programming - 18th European Conference, EuroGP
2015, Copenhagen, Denmark, April 8-10, 2015, Proceedings. 192–204.

[19] Stjepan Picek, Luca Mariot, Bohan Yang, Domagoj Jakobovic, and Nele Mentens.
2017. Design of S-boxes Defined with Cellular Automata Rules. In Proceedings of
the Computing Frontiers Conference (CF’17). ACM, New York, NY, USA, 409–414.
https://doi.org/10.1145/3075564.3079069

[20] Stjepan Picek, Julian F. Miller, Domagoj Jakobovic, and Lejla Batina. 2015. Carte-
sian Genetic Programming Approach for Generating Substitution Boxes of Dif-
ferent Sizes. In GECCO Companion ’15. ACM, New York, NY, USA, 1457–1458.

[21] Stjepan Picek, Dominik Sisejkovic, and Domagoj Jakobovic. 2017. Immunological
algorithms paradigm for construction of Boolean functions with good crypto-
graphic properties. Eng. Appl. of AI 62 (2017), 320–330. https://doi.org/10.1016/j.
engappai.2016.11.002

[22] Stjepan Picek, Dominik Sisejkovic, Vladimir Rozic, Bohan Yang, Domagoj
Jakobovic, and Nele Mentens. 2016. Evolving Cryptographic Pseudorandom
Number Generators. In Parallel Problem Solving from Nature – PPSN XIV. Springer
International Publishing, Cham, 613–622.

[23] A. Ruttor. 2007. Neural Synchronization and Cryptography. Ph.D. Dissertation.
PhD Thesis, 2007.

[24] C.E. Shannon. 1949. Communication theory of secrecy systems. Bell System
Technical Journal 28, 4 (1949), 656–715.

[25] Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. 2018. A review on bilevel
optimization: from classical to evolutionary approaches and applications. IEEE
Transactions on Evolutionary Computation 22, 2 (2018), 276–295.

[26] A. F. Webster and S. E. Tavares. 1986. On the Design of S-Boxes. In Advances in
Cryptology — CRYPTO ’85 Proceedings, Hugh C. Williams (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 523–534.

1633

http://arxiv.org/abs/1610.06918
http://arxiv.org/abs/1610.06918
http://dl.acm.org/citation.cfm?id=646755.705229
https://doi.org/10.1007/BF03037656
https://doi.org/10.1109/CEC.2006.1688308
http://dl.acm.org/citation.cfm?id=1754948.1754958
http://dl.acm.org/citation.cfm?id=1754948.1754958
https://doi.org/10.1145/3075564.3079069
https://doi.org/10.1016/j.engappai.2016.11.002
https://doi.org/10.1016/j.engappai.2016.11.002

	Abstract
	1 Introduction
	2 Symmetric Key Cryptography
	3 Related Work
	4 Experimental Setting and Results
	4.1 General Cipher Design Principles
	4.2 Cartesian Genetic Programming
	4.3 Common Parameters and Datasets
	4.4 Cost Functions

	5 Results
	5.1 Scenario 1
	5.2 Scenario 2
	5.3 Scenario 3
	5.4 Scenario 4
	5.5 Scenario 5
	5.6 General Observations

	6 Conclusions
	References

