Ispitivanje i analiza kvalitete mjerenja rotirajućega laserskog sustava

Mladen ZRINJSKI, Đuro BARKOVIĆ, Marina GUDELJ – Zagreb¹

SAŽETAK. Postupak ispitivanja preciznosti geodetskih i mjernih instrumenta dan je skupom normi osnovne oznake ISO 17123. Preciznost rotirajućega laserskog sustava - rotirajućeg lasera ispitana je prema potpunom postupku norme ISO 17123-6:2012. Potpuni postupak ispitivanja preciznosti rotirajućeg lasera definira dvije neovisne sesije mjerenja, od kojih svaka sadrži četiri serije mjerenja s trima različito definiranim stajalištima instrumenta. Nakon ispitivanja preciznosti rotirajućeg lasera obavljena su četiri statistička testiranja, koja su preporučena navedenom normom. Ispitivanje točnosti određivanja visinske razlike provedeno je usporedbom s referentnom visinskom razlikom, koja je određena metodom preciznoga geometrijskog nivelmana. Procijenjeni su izvori pogrešaka koji utječu na rezultate mjerenja rotirajućeg lasera. Kao parametri kvalitete mjerenja iskazane su standardna mjerna nesigurnost A-vrste, standardna mjerna nesigurnost B-vrste, sastavljena standardna mjerna nesigurnost i proširena mjerna nesigurnost. Podaci mjerenja automatski su matematički izjednačeni i statistički obrađeni u programu ISO ROLAS. Analizom dobivenih rezultata utvrđeno je da su empirijske vrijednosti standardnih odstupanja manje od vrijednosti koja je deklarirana u tehničkim specifikacijama proizvođača te da empirijska standardna odstupanja dviju neovisnih sesija mjerenja potječu iz istog uzorka.

Ključne riječi: ISO 17123-6:2012, rotirajući laserski sustav, preciznost, točnost, standardna mjerna nesigurnost A-vrste, standardna mjerna nesigurnost B-vrste, sastavljena standardna mjerna nesigurnost, proširena mjerna nesigurnost.

1. Uvod

Geometrijski i trigonometrijski nivelman te GNSS metoda najvažnije su i najčešće primjenjivane metode određivanja visinskih razlika, odnosno visina. Visinske razlike određene rotirajućim laserskim sustavom manje su preciznosti i točnosti od

¹ Izv. prof. dr. sc. Mladen Zrinjski, Geodetski fakultet Sveučilišta u Zagrebu, Kačićeva 26, HR-10000 Zagreb, Hrvatska, e-mail: mzrinski@geof.hr,

Prof. dr. sc. Đuro Barković, Geodetski fakultet Sveučilišta u Zagrebu, Kačićeva 26, HR-10000 Zagreb, Hrvatska, e-mail: barkovic@geof.hr,

Marina Gudelj, mag. ing. geod. et geoinf., Geodetski fakultet Sveučilišta u Zagrebu, Kačićeva 26, HR-10000 Zagreb, Hrvatska, e-mail: mgudelj1@geof.hr.

visinskih razlika određenih geometrijskim nivelmanom, stoga se rotirajući laser najčešće upotrebljava u građevinarstvu i srodnim strukama u kojima je ostvariva preciznost i točnost mjerenja zadovoljavajuća.

Prije svakog izlaska na teren, odnosno mjerenja, treba provjeriti i ispitati mjerila i mjerne uređaje. Postupci ispitivanja preciznosti geodetskih mjernih instrumenata mogu biti dani prema nekoj internoj provjerenoj metodologiji ili prema međunarodnim i nacionalnim normama (Barković 2002). Norme se zasnivaju na znanstvenim rezultatima, tehnologiji i iskustvu te određuju pravila, odrednice ili značajke djelovanja ili njihovih rezultata radi postizanja optimalne uređenosti u području na koje se norma odnosi (Benčić i Solarić 2008). Geodetske mjerne instrumente i druga mjerila treba periodično ispitati i umjeriti u laboratoriju i/ili terenskim uvjetima prema odgovarajućim mjernim postupcima (Barković 2002, Benčić i Solarić 2008, Zrinjski 2010, Zrinjski i dr. 2010, Zrinjski i dr. 2011, Barković i dr. 2013, Zrinjski i dr. 2013, Barković i dr. 2014, Zrinjski i dr. 2015, Barković i dr. 2016, Zrinjski i dr. 2018, Zrinjski i dr. 2019).

U ovom radu obavljeno je ispitivanje preciznosti rotirajućeg lasera NL-400 tvrtke Nivel System prema terenskom potpunom postupku norme ISO 17123-6:2012. Određivanje točnosti rotirajućeg lasera provedeno je usporedbom dobivenih rezultata mjerenja s poznatom referentnom vrijednosti. Mjerna nesigurnost izražena je prema normama ISO 17123-6:2012 i ISO 17123-1:2014.

2. Norma ISO 17123-6:2012

Postupak određivanja preciznosti rotirajućih lasera i odgovarajuće pomoćne opreme definiran je međunarodnom normom ISO 17123-6:2012 (URL 1), odnosno hrvatskom normom HRN ISO 17123-6:2014 (URL 2). Rotirajući laser je instrument koji pomoću glave instrumenta sa sustavom prizmi koji rotira može ostvariti horizontalnu, vertikalnu ili nagnutu (kosu) referentnu ravninu koju opisuje laserska zraka. Odgovarajućim prijamnim sustavom na mjernoj letvi moguće je ostvariti automatsko niveliranje (Frančula i Lapaine 2008). Svaki rotirajući laser sastoji se od dviju osnovnih komponenata: laserskog modula i sustava za niveliranje. Laserski modul sastoji se od crvene laserske diode koja je izvor svjetla i kondenzirajuće leće koja sabire divergirajuće zrake te ih paralelno odašilje. Sustav za niveliranje može biti ručni ili automatski (Levin i dr. 2017). Prije početka mjerenja mjeritelj treba osigurati i provjeriti prihvatljivost mjerne i pomoćne opreme za ispitivanie. Mieriteli treba voditi računa i o vremenskim prilikama koje direktno utječu na podatke mjerenja. Oblačno vrijeme i mala brzina vjetra najpovoljniji su vremenski uvjeti za obavljanje mjerenja, međutim ti su uvjeti varijabilni ovisno o lokaciji na kojoj se terenska mjerenja provode i ukupnom trajanju mjerenja. Norma ISO 17123-6:2012 opisuje dvije različite terenske procedure: pojednostavnjeni i potpuni postupak ispitivanja preciznosti rotirajućeg lasera (ISO 2012).

Za potrebe ovog istraživanja proveden je potpuni postupak ispitivanja preciznosti rotirajućeg lasera. Potpuni postupak daje najbolju moguću procjenu preciznosti ispitanoga rotirajućeg lasera i njegove pomoćne opreme u terenskim uvjetima. Također, potpuni postupak daje uvid i u moguće odstupanje ravnine rotirajuće zrake lasera od horizontalne ravnine, kao i moguće odstupanje osi rotacije rotirajućeg lasera od vertikalne osi. Norma preporuča da se za testno polje odabere približno horizontalan, kompaktan i jednoličan teren za mjerenje (betonske ili asfaltne površine treba izbjegavati) kako bi se utjecaj vertikalne refrakcije sveo na minimum. Ako je instrument rotirajući laser izravno izložen sunčevim zrakama treba ga zasjeniti. Nivelmanske točke A i B trebaju biti na udaljenosti 40 m. Nivelmanske letve na točkama A i B trebaju biti fiksirane i stabilne tijekom mjerenja. Instrument se postavlja na tri stajališta S1, S2 i S3, koja se izabiru prema definiranim udaljenostima do nivelmanskih letava na točkama A i B (slika 1).

Slika 1. Konfiguracija testnog polja (ISO 2012).

Sesija mjerenja sastoji se od 4 serije mjerenja. Svaka serija mjerenja sastoji se od triju stajališta instrumenta S1, S2 i S3. Na svakom stajalištu očitavaju se četiri seta očitanja. Svaki set sadrži po dva očitanja, po jedno na svakoj od letava $(x_{A,j}, x_{B,j})$. Nakon svakog seta očitanja na pojedinom stajalištu, instrument se okreće za 90° oko vertikalne osi, u smjeru kretanja kazaljke na satu (tablica 1). Instrument treba biti orijentiran u istom smjeru i treba imati jednak smjer rotacije na svim stajalištima (ISO 2012, HRN ISO 2014).

Odstupanja ravnine rotirajućeg lasera od horizontalne ravnine i osi rotirajućeg lasera od vertikalne osi (slika 2) moguće je modelirati (ISO 2012).

Nakon provedenih terenskih mjerenja slijedi računski dio. Kako bi se postupak računanja automatizirao i ubrzao te eliminirao utjecaj ljudske pogreške u računanju, napravljen je program *ISO_ROLAS*.

U računskom dijelu prvo se računaju nepoznanice h (visinska razlika između nivelmanskih točaka A i B), a, b_1 i b_2 (slika 2) prema izrazima priloženima u normi.

 112
 Zrinjski, M. i dr.: Ispitivanje i analiza kvalitete mjerenja rotirajućega ..., Geod. list 2019, 2, 109–128

 Tablica 1. Organizacija jedne sesije mjerenja (ISO 2012).

Postavke instrumen- ta za svaku seriju i = 1,, 4			₽	61 ⊶⊶∎ B	S2 ⊶ I A B		A	S3 B
Postavke orijentacije n = 1,, 4		Set očitanja $x_{A,j}, x_{B,j}$ j = 1,, 4		Set očitanja $x_{A,j}$, $x_{B,j}$ j = 5,, 8		Set očitanja $x_{A,j}$, $x_{B,j}$ j = 9,, 12		
	1	A	$x_{\mathrm{A},1}$	$x_{_{\mathrm{B},1}}$	$x_{\mathrm{A},5}$	$x_{_{\mathrm{B},5}}$	<i>x</i> _{A,9}	$x_{_{\mathrm{B},9}}$
žaj	2	Þ	<i>x</i> _{A,2}	$x_{\mathrm{B,2}}$	$x_{\mathrm{A},6}$	$x_{\mathrm{B,6}}$	$x_{\mathrm{A},10}$	$x_{\mathrm{B},10}$
Polo	3	Ŧ	<i>x</i> _{A,3}	x _{B,3}	<i>x</i> _{A,7}	$x_{\mathrm{B,7}}$	<i>x</i> _{A,11}	x _{B,11}
	4	-4	<i>x</i> _{A,4}	$x_{\mathrm{B,4}}$	$x_{\mathrm{A,8}}$	$x_{_{\mathrm{B},8}}$	$x_{\mathrm{A},12}$	$x_{_{\mathrm{B},12}}$

Slika 2. Model instrumentalnih pogrešaka rotirajućeg lasera (ISO 2012).

Empirijsko standardno odstupanje pojedine serije mjerenja, za duljinu vizure 40 m, računa se prema izrazu (ISO 2012):

$$s_i = \sqrt{\frac{\mathbf{r}_i^{\mathrm{T}} \mathbf{P} \mathbf{r}_i}{\nu}} \quad i = 1, \dots, 4 , \qquad (1)$$

gdje je **r** vektor popravaka, **P** je matrica težina [vidi detaljnije izraz (10) u ISO (2012)], a ν je broj prekobrojnih mjerenja ($\nu = 12 - 4 = 8$).

Ukupno empirijsko standardno odstupanje jedne sesije mjerenja računa se prema izrazu (ISO 2012):

$$s = \sqrt{\frac{\sum_{i=1}^{4} s_i^2}{4}} .$$
 (2)

Ukupno odstupanje osi rotirajućeg lasera od vertikalne osi b, koje se odnosi na udaljenost opažanja 40 m, dano je sljedećim izrazom:

$$b = \sqrt{b_1^2 + b_2^2} \ . \tag{3}$$

Standardna odstupanja (standardne mjerne nesigurnosti A-vrste) nepoznanica h, a i b računaju se prema izrazima (ISO 2012):

$$s_h = u(h) = 0, 14 \cdot s$$
, (4)

$$s_a = u(a) = 0,25 \cdot s$$
, (5)

$$s_b = u(b) = 0,20 \cdot s$$
. (6)

Statistički testovi preporučeni su za potpuni postupak ispitivanja i analize preciznosti rotirajućeg lasera, a sastoje se od četiriju neovisnih statističkih testova. Za statističke testove razina je pouzdanosti $1-\alpha=0,95$, a prema planu mjerenja pretpostavljeni broj stupnjeva slobode (broj prekobrojnih mjerenja) za jednu je sesiju mjerenja $\nu=32$ (ISO 2012). Fraktile $\chi^2_{1-\alpha}(\nu), F_{1-\alpha/2}(\nu,\nu)$ i $t_{1-\alpha/2}(\nu)$ uzimaju se iz statističkih tablica uz nivo signifikantnosti $\alpha=0,95$ (Pavlić 1970). Svaki statistički test ispituje nultu hipotezu te se ovisno o rezultatima statističkog testa prihvaća ili odbija nulta hipoteza, odnosno odbija ili prihvaća alternativna hipoteza (tablica 2).

Statistički test	Nulta hipoteza	Alternativna hipoteza
a)	$s \le \sigma$	s > 0
b)	$\sigma = \tilde{\sigma}$	$\sigma \neq \tilde{\sigma}$
c)	<i>a</i> = 0	<i>a</i> ≠ 0
d)	<i>b</i> = 0	<i>b</i> ≠ 0

Tablica 2. Pregled hipoteza statističkog testiranja (ISO 2012).

Statistički test a)

Nulta hipoteza prihvaća se ako je empirijsko standardno odstupanje s manje ili jednako vrijednosti σ , koja je definirana od proizvođača instrumenta, tj. ako je zadovoljeno (ISO 2012):

$$s \le \sigma \cdot \sqrt{\frac{\chi^2_{1-\alpha}(\nu)}{\nu}}, \qquad s \le 1,20 \cdot \sigma.$$
 (7)

U suprotnom se nulta hipoteza odbacuje, a prihvaća se alternativna hipoteza.

Statistički test b)

U slučaju dviju različitih sesija mjerenja, ovim se testom ispituje pripadaju li njihova empirijska standardna odstupanja s i \tilde{s} istom uzorku. Nulta hipoteza $\sigma = \tilde{\sigma}$ prihvaća se ako je zadovoljeno (ISO 2012):

$$\frac{1}{F_{1-\alpha/2}(\nu,\nu)} \le \frac{s^2}{\tilde{s}^2} \le F_{1-\alpha/2}(\nu,\nu) , \qquad 0,50 \le \frac{s^2}{\tilde{s}^2} \le 2,02 .$$
(8)

U suprotnom se nulta hipoteza odbacuje, a prihvaća se alternativna hipoteza.

Empirijska standardna odstupanja s i \tilde{s} mogu se odrediti:

- iz dviju sesija mjerenja s istim instrumentom u različito vrijeme
- iz dviju sesija mjerenja s različitim instrumentima.

Statistički test c)

Nulta hipoteza, kojom se ispituje je li odstupanje ravnine rotirajućeg lasera od horizontalne ravnine a jednako nuli, prihvaća se ako je ispunjen uvjet (ISO 2012):

$$|a| \le s_a \cdot t_{1-a/2}(\nu), \qquad |a| \le 0.51 \cdot s.$$
 (9)

U suprotnom se nulta hipoteza odbacuje, a prihvaća se alternativna hipoteza.

Statistički test d)

Nulta hipoteza, kojom se ispituje je li ukupno odstupanje osi rotirajućeg lasera od vertikalne osi b jednako nuli, prihvaća se ako je ispunjen uvjet (ISO 2012):

$$b \le s_b \cdot t_{1-\alpha/2}(\nu), \qquad b \le 0, 41 \cdot s.$$
 (10)

U suprotnom se nulta hipoteza odbacuje, a prihvaća se alternativna hipoteza.

3. Ispitivanje preciznosti rotirajućeg lasera

Ispitivanje preciznosti rotirajućeg lasera NL-400 tvrtke Nivel System obavljeno je na testnom polju prema potpunom postupku norme ISO 17123-6:2012. Rotirajući laser NL-400 karakterizira 600 okretaja u minuti i domet do 500 m. Pomoću prijamnika RD400 očitavale su se visine na nivelmanskoj letvi s centimetarskom podjelom. Testno polje postavljeno je u neposrednoj blizini Geodetskog fakulteta, na srednjoškolskom igralištu u Klaićevoj ulici u Zagrebu (slika 3). Prema normi ISO 17123-6:2012 odabrano je testno polje koje se nalazi na približno horizontalnom terenu. Nivelmanske točke A i B stabilizirane su bolcnama na rubnjaku uz atletsku stazu te su postavljene na međusobnoj udaljenosti 40 m. Stajališta instrumenta S1, S2 i S3 postavljena su tako da se stajalište S1 nalazi na sredini udaljenosti između nivelmanskih točaka A i B, stajalište instrumenta S2 udaljeno je od nivelmanske točke A 14,6 m, odnosno od nivelmanske točke B 54,6 m, dok je stajalište instrumenta S3 udaljeno 14,6 m od nivelmanske točke B, a 54,6 m od nivelmanske točke A (slika 1).

Slika 3. Testno polje na srednjoškolskom igralištu u Klaićevoj ulici u Zagrebu.

Prva sesija mjerenja provedena je 16. veljače 2019. ujutro, a druga sesija mjerenja obavljena je isti dan poslijepodne, na istom testnom polju. Obje sesije mjerenja sastojale su se od četiriju serija mjerenja, svaka serija sastojala se od mjerenja s triju stajališta instrumenta u četirima položajima instrumenta na svakom stajalištu, koji su definirani normom. U tablici 3 priloženi su podaci mjerenja prve i druge sesije mjerenja te visinske razlike između nivelmanskih točaka A i B (rezultati su iskazani u metrima).

1. serija		1. s	esija mjer	enja	2. sesija mjerenja		
Stajalište	j	$x_{\mathrm{A},j}$	$x_{\mathrm{B},j}$	$x_{\mathrm{B},j} - x_{\mathrm{A},j}$	$x_{\mathrm{A},j}$	$x_{\mathrm{B},j}$	$x_{\mathrm{B},j} - x_{\mathrm{A},j}$
	1	1,502	1,525	0,023	1,551	1,576	0,025
1	2	1,501	1,526	0,025	1,551	1,575	0,024
1	3	1,500	1,525	0,025	1,550	1,574	0,024
	4	1,501	1,525	0,024	1,551	1,574	0,023
	5	1,526	1,549	0,023	1,509	1,531	0,022
0	6	1,528	1,550	0,022	1,509	1,532	0,023
2	7	1,528	1,549	0,021	1,509	1,532	0,023
	8	1,527	1,549	0,022	1,509	1,533	0,024
	9	1,518	1,540	0,022	1,444	1,466	0,022
	10	1,518	1,541	0,023	1,442	1,465	0,023
0	11	1,519	1,541	0,022	1,445	1,465	0,020
	12	1,520	1,542	0,022	1,446	1,466	0,020
2. se	erija	1. s	esija mjer	enja	2. sesija mjerenja		
Stajalište	j	$x_{\mathrm{A},j}$	$x_{\mathrm{B},j}$	$x_{\mathrm{B},j} - x_{\mathrm{A},j}$	$x_{\mathrm{A},j}$	$x_{\mathrm{B},j}$	$x_{\mathrm{B},j} - x_{\mathrm{A},j}$
	1	1,536	1,559	0,023	1,570	1,592	0,022
1	2	1,534	1,560	0,026	1,570	1,592	0,022
	3	1,537	1,559	0,022	1,570	1,593	0,023
	4	1,536	1,559	0,023	1,571	1,592	0,021
	5	1,560	1,584	0,024	1,532	1,557	0,025
	6	1,562	1,585	0,023	1,533	1,558	0,025
Z	7	1,561	1,583	0,022	1,533	1,557	$x_{Bj} - x_{Aj}$ 0,025 0,024 0,023 0,023 0,023 0,024 0,023 0,023 0,024 0,023 0,023 0,023 0,024 0,023 0,024 0,023 0,024 0,023 0,024 0,025 0,025 0,023 0,024 0,025 0,025 0,023 0,024 0,025 0,025 0,023 0,024 0,025 0,025 0,023 0,024
	8	1,560	1,583	0,023	1,532	1,555	0,023
	9	1,490	1,514	0,024	1,467	1,489	0,022
2	10	1,489	1,513	0,024	1,466	1,489	0,023
J	11	1,491	1,514	0,023	1,468	1,489	0,021
	12	1,492	1,514	0,022	1,467	1,489	0,022

Tablica 3. Podaci prve i druge sesije mjerenja (iskazani u metrima).

3. serija		1. se	1. sesija mjerenja			2. sesija mjerenja		
Stajalište	j	$x_{\mathrm{A},j}$	$x_{\mathrm{B},j}$	$x_{\mathrm{B},j} - x_{\mathrm{A},j}$	$x_{\mathrm{A},j}$	$x_{\mathrm{B},j}$	$x_{\mathrm{B},j} - x_{\mathrm{A},j}$	
	1	1,556	1,580	0,024	1,484	1,508	0,024	
	2	1,555	1,581	0,026	1,485	1,508	0,023	
1	3	1,557	1,579	0,022	1,482	1,506	0,024	
	4	1,558	1,580	0,022	1,483	1,506	0,023	
	5	1,579	1,600	0,021	1,568	1,591	0,023	
0	6	1,579	1,601	0,022	1,569	1,593	0,024	
2	7	1,579	1,600	0,021	1,569	1,592	0,023	
	8	1,579	1,599	0,020	1,568	1,593	0,025	
	9	1,509	1,532	0,023	1,487	1,509	0,022	
	10	1,507	1,530	0,023	1,488	1,509	0,021	
3	11	1,508	1,532	0,024	1,487	1,509	0,022	
	12	1,509	1,533	0,024	1,488	1,509	0,021	
4. se	erija	1. se	1. sesija mjerenja 2. sesija mjerenja			enja		
Stajalište	j	$x_{\mathrm{A},j}$	$x_{{ m B},j}$	$x_{\mathrm{B},j} - x_{\mathrm{A},j}$	$x_{\mathrm{A},j}$	$x_{{ m B},j}$	$x_{\mathrm{B},j} - x_{\mathrm{A},j}$	
	1	1,512	1,536	0,024	1,463	1,487	0,024	
	2	1,513	1,537	0,024	1,464	1,487	0,023	
	3	1,512	1,536	0,024	1,464	1,487	0,023	
	4	1,514	1,537	0,023	1,464	1,487	0,023	
	5	1,597	1,618	0,021	1,590	1,612	0,022	
	6	1,597	1,619	0,022	1,590	1,613	arenja $x_{B,j} - x_{A,j}$ 0,024 0,023 0,023 0,023 0,023 0,024 0,023 0,023 0,024 0,023 0,024 0,023 0,024 0,023 0,024 0,023 0,024 0,023 0,021 0,021 0,021 0,023 0,024 0,023 0,024 0,025 0,021 0,023 0,023 0,023 0,023 0,023 0,023 0,023 0,024 0,023 0,024 0,025 0,024 0,023 0,024 0,025 0,024 0,023 0,024 0,025 0,024 0,023 <td< td=""></td<>	
2	7	1,597	1,618	0,021	1,591	1,613	0,022	
	8	1,597	1,619	0,022	1,590	1,612	0,022	
	9	1,466	1,490	0,024	1,534	1,558	0,024	
0	10	1,467	1,488	0,021	1,535	1,557	0,022	
<u>ئ</u>	11	1,466	1,489	0,023	1,534	1,558	Premja $x_{B,j} - x_{A,j}$ 0,024 0,023 0,024 0,023 0,023 0,023 0,023 0,023 0,023 0,023 0,024 0,023 0,024 0,023 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,023 0,023 0,023 0,023 0,023 0,023 0,023 0,023 0,023 0,024 0,025 0,022 0,023 0,024 0,022 0,023 0,024 0,025 0,024 0,022 0,024 0,023 0,024 0,023 0,024 0,023 0,023	
	12	1,468	1,489	0,021	1,535	1,558	0,023	
			<i>s</i> =	= 1,31 mm		$\tilde{s} =$	= 1,00 mm	

Zrinjski, M. i dr.: Ispitivanje i analiza kvalitete mjerenja rotirajućega ..., Geod. list 2019, 2, 109–128 117

Za prvu sesiju mjerenja dobiveno je empirijsko standardno odstupanje s=1,31 mm, a za drugu sesiju mjerenja dobiveno je empirijsko standardno odstupanje $\tilde{s}=1,00$ mm .

Budući da se ispitivanje preciznosti rotirajućeg lasera obavljalo prema potpunom postupku, provedeni su i statistički testovi. Prema normi ISO (2012) preporučena su četiri statistička testa, koja obuhvaćaju podatke mjerenja prve i druge sesije.

Statistički test a)

Usporedba empirijskog standardnog odstupanja (s $\equiv u_{\rm ISO-ROLAS}$) i vrijednosti σ , koja je definirana od proizvođača instrumenta, za udaljenost 40 metara. Prema proizvođaču, tvrtki Nivel System, $\sigma = 1,0$ mm / 10 m (Nivel System 2015). U tablici 4 prikazana je nulta hipoteza, uvjet te vrijednosti σ i $u_{\rm ISO-ROLAS}$ za obje sesije mjerenja za udaljenost 40 m.

Statistički test a)	1. sesija mjerenja	2. sesija mjerenja		
Nulta hipoteza	$s \leq \sigma$			
Uvjet	$s \le 1, 20 \cdot \sigma$			
σ	4 mm			
$1,20 \cdot \sigma$	4,80 mm			
$u_{ m ISO-ROLAS}$	1,31 mm 1,00 mm			

Tablica 4. Rezultati statističkog testa a).

Prema podacima u tablici 4, nulta hipoteza prihvaća se za obje sesije mjerenja uz vjerojatnost 95%. Prihvaćanje nulte hipoteze znači da su empirijska standardna odstupanja rotirajućeg lasera NL-400, za obje sesije mjerenja, manja od standardnog odstupanja definiranog od proizvođača instrumenta tvrtke Nivel System.

Statistički test b)

Usporedba empirijskih standardnih odstupanja dviju različitih sesija mjerenja s i \tilde{s} . U tablici 5 prikazana je nulta hipoteza, uvjet te vrijednosti s i \tilde{s} , njihovi kvadrati i omjer.

Statistički test b)	1. sesija mjerenja 2. sesija mjere			
Nulta hipoteza	$\sigma = \tilde{\sigma}$			
Uvjet	$0,50 \leq rac{s^2}{ ilde{s}^2} \leq 2,02$			
8 Š	1,31 mm 1,00 mm			
s^2 \widetilde{s}^2	1,70 mm 1,00 mm			
Omjer $\frac{s^2}{\tilde{s}^2}$	1,71			

Tablica 5. Rezultati statističkog testa b).

Prema podacima u tablici 5, nulta hipoteza prihvaća se uz vjerojatnost 95%. Prihvaćanje nulte hipoteze znači da empirijska standardna odstupanja dviju neovisnih sesija mjerenja pripadaju istom uzorku.

Statistički test c)

Usporedba odstupanja ravnine rotirajućeg lasera od horizontalne ravnine a s empirijskim standardnim odstupanjem s. U tablici 6 prikazana je nulta hipoteza, uvjet te vrijednosti s i a.

Statistički test c)	1. sesija mjerenja 2. sesija mjerenja		
Nulta hipoteza	<i>a</i> =	= 0	
Uvjet	$ a \le 0.51 \cdot s$		
S	1,31 mm	1,00 mm	
$0,51 \cdot s$	0,67 mm	0,51 mm	
a	0,47 mm -0,66 mm		

Tablica 6. Rezultati statističkog testa c).

Nulta hipoteza prihvaća se za prvu sesiju mjerenja uz vjerojatnost 95%. Prihvaćanje nulte hipoteze za prvu sesiju mjerenja znači da je odstupanje ravnine rotirajućeg lasera od horizontalne ravnine jednako nuli. Nulta hipoteza za drugu sesiju mjerenja odbacuje se uz vjerojatnost 95% te se prihvaća alternativna hipoteza jer uvjet nije zadovoljen.

Statistički test d)

Usporedba ukupnog odstupanja osi rotirajućeg lasera od vertikalne osi b s empirijskim standardnim odstupanjem s. U tablici 7 prikazana je nulta hipoteza, uvjet te vrijednosti s i b.

Statistički test d)	1. sesija mjerenja	2. sesija mjerenja		
Nulta hipoteza	b =	= 0		
Uvjet	$b \le 0,41 \cdot s$			
S	1,31 mm	1,00 mm		
$0,41 \cdot s$	0,53 mm	0,41 mm		
b	0,85 mm	0,29 mm		

Tablica 7. Rezultati statističkog testa d).

Prema podacima iz tablice 7 nulta hipoteza odbacuje se za prvu sesiju mjerenja uz vjerojatnost 95% te se prihvaća alternativna hipoteza. Nulta hipoteza prihvaća se za drugu sesiju mjerenja uz vjerojatnost 95%. Prihvaćanje nulte hipoteze za drugu sesiju mjerenja znači da je ukupno odstupanje osi rotirajućeg lasera od vertikalne osi jednako nuli.

4. Određivanje točnosti rotirajućeg lasera

Na točnost mjerenja utječu pogreške mjerenja, koje se prema karakteristikama dijele na grube, sustavne i slučajne pogreške. Mjerenja u preciznom geometrijskom nivelmanu opterećena su sustavnim i slučajnim pogreškama različitih izvora, koje mogu biti: pogreške instrumenta, pogreške letve, pogreške pri ispitivanju instrumenta i letve, pogreške rektifikacije, pogreške pri mjerenju te pogreške zbog atmosferskih uvjeta (Činklović 1978, Činklović 1983, Feil 1984, Rožić 1995, Barković 2002, Zrinjski i dr. 2010). Gotovo sve navedene pogreške mogu se u najvećem dijelu eliminirati ispitivanjem i rektifikacijom instrumenta, izborom najpovoljnijih vanjskih uvjeta rada, odabirom doba dana i godine te metodom mjerenja (Benčić i Solarić 2008, Zrinjski i dr. 2010). Nakon otkrivanja i uklanjanja grubih pogrešaka i eliminiranja svih poznatih sustavnih pogrešaka, mjerenja su i dalje opterećena slučajnim pogreškama čiji se uzroci i zakonitosti nastajanja ne mogu izraziti određenom funkcijom. Točnost se definira kao stupanj podudaranja ili približavanja nekog mjerenja njezinoj pravoj, istinitoj, vrijednosti. Točnost mjerenja, koja nisu opterećena preostalim sustavnim pogreškama, izražava se standardnim odstupanjem (Feil 1989).

Kako bi se ocijenila točnost određivanja visinskih razlika rotirajućim laserom NL-400, potrebno je poznavati pravu, referentnu vrijednost visinske razlike između nivelmanskih točaka A i B. Prava vrijednost visinske razlike određena je iz prekobrojnih mjerenja preciznim nivelirom Leica NA2 s planparalelnom pločom i dvije invarne nivelmanske letve. Precizno određivanje visinske razlike između točaka A i B obavilo se niveliranjem iz sredine, kako bi se utjecaj preostalih pogrešaka na podatke mjerenja sveo na minimum. Metodom preciznoga geometrijskog nivelmana očitanje na nivelmanskim letvama može se odrediti na desetinku milimetra, a stotinka milimetra se procjenjuje. U tablici 8 prikazani su rezultati visinske razlike između nivelmanskih točaka A i B dobiveni iz podataka mjerenja.

Očitanje	∆ <i>H</i> [m]	Očitanje	∆ <i>H</i> [m]	Očitanje	∆ <i>H</i> [m]
1	-0,0230	18	-0,0230	35	-0,0232
2	-0,0230	19	-0,0231	36	-0,0232
3	-0,0230	20	-0,0233	37	-0,0231
4	-0,0232	21	-0,0231	38	-0,0230
5	-0,0232	22	-0,0231	39	-0,0232
6	-0,0231	23	-0,0232	40	-0,0231
7	-0,0230	24	-0,0232	41	-0,0232
8	-0,0231	25	-0,0230	42	-0,0232
9	-0,0233	26	-0,0232	43	-0,0233
10	-0,0233	27	-0,0231	44	-0,0232
11	-0,0230	28	-0,0230	45	-0,0232
12	-0,0232	29	-0,0231	46	-0,0232
13	-0,0233	30	-0,0233	47	-0,0232
14	-0,0230	31	-0,0230	48	-0,0233
15	-0,0231	32	-0,0232	49	-0,0232
16	-0,0230	33	-0,0232	50	-0,0233
17	-0,0231	34	-0,0232		
				$\Delta \overline{H} = -0$),0231 m

Tablica 8. Podaci određivanja visinske razlike preciznim geometrijskim nivelmanom.

Najvjerojatnija vrijednost visinske razlike između točaka A i B dobivena je običnom aritmetičkom sredinom iz 50 visinskih razlika određenih preciznim geometrijskim nivelmanom te iznosi $\Delta \overline{H} = -0,0231 \,\mathrm{m}$ i predstavlja referentnu vrijednost, koja je određena uz standardno odstupanje $s_{\Delta \overline{H}} = 0,10 \,\mathrm{mm}$. Uobičajeno je da se pri određivanju kriterija ocjene točnosti upotrebljavaju popravke mjerenja (Rožić 2007). Popravke mjerenja računate su kao razlika između najvjerojatnije vrijednosti visinske razlike i pojedine visinske razlike dobivene mjerenjem rotirajućim laserom u obje sesije mjerenja. Kako bi se što zornije prikazala distribucija frekvencija popravaka, izrađen je njihov grafički prikaz. Raspon unutar kojeg se nalaze vrijednosti popravaka mjerenja može se podijeliti u razrede određene širine (tablica 9, Feil 1989). Pri raspodjeli podataka u razrede, raspon pojedinog razreda kreće se od uključujući donju granicu razreda do gornje granice razreda. Raspon zadnjeg razreda uključuje donju i gornju granicu razreda (Pauše 1993). Broj mjerenja unutar jednog razreda frekvencija je tog razreda (Klak 1986).

Redni broj razreda	Donja granica razreda [mm]	Gornja granica razreda [mm]	Sredina razreda (x _i) [mm]	Frekvencija razreda
1	-3,5	-2,5	-3	2
2	-2,5	-1,5	-2	6
3	-1,5	-0,5	-1	21
4	-0,5	0,5	0	28
5	0,5	1,5	1	25
6	1,5	2,5	2	11
7	2,5	3,5	3	3

Tablica 9. Podjela popravaka mjerenja u razrede.

Poligon frekvencija (slika 4 – plavo) grafički je prikaz distribucije frekvencija kojem se na osi x nalaze vrijednosti sredine razreda promatranog obilježja, dok mu se na osi y nalaze vrijednosti frekvencije pojedinog razreda. Prema tablici 9 može se vidjeti da se popravke mjerenja distribuiraju prema normalnoj razdiobi. Normalna razdioba najvažnija je kontinuirana razdioba koja je našla primjenu u mnogim područjima znanosti, a osobito se primjenjuje u geodeziji pri razmatranju rasporeda pogrešaka, popravaka, odnosno mjerenja (Klak 1986). Za slučajnu varijablu x kažemo da je distribuirana prema zakonu normalne razdiobe ako je područje njezinih vrijednosti $(-\infty, +\infty)$, a funkcija gustoće vjerojatnosti (Pavlić 1970, Feil 1990):

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}.$$
 (11)

Normalna razdioba jednoznačno je određena očekivanjem μ i varijancom σ^2 . Krivulja normalne razdiobe zvonolikog je oblika s tjemenom na pravcu $x = \mu$ i asimptotski se približava osi x (Vrdoljak 2007). Kod prilagođavanja empirijske distribucije normalnoj razdiobi očekivanje se aproksimira aritmetičkom sredinom, a varijanca se aproksimira varijancom empirijskih podataka (Pavlić 1970). Krivulja normalne razdiobe prilagođena empirijskim podacima prikazana je na slici 4 (crveno).

Slika 4. Poligon frekvencija (plavo) i krivulja normalne razdiobe (crveno).

Točnost referentnog mjerenja s_0 dobivena je prema izrazu (Rožić 2007):

$$s_0 = \sqrt{\frac{\mathbf{v}^{\mathrm{T}} \mathbf{P} \mathbf{v}}{n_f}}, \qquad (12)$$

gdje je **v** vektor popravaka, a **P** matrica težina definirana u ISO (2012), pri čemu je vrijednost težine određivanja visinske razlike niveliranjem iz sredine jednaka 2, a vrijednost težine određivanja visinske razlike s kraja iznosi 0,5 te n_f označava broj prekobrojnih mjerenja. Vektor **v** u ovom slučaju ima dimenzije (96×1), matrica **P** ima dimenzije (96×96), a prekobrojnih je mjerenja 95. Prema izrazu (12) točnost referentnog mjerenja rotirajućeg lasera iznosi:

$$s_0 = 1,26 \text{ mm}$$

Točnost pojedinog mjerenja određena je prema izrazu (Rožić 2007):

$$s_i = \frac{s_0}{\sqrt{p_i}}, \quad i = 1, 2, ..., n$$
, (13)

gdje je s_0 referentno standardno odstupanje, a p_i je težina određene visinske razlike. Točnost određivanja visinske razlike niveliranjem iz sredine, tj. niveliranjem s prvog stajališta, prema izrazu (13) iznosi:

$$s_1 = 0,89 \text{ mm}$$
.

Točnost određivanja visinske razlike niveliranjem s kraja, odnosno niveliranjem s drugog i trećeg stajališta, prema izrazu (13) iznosi:

$$s_2 = s_3 = 1,78 \text{ mm}$$
.

5. Procjena mjerne nesigurnosti

Procjena standardne mjerne nesigurnosti A-vrste komponenta je mjerne nesigurnosti dobivena statističkom analizom vrijednosti određenih ponovljenim mjerenjima u propisanim uvjetima (ISO 2014). Procjena standardne mjerne nesigurnosti B-vrste izražava se varijancom ili standardnom nesigurnosti temeljem znanstvene prosudbe na svim raspoloživim podacima o mogućoj promjenljivosti. Takav skup podataka može uključivati: prijašnje mjerne podatke, iskustvo s tvarima i instrumentima ili opće poznavanje ponašanja i svojstava bitnih tvari i instrumenata, specifikacije proizvođača, podatke dane u potvrdama o umjeravanju i drugim potvrdama te nesigurnosti dodijeljene referentnim podacima uzetim iz priručnika (ISO/IEC 2008).

Procjena standardnih mjernih nesigurnosti A-vrste i B-vrste određena je za duljinu 40 m. Prema podacima obavljenih mjerenja dobivena je procjena standardne mjerne nesigurnosti A-vrste, odnosno standardno odstupanje određivanja visinske razlike rotirajućim laserom NL-400 za prvu sesiju mjerenja, koje iznosi:

$$u_{\rm A} = 1,31 \, {\rm mm}$$
 .

Prema normi 17123-6:2012 za određivanje standardne mjerne nesigurnosti B-vrste potrebno je uzeti u obzir sljedeće parametre (za duljinu 40 m) (Macarol 1985, ISO 2012, HRN ISO 2014):

- pogreška zbog odstupanja ravnine rotirajuć
eg lasera od horizontalne ravnine aiznos
i $-1{,}50~{\rm mm}$
- pogreška zbog ukupnog odstupanja osi rotirajuć
eg lasera od vertikalne osi biznosi $-1{,}50~{\rm mm}$
- pogreška zbog nevertikalnosti nivelmanske letve $dh_{\scriptscriptstyle 1}$ iznosi 0,06 mm
- pogreška nulte podjele nivelmanske letve dh_{\circ} iznosi 0,50 mm
- pogreška zbog spajanja nivelmanske letve $dh_{\scriptscriptstyle 3}$ iznosi –2,00 mm
- pogreška zbog atmosferskih uvjeta $dh_{\scriptscriptstyle 4}$ iznosi ±0,02 mm
- pogreška zbog slijeganja stativa $dh_{\scriptscriptstyle 5}$ iznosi –2,00 mm
- pogreška zbog zakrivljenosti Zemlje $dh_{\rm 6}$ iznosi 0,13 mm.

Standardna odstupanja procijenjenih pogrešaka za određivanje standardne mjerne nesigurnosti B-vrste računaju se ovisno o razdiobi prema kojoj se distribuiraju. Standardna odstupanja procijenjenih pogrešaka koje se distribuiraju prema pravokutnoj razdiobi računaju se prema izrazu (ISO 2014):

$$u_j = \frac{a}{\sqrt{3}} , \qquad (14)$$

a standardna odstupanja procijenjenih pogrešaka koje se distribuiraju prema trokutastoj razdiobi računaju se prema izrazu (ISO 2014):

$$u_j = \frac{a}{\sqrt{6}},\tag{15}$$

gdje je $a = (a_+ - a_-)/2$. Vrijednosti gornje granice a_+ i donje granice a_- definiraju interval unutar kojeg leži parametar a. Vjerojatnost da će parametar a ležati unutar tog intervala iznosi 100%.

U tablici 10 dan je prikaz računanja parametara standardne mjerne nesigurnosti B-vrste prema ISO (2012) i ISO (2014).

Tablica 10. Parametri standardne mjerne nesigurnosti B-vrste (ISO 2012, ISO 2014).

Veličina X _i	Vrijednost x_i [mm]		Razdioba	Standardna nesigurnost $u(x_i)$ [mm]	Koeficijentosjetljivosti $c_i \equiv \frac{\partial f}{\partial x_i}$	$u(x_t) \equiv c_i \cdot u(x_i)$ [mm]
a	-1,50	$a_{+} = -0,50$ $a_{-} = -2,50$ a = 1,00	pravokutna	0,58	1	0,58
Ь	-1,50	$a_{+} = 0,00$ $a_{-} = -1,50$ a = 0,75	trokutasta	0,31	1	0,31
dh_1	0,06	$a_{+} = 0,06$ $a_{-} = 0,00$ a = 0,03	pravokutna	0,02	1	0,02
$dh_{_2}$	0,50	$a_{+} = 0,50$ $a_{-} = 0,00$ a = 0,25	pravokutna	0,14	1	0,14
$dh_{_3}$	-2,00	$a_{+} = 0,00$ $a_{-} = -2,00$ a = 1,00	pravokutna	0,58	1	0,58
$dh_{_4}$	0,00	$a_{+} = 0,02$ $a_{-} = -0,02$ a = 0,02	pravokutna	0,01	1	0,01
dh_{5}	-2,00	$\begin{bmatrix} a_{+} = 0,00 \\ a_{-} = -2,00 \\ a = 1,00 \end{bmatrix}$	pravokutna	0,58	1	0,58
dh_6	0,13	$a_{+} = 0.13$ $a_{-} = 0.00$ a = 0.07	pravokutna	0,04	1	0,04

Iz tablice 10 proizlazi da procjena standardne mjerne nesigurnosti B-vrste iznosi:

$$u_{\rm B} = \sqrt{0.58^2 + 0.31^2 + 0.02^2 + 0.14^2 + 0.58^2 + 0.01^2 + 0.58^2 + 0.04^2} ,$$
$$u_{\rm B} = 1.06 \text{ mm} .$$

Na sastavljenu standardnu mjernu nesigurnost utječu standardne mjerne nesigurnosti A-vrste i B-vrste te se ona može izračunati prema izrazu (Benčić i Solarić 2008):

$$u_{\rm c} = \sqrt{u_{\rm A}^2 + u_{\rm B}^2}$$
 (16)

Uvrste li se u izraz (16) vrijednosti standardnih mjernih nesigurnosti A-vrste i B-vrste dobije se izraz:

$$u_{\rm c} = \sqrt{1,31^2 + 1,06^2}$$

Konačna vrijednost za sastavljenu standardnu mjernu nesigurnost iznosi:

$$u_{a} = 1,69 \text{ mm na } 40 \text{ m}$$
.

U znanstvenim istraživanjima računa se i proširena mjerna nesigurnost prema izrazu:

$$U = k \cdot u_c, \tag{17}$$

gdje je k faktor proširenja, koji za interval pouzdanosti 95% iznosi 1,96. Prema izrazu (17) proširena mjerna nesigurnost iznosi:

$$U = 3,30 \text{ mm} \text{ na } 40 \text{ m}$$

6. Zaključak

Rotirajući laser rotacijom laserske zrake oko svoje vertikalne osi opisuje horizontalnu ravninu. Visinska razlika dobivena rotirajućim laserom računa se oduzimanjem očitanja, određenih prijamnikom, na zadnjoj i prednjoj nivelmanskoj letvi. Kako bismo bili sigurni u ispravnost rotirajućeg lasera NL-400 tvrtke Nivel System ispitali smo i odredili njegovu preciznost i točnost te iskazali sastavljenu standardnu mjernu nesigurnost i proširenu mjernu nesigurnost. Postupak obrade i analize rezultata mjerenja te statističkih testova i grupiranja u razrede, radi ispitivanja preciznosti i točnosti, obavljen je programom *ISO_ROLAS*. 126 Zrinjski, M. i dr.: Ispitivanje i analiza kvalitete mjerenja rotirajućega ..., Geod. list 2019, 2, 109–128

Preciznost mjerenja ispitana je prema potpunom postupku međunarodne norme ISO 17123-6:2012. Analizom rezultata ispitivanja preciznosti rotirajućeg lasera NL-400 utvrđeno je da su empirijske vrijednosti standardnih odstupanja, za obje sesije mjerenja, manje od vrijednosti deklarirane u laboratoriju pod kontroliranim uvjetima, koje su definirane u tehničkim specifikacijama instrumenta. Također, analizom rezultata utvrđeno je da empirijska standardna odstupanja dviju sesija mjerenja pripadaju istom uzorku, odnosno dvije neovisne grupe mjerenja rotirajućim laserom NL-400 iste su preciznosti.

Točnost mjerenja, odnosno određivanja visinske razlike, ispitana je u odnosu na referentnu visinsku razliku, koja je dobivena niveliranjem iz sredine metodom preciznoga geometrijskog nivelmana. Točnost određivanja visinske razlike rotirajućim laserom izražena je referentnim standardnim odstupanjem te iznosi 1,26 mm. Točnost određivanja visinske razlike niveliranjem iz sredine iznosi 0,89 mm, dok točnost određivanja visinske razlike niveliranjem s kraja iznosi 1,78 mm.

Procijenjeni su parametri standardnih mjernih nesigurnosti A-vrste i B-vrste koji utječu na konačni rezultat mjerenja te je izračunata sastavljena standardna mjerna nesigurnost, koja iznosi 1,69 mm na 40 m. Također, izračunata je i proširena mjerna nesigurnost, koja odgovara intervalu pouzdanosti od 95%, a iznosi 3,30 mm na 40 m.

Analizom rezultata matematičkog izjednačenja i statističkog testiranja utvrđeno je da je rotirajući laser NL-400 (ser. br. H411274) ispravan te se može primjenjivati u mjerenjima u kojima je ostvariva preciznost i točnost zadovoljavajuća.

Literatura

- Barković, Đ. (2002): Komparacija nivelmanskih letava pomoću inkrementalne mjerne letve, doktorska disertacija, Geodetski fakultet Sveučilišta u Zagrebu, Zagreb.
- Barković, D., Zrinjski, M., Borić, B. (2013): Laboratory Procedure for the Calibration of Laser Handheld Distance Meter, Conference Proceedings, Volume II – 13th International Multidisciplinary Scientific GeoConference SGEM 2013, STEF92 Technology Ltd., Sofia, 293–300.
- Barković, D., Zrinjski, M., Udovičić, D. (2014): Automation of Testing of Geodetic Measuring Instruments, Conference Proceedings, Volume II – 14th International Multidisciplinary Scientific GeoConference SGEM 2014, STEF92 Technology Ltd., Sofia, 89–96.
- Barković, Đ., Zrinjski, M., Baričević, S. (2016): Automatizacija ispitivanja preciznosti elektrooptičkih daljinomjera na kalibracijskoj bazi, Geodetski list, 70 (93), 4, 311–336.
- Benčić, D., Solarić, N. (2008): Mjerni instrumenti i sustavi u geodeziji i geoinformatici, Školska knjiga, Zagreb.
- Činklović, N. (1978): Analiza i prethodna ocena tačnosti metoda preciznih geodetskih merenja, Institut za geodeziju Građevinskog fakulteta Univerziteta u Beogradu, Beograd.
- Činklović, N. (1983): Metode preciznih geodetskih merenja, Naučna knjiga, Beograd.
- Feil, L. (1984): Prilog razmatranju modela ocjene točnosti u nivelmanu visoke točnosti, doktorska disertacija, Geodetski fakultet Sveučilišta u Zagrebu, Zagreb.
- Feil, L. (1989): Teorija pogrešaka i račun izjednačenja prvi dio, Geodetski fakultet Sveučilišta u Zagrebu, Zagreb.

- Feil, L. (1990): Teorija pogrešaka i račun izjednačenja drugi dio, Geodetski fakultet Sveučilišta u Zagrebu, Zagreb.
- Frančula, N., Lapaine, M. (2008): Geodetsko-geoinformatički rječnik, Državna geodetska uprava, Zagreb.
- HRN ISO (2014): HRN ISO 17123-6:2014 Optika i optički instrumenti Terenski postupci za ispitivanje geodetskih instrumenata i instrumenata izmjere 6. dio: Rotirajući laseri (ISO 17123-6:2012), Hrvatski zavod za norme, Zagreb, International Organization for Standardization, Geneva, Switzerland.
- ISO (2012): ISO 17123-6:2012 Optics and optical instruments Field procedures for testing geodetic and surveying instruments Part 6: Rotating lasers, International Organization for Standardization, Geneva, Switzerland.
- ISO (2014): ISO 17123-1:2014 Optics and optical instruments Field procedures for testing geodetic and surveying instruments Part 1: Theory, International Organization for Standardization, Geneva, Switzerland.
- ISO/IEC (2008): ISO/IEC Guide 98-3:2008 Uncertainty of measurement Part 3: Guide to the expression of uncertainty in measurement (GUM:1995), International Organization for Standardization, Geneva, Switzerland.
- Klak, S. (1986): Teorija pogrešaka i račun izjednačenja, Sveučilišna naklada Liber, Zagreb.
- Levin, E., Nadolinets, L., Akhmedov, D. (2017): Surveying Instruments and Technology, CRC Press, Boca Raton, London, New York.
- Macarol, S. (1985): Praktična geodezija, Tehnička knjiga, Zagreb.
- Nivel System (2015): Mjerni instrumenti i pribor za građevinarstvo i geodeziju, Nivel System, Varšava, Poljska.
- Pauše, Ž. (1993): Uvod u matematičku statistiku, Školska knjiga, Zagreb.
- Pavlić, I. (1970): Statistička teorija i primjena, Tehnička knjiga, Zagreb.
- Rožić, N. (1995): Ispitivanje slučajnih i sistematskih pogrešaka u geometrijskom nivelmanu, doktorska disertacija, Geodetski fakultet Sveučilišta u Zagrebu, Zagreb.
- Rožić, N. (2007): Računska obrada geodetskih mjerenja, Geodetski fakultet Sveučilišta u Zagrebu, Zagreb.
- Vrdoljak, B. (2007): Vjerojatnost i statistika, Građevinsko-arhitektonski fakultet Sveučilišta u Splitu, Split.
- Zrinjski, M. (2010): Definiranje mjerila kalibracijske baze Geodetskog fakulteta primjenom preciznog elektrooptičkog daljinomjera i GPS-a, doktorska disertacija, Geodetski fakultet Sveučilišta u Zagrebu, Zagreb.
- Zrinjski, M., Barković, D., Razumović, I. (2010): Automatizacija ispitivanja preciznosti nivelira i umjeravanja invarnih nivelmanskih letvi, Geodetski list, 64 (87), 4, 279–296.
- Zrinjski, M., Barković, D., Tir, M. (2011): Automatizacija ispitivanja preciznosti teodolita prema normi HRN ISO 17123-3:2004, Geodetski list, 65 (88), 2, 123–144.
- Zrinjski, M., Barković, D., Čulić, D. (2013): Precision Testing of Electronic Tacheometer according to the Standard ISO 17123-5:2005, Conference Proceedings, Volume II 13th International Multidisciplinary Scientific GeoConference SGEM 2013, STEF92 Technology Ltd., Sofia, 351–358.
- Zrinjski, M., Barković, D., Herent, M. (2015): Testing the Precision of GNSS RTK Measuring Systems by Applying of Computer Programme, Conference Proceedings, Volume II – 15th International Multidisciplinary Scientific GeoConference SGEM 2015, STEF92 Technology Ltd., Sofia, 499–506.

128 Zrinjski, M. i dr.: Ispitivanje i analiza kvalitete mjerenja rotirajućega ..., Geod. list 2019, 2, 109-128

- Zrinjski, M., Barković, Đ., Radočaj, D., Tupek, A. (2018): Determining and Analyzing the Quality of GNSS RTK Positioning, Jubilee Annual 2017–2018 of the Croatian Academy of Engineering, 12, 1, 401–414.
- Zrinjski, M., Barković, D., Baričević, S. (2019): Precise Determination of Calibration Baseline Distances, Journal of Surveying Engineering, 145, 4, DOI: https://doi.org/10.1061/(ASCE)SU.1943-5428.0000288.

Mrežne adrese

- URL 1: International Organization for Standardization ISO, https://www.iso.org/committee/53732/x/catalogue/, (4. 3. 2019.).
- URL 2: Hrvatski zavod za norme HZN, http://www.hzn.hr/, (4. 3. 2019.).

Testing and Analysis of the Measurement Quality of the Rotating Laser System

ABSTRACT. The procedure of precision testing of geodetic and measuring instruments is given by the set of standards of the basic label ISO 17123. The precision of the rotating laser system - the rotating laser was tested according to the full test procedure of ISO 17123-6:2012. The full test procedure defines two independents measurement sessions, each containing four series of measurements with three differently defined instrument positions. After testing the precision of the rotating laser, four statistical tests were performed, which were recommended by the specified standard. Testing the accuracy of determining the height difference was performed by comparing the reference height difference, determined by a precise geometric levelling method. Error sources that affect the results of rotating laser measurement were estimated. The standard measurement uncertainty of the Type A, the standard measurement uncertainty of the Type B, the combined standard measurement uncertainty and the expanded measurement uncertainty were shown as measurement quality parameters. Measurement data were automatically mathematically equated and statistically processed in software ISO ROLAS. Analysis of the obtained results found that the empirical values of experimental standard deviations are less than the values stated in the technical specifications of the manufacturer and that the experimental standard deviations of the two independents measurement sessions originate from the same sample.

Keywords: ISO 17123-6:2012, rotating laser system, precision, accuracy, standard measurement uncertainty of the Type A, standard measurement uncertainty of the Type B, combined standard measurement uncertainty, expanded measurement uncertainty.

Primljeno / Received: 2019-04-29

Prihvaćeno / Accepted: 2019-06-05