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1. Introduction 

Bacterial cell, amongst other, consists of chromosome and zero, one or 

multiple plasmids [1]. Chromosome contains most of bacteria’s genetic material, 

and plasmids carry few additional genes which help the bacteria to overcome 

stressful situations, especially antibiotic treatments. Plasmids have the ability of 

replication and to transfer easily to other bacterial species [2][3]. 

The ever-growing and widespread usage of antibiotics has triggered 

antimicrobial resistance. Nowadays, having the global trade and travel in mind, as 

well as bacterial ability to transfer from one host to another, antibiotic resistance and 

virulence plasmids which inhibit antibiotics and lead to novel and untreatable 

diseases are rapidly spreading [4][5]. This phenomenon has led to further studies 

investigating mobile genetic elements [6].  

The main goal of these studies is automation of plasmid prediction and 

reconstruction methods. Commonly used approach is short-read whole-genome 

sequencing (WGS), which encounters difficulties working on plasmids with a high 

number of repeating sequences, resulting in fragmented assembly with numerous 

short contigs of unclear origin (chromosome or plasmid) [7]. Today, it is possible to 

automatically predict short plasmids, but the problems occur whilst trying to predict 

plasmids longer than 50 kbp, particularly the ones containing aforementioned 

repeating sequences [1].  

The aim of this thesis is to adopt a known strategy used for metagenomic 

classification, i.e. matching to a database of known species, to classify plasmids. 

Specifically, we will use matching to a database of known plasmids, assume that 

new plasmids would look like those, and afterwards use that prior information for 

classification. This approach would improve with more information the same way 

metagenomic classification does, where bigger and more complete databases are 

progressively being built, so when a new sequence emerges, there exists a good 

chance of inferring that it came from another organism which has already been 
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sequenced. Described strategy has the benefit of potentially getting better as 

databases get better. However, it is known that a k-mer strategy actually performs 

worse when there is too much data, because the k-mers start to clash. 

Furthermore, classification is carried out on plasmids and chromosomes, 

which are parted in k-length fragments in order to mimic incomplete assemblies. 

Classification is implemented using the existing BLAST algorithm on the one hand, 

and alternative method which differentiates between plasmids and chromosomes 

developed in this thesis on the other. 

The main concern that this thesis addresses would be to inspect the quality 

of classification for unknown strains, i.e.  whether the classification works in this 

case, and if the answer is affirmative, how accurate the plasmid and chromosome 

differentiation is. 
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2. Preliminaries 

This chapter consists of biological background, crucial for better 

understanding of this thesis, as well as the brief introduction to plasmid prediction 

methods and overview of the most significant efforts in this field. 

 

2.1. Chromosomes and Plasmids 

The DNA of most bacteria is contained in bacterial chromosome, a single 

circular molecule, which can range in size from only 160 kbp to 12 200 kbp [8]. In 

addition to the chromosome, bacterial cell often possesses one or multiple small 

circular (in some cases linear) DNA molecules, called plasmids [3][9]. Whilst the 

chromosomes are big and contain all the vital genetic information, plasmids are 

relatively small (usually from 1 to 300 kbp) and carry only a few additional genes, 

as shown in Figure 2.1 [10]. 

 

 

Figure 2.1: Bacterial chromosome and plasmids (size comparison) [11] 

 

Plasmids are classified as mobile genetic elements (MGEs) due to their 

ability to self-replicate autonomously and transfer between bacteria (even of another 

species) [9].  This cell-to-cell transfer is called bacterial conjugation and it is a 

mechanism of horizontal gene transfer (HGT) [10].  
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Plasmids act as major drivers of bacterial evolution, environmental 

adaptation, genetic diversity and variation [5][7]. Moreover, they may carry genes 

which provide the possibility to destroy other bacteria, detoxification of harmful 

substances, and most importantly antibiotic resistance, which leads to the rise of 

multi-resistant pathogenic bacteria [2][3][6][12]. Latter represents major health care 

problem around the world, especially nowadays when people are accustomed to 

travel a lot, taking plasmid transportation trait into consideration [4]. 

Plasmids have been key to the development of molecular biotechnology and 

are also extensively used as tools in genetic engineering [3][5]. They are often used 

to introduce genetic material into bacteria, which leads to production of vital proteins 

(e.g. insulin, human growth hormone and so forth) [2]. 

To conclude, the importance of plasmids is unquestionable, and scientists 

are currently working on automating plasmid prediction and reconstruction methods, 

some of which are going to be presented in the Section 2.2. 

 

2.2. Plasmid Prediction Methods 

Exponentially increasing amounts of unprocessed bacterial genomic 

sequences are becoming available in public databases [13][14]. In the recent years, 

scientists have been making the efforts to analyse these sequences using 

automated methods. There are numerous extremely precise tools, but complete 

plasmid prediction from short-read sequencing data, as mentioned in Chapter 1, is 

not yet possible without taking certain manual steps [1].  

In the following paragraphs, a short overview of the most important prediction 

methods is given, alongside with their advantages, disadvantages, and finally 

successfulness and attained results.   

Some of the fully automated programs for plasmid prediction and 

reconstruction from whole genomes are: PlasmidSPAdes, Recycler, cBar and 

PlasmidFinder. An interesting study, referring to [1], has recently been conducted 

with its core goal being benchmarking four stated algorithms and determining the 
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possibility of obtaining complete plasmid sequences automatically. Programs are 

divided into two groups, cBar and PlasmidFinder which predict plasmids based on 

previously assembled contigs on the one hand, and PlasmidSPAdes and Recycler 

with their aim to reconstruct whole plasmid sequences on the other. Additionally, 

vastly successful method PLACNET would also belong to the latter group, but it will 

not be taken into consideration, because it depends on the expertise of the 

researcher, meaning it is partially manual.  

Firstly, cBar predicts plasmids based on differences in k-mer composition, 

which is similar to method used in this thesis (see Chapter 4). Secondly, 

PlasmidFinder inspects replicon sequences and is mostly used for enterobacterial 

genomes. And finally, PlasmidSPAdes and Recycler search the de Brujin graph for 

plasmids. 

The study concluded correct prediction for the vast majority of plasmids 

(89.9%), almost completely accurate for small and circular plasmids. It also 

confirmed the hypothesis of still challenging prediction of plasmids larger than 50 

kbp. 

Furthermore, there are methods working on a species level, such as 

mlplasmids and PlaScope. On the one hand, mlplasmids is using advanced 

machine learning algorithms, with support-vector machine (SVM) as a classifier to 

predict plasmid- and chromosome-derived sequences. For the purpose of training 

the model, mlplasmids uses short-read contigs from the following bacterial species: 

Enterococcus faecium, Klebsiella pneumoniae and Escherichia coli. Mlpasmids is 

shown to be superior to the previously mentioned algorithms, with its ability to 

accurately predict even large and linear plasmids. In contrast to previous methods, 

it is suitable only for genome assemblies from single species, but there is a 

possibility to train the model for more variety of species in the future [7]. On the other 

hand, PlaScope approaches the problem differently from all the above-mentioned 

methods, trying to combine both high sensitivity and specificity (for definition see 

formulae (4.1) and (4.2)). The method was tested on Escherichia coli and Klebsiella 

as well. It uses k-mer contigs, alike cBar, but is proven to be even more successful 

[14]. 
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Some of the other mentionable methods are PlasFlow, PlasmidTron, Plasmid 

ATLAS, and MOB-suite. PlasFlow uses neural network approach to predict 

plasmidomes from environmental samples, thus having great impact on 

metagenomics. It is especially useful for analysis of large plasmids, and even linear 

ones do not represent an obstacle [15]. 

PlasmidTron is specific for utilizing phenotypic data from bacterial population 

studies to confirm presence of resistance genes in bacteria. It uses a k-mer based 

approach and filters out seldom k-mers. This tool was tested on Salmonella enterica 

and Klebsiella pneumoniae datasets [16].  

Plasmid ATLAS is web-based tool with exceptional visual analytics tools used 

for analysis of high-throughput sequencing data. Its most important feature is quick 

identification of plasmids carrying specific antibiotic resistance genes [9]. 

Lastly, MOB-suite is able to identify contigs of plasmid origin with both high 

sensitivity and specificity. It succeeded in lowering the error rate, but that 

consequently led to splitting and merging of plasmid contigs. Another drawback is 

low accuracy prediction on novel plasmids, significantly differing from those already 

stored in the database [17].  

The importance of this chapter lays in the fact that a lot of here described 

methods and datasets are used in this thesis as well. For instance, k-mer based 

approach, using k-length contigs in analysis and prediction. Furthermore, there will 

be efforts to classify some of the aforesaid bacterial species: Escherichia coli, 

Salmonella enterica and Klebsiella pneumoniae. 

. 
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3. Data Summary 

All bacterial genomes used in this thesis were retrieved from National Center 

for Biotechnology Information (NCBI) and are publicly available at 

ftp://ftp.ncbi.nlm.nih.gov/genomes. Only the genomes marked as 

‘Gammaproteobacteria’ and ‘Complete Genome’ were taken into consideration. The 

total number of utilised fasta sequences is 7153, 1531 of which are chromosomes 

and remaining 5622 are plasmids. 
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4. Methods 

This chapter presents methods used to classify, visualise and validate 

bacterial chromosome and plasmids. First, the classification method will be 

thoroughly described, both using existing BLAST algorithm, and an alternative 

algorithm developed in the thesis. Next, methods and options for plotting the 

different types of diagrams will be outlined. Finally, a brief description of cross-

validation technique will be given. 

 

4.1. Classification 

Classification method attempts to classify incoming query, known or 

unknown, and determine whether it is a chromosome or a plasmid, based on the 

existing database containing both chromosomes and plasmids. There is also a third 

scenario when query is unclassified, i.e. falls into category ‘none’.  

Even though, classification method can be used on whole chromosomes and 

plasmids, its most valuable usage is on fragmented chromosomes and plasmids. 

Fragmentation method is also developed and its aim is to fragment chromosomes 

and plasmids into k-length subsequences, in order to obtain set of simulated contigs.  

Classification method is implemented both with BLAST algorithm and 

algorithm based on minimap2 developed in this thesis, both of which are going to 

be explicated in Chapter 5 and compared in Chapter 6. 

Classification technique is carried out in three steps. First, query 

(chromosome or plasmid) is aligned with target (database), using either BLAST or 

minimap2 algorithm. First ten rows of BLAST output for plasmid LN54850.1 are 

shown in Figure 4.1. Most important information in received output are name of 

contig which was aligned, subject name, i.e. target plasmid or chromosome which 

was hit, blast identity, i.e. percentage of successful mapping, and alignment length.  
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Next, self-hits, i.e. hits where query and target belong to the same 

chromosome or plasmid, are filtered out from the output. Method also contains 

optional tunable filter for blast identity, which will be referred to as chromosome or 

plasmid blast penalty cutoff further in the text. On the one hand, chromosome blast 

penalty cutoff is performed only on chromosomes. Chromosome is discarded if it 

has blast hit identity greater than cutoff, whereas plasmid blast hits with identity 

greater than cutoff are still kept. On the other hand, plasmid blast penalty cutoff is 

used only for plasmids, whilst it is ignored in the case of chromosomes. Plasmid is 

removed from further process if its blast hit identity is greater than cutoff. For 

example, looking at Figure 4.1, first seven rows will be omitted, because they 

represent self-hits. Furthermore, if plasmid blast penalty cutoff is set to 90%, ninth 

and tenth row will be filtered out because their identities are greater than cutoff. In 

this example, only ninth row will remain in output and be further analysed. Filtering 

results in classification being more difficult, with the purpose of making sure whether 

it is still reasonably accurate. 

 

 

Figure 4.1: BLAST output for plasmid LN554850.1 
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Finally, BLAST or minimap2 output data is summarized and outputted to a 

common file for multiple plasmids or chromosomes, which will be described in detail 

in Chapter 5. 

 

4.2. Visualisation 

Visualisation methods precisely represent parts of chromosome or plasmid 

query classified as chromosome, plasmid or none. Visualisation is of great 

importance whilst working with such abundant data sets as it is the case in this 

thesis.  

A lot of different types of plots can be drawn using these methods, such as 

scatter plots, histograms, marginal histograms, pie charts, ROC curves and so forth. 

Implementation, available options and further description are given in Chapter 5. 

 

4.3. Cross-Validation 

Cross-validation is a model validation technique for assessing how the results 

of a statistical analysis (model) are going to generalize to an independent data set. 

It is mainly used in prediction problems when the aim is to estimate the accuracy of 

a predictive model when performed in practice [18]. 

The most important types of cross-validation are k-fold cross-validation and 

leave-one-out cross-validation [19]. The latter method will be used in this thesis in 

the sense of leaving the one species from the database out and afterwards trying to 

classify the exact same species.  

The results of cross-validation procedure will be shown in the ROC (Receiver 

operating characteristic) probability curve which tells how much model is capable of 

distinguishing between classes, in our case plasmids and chromosomes. To plot 

the ROC curve, formulae for calculation of sensitivity and specificity must be 

introduced. Sensitivity (4.1) represents true positive rate (TPR) and is located on y-
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axis, while specificity (4.2) represents false positive rate (FPR) and is situated on x-

axis [20]. 

 

 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑐𝑜𝑛𝑡𝑖𝑔𝑠/𝑏𝑝)

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑐𝑜𝑛𝑡𝑖𝑔𝑠/𝑏𝑝) + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑐𝑜𝑛𝑡𝑖𝑔𝑠/𝑏𝑝)
 (4.1) 

 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑐𝑜𝑛𝑡𝑖𝑔𝑠/𝑏𝑝)

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑐𝑜𝑛𝑡𝑖𝑔𝑠/𝑏𝑝) + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑐𝑜𝑛𝑡𝑖𝑔𝑠/𝑏𝑝)
 (4.2) 
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5. Implementation 

This chapter deals with further explanation of methods defined in Chapter 4, 

brief overview of possible options whilst using these methods and other 

implementation aspects. 

Programming languages used for methods’ implementation, statistical 

analyses and visualising the results are Perl, R and Python. The most important 

scripts were posted on Github and are available at: https://github.com/lbcb-

edu/BSc-thesis-18-19/tree/sdeur. 

 

5.1. Classification 

First of all, it is important to emphasise great significance of the following 

project:  https://github.com/swainechen/closet on this thesis. Its code has been used 

to download and filter the database containing bacterial chromosome and plasmids 

described in Chapter 3. Parts of code were also utilised for different tests, 

visualisations and analytics. However, most importantly, some lines of code, which 

are essential for the thesis’ implementation, are incorporated in doBlast.R and 

doClassification.R scripts. 

Input of doClassification.R script are database (Gamma_plasmids.fna), meta 

data about database content (Gamma_plasmids_meta.txt), directory containing 

chromosome or plasmid queries fragmented in k-length subsequences (in this 

project, specifically, k = 5000), and optional cutoff parameter previously defined in 

Chapter 4. Fragmentation is performed using make-fragments.pl script which 

comes, amongst others, with an option to choose the length of query subsequences. 

Another helpful script is count-fragments.pl which counts total number of fragments 

in aforesaid directory containing fragmented queries. 

In doClassification.R script query sequences are compared with a database 

of sequences with either BLAST or minimap2 algorithm, which is described in detail 

https://github.com/lbcb-edu/BSc-thesis-18-19/tree/sdeur
https://github.com/lbcb-edu/BSc-thesis-18-19/tree/sdeur
https://github.com/swainechen/closet
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in Chapter 4. When trying to predict plasmids, output of the classification method 

would be length of well-classified part of contig (i.e. classified as plasmid), length of 

misclassified part (i.e. classified as chromosome) and remaining length which is 

considered unclassified (i.e. classified as none) and vice versa for chromosomes. 

Part of the output for classification of plasmids from Escherichia coli is shown 

in Figure 5.1. Output consists of contig name, its total length and lengths of parts 

classified as plasmid, chromosome or none, only for chromosome hits greater than 

zero. Figure 5.1 indicates (e.g. line 7 – contig 9_AP017613.1) that some of the 

plasmids are completely misclassified as chromosomes (100%), and some are still 

mostly classified as plasmids (e.g. line 2 – contig 2_AP009243.1), even though there 

are also chromosome and none indices. This outputted file is of key importance in 

further analytics and visualisations of potentially ambiguous fragments. 

 

 

Figure 5.1: Output of the doClassification.R script for plasmids 
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5.1.1. BLAST algorithm 

Basic Local Alignment Search Tool (BLAST) is an algorithm for comparing 

biological sequences, such as nucleotide or protein sequences to sequence 

databases, and calculation of the statistical significance of matches [21]. There are 

numerous types of BLAST algorithms for different purposes, with one of the most 

commonly used being nucleotide-nucleotide BLAST - blastn which will also be used 

in this thesis. This program, given a DNA query, returns the most similar DNA 

sequences from the DNA database [22].  

doBlast.R script builds the BLAST database, conducts blastn command and 

afterwards filters out the self-hits and plasmids or chromosomes with identity higher 

than cutoff parameter (i.e. higher than 99%). This script is used in 

myClassification.R, but there is also a possibility to run it from command line. 

Additional blastn options used in this implementation are:  

 -out - -evalue 1e-10 

 -dust no 

 -outfmt "6 qseqid sseqid pident length mismatch gapopen qstart qend sstart 

send evalue bitscore qlen slen" 

 -max_target_seqs 100 

 

5.1.2. Minimap2 algorithm 

Minimap2 is a versatile general-purpose pairwise alignment program to map 

DNA or long mRNA sequences against a large reference database. It is 3–4 times 

faster than mainstream short-read mappers at comparable accuracy [23].  

The implementation is written in Python and R programming languages. First, 

minimizer index for the reference was created and saved with option -d, because 

that process can be time-consuming if done in a loop, which is the exact 

implementation of doClassification.R which utilizes this implementation. 
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Next, alignment of query chromosomes and plasmids is performed, using the 

following options: -N 100 and --secondary=yes. Option -N is used to define the 

maximum number of secondary alignments, i.e. not only the best hits, whilst option 

--secondary is used in order to output those secondary alignments. Minimap2’s 

option -N is similar as BLAST’s option -max_target_seqs. 

Finally, the output is parsed using the Python script to obtain only the valuable 

information for classification method. Afterwards the doMinimap.R script filters the 

self-hits and hits with identity above cutoff value out, similar as the doBlast.R script. 

The doMinimap function is then called in doClassification.R script and output file is 

generated in the already described form (Figure 5.1). 

 

5.2. Visualisation 

Abundant data sets, alike those in the thesis, require excessive visualisation 

methods. They are implemented in R programming language and mostly 

concentrated in the following R scripts: doPlot.R and statistics.R. The doPlot.R script 

is automatically called in plot-graph.pl script which performs comparison between 

one or more queries and target database using the BLAST algorithm and at last 

commences the plotting of chromosome or plasmid hits on the chosen type of 

density plot. 

There are a great deal of options in plot-graph.pl script as follows: 

 amount: choosing between single or multiple queries 

 type: choosing between plasmid or chromosome 

 query: assigning of .fna file which will be used as query (available only in 

single query mode) 

 hits: choosing the number of hits in blast method (available only in multiple 

query mode) 

 cutoff: filtering out the hits with blast identity greater than cutoff parameter 

(i.e. greater than 99%) 

 graph: plotting scatter plot or scatter plot with marginal histograms 
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Density diagrams show relationship between hit length, i.e. length of the 

aligned part of query to target, located on y-axis, and identity, i.e. percentage of 

successful mapping, situated on x-axis. In Figure 5.2 graph with default options can 

be seen, while Figure 5.3 demonstrates diagram with default options, except the 

‘graph’ option which is set to plot scatter plot with marginal histograms. Furthermore, 

plotting of multiple chromosomes and plasmids is shown in Figure 5.4 and Figure 

5.5, respectively.  

In conclusion, most of the hits are correct, but some chromosomes hit to 

plasmids, and vice versa, which is the exact problem which will further be analysed 

in Chapter 6. Moreover, incorrect hits are usually those of short hit lengths which is 

in accordance with the thesis’ introduction (Chapter 1) statement about short 

sequences. 

 

 

Figure 5.2: Density plot with default options 
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Figure 5.3: Density plot with default options and additionally marginal histograms 

 

 

Figure 5.4: Density plot for multiple chromosomes (100) 
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Figure 5.5: Density plot for multiple plasmids (100) 

 

statistics.R has multiple usages in classification and cross-validation of 

chromosomes and plasmids. Its graphs display percentage of well-classified, 

potentially ambiguous and misclassified chromosome and plasmid fragments, as 

well as the resulting ROC curves. The detailed description and illustrations of the 

graphs will be given in the Chapter 6. 

 

5.3. Cross-Validation 

Cross-validation technique will be applied to the case of three bacterial 

species: Escherichia coli (1912), Klebsiella pneumoniae (1521) and Salmonella 

enterica (749), sorted in a descending order by number of their occurrences in 

the database. Besides the fact that these species are the most represented ones 

in the database, they are also of a great clinical importance, because of their 

pathogenic traits and ever-growing multi-drug resistance (MDR). 

Implementation of cross-validation is conducted by leaving the species 

which are going to be validated, along with its closely related species out of the 

database. First, in the case of Escherichia coli, Escherichia albertii (28), 
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Escherichia fergusonii (7), Escherichia marmotae (3), Shigella boydii (27), 

Shigella dysenteriae (56), Shigella flexneri (75) and Shigella sonnei (68) are left 

out. Next, alongside Klebsiella pneumoniae, Klebsiella aerogenes (63), 

Klebsiella michiganensis (27), Klebsiella oxytoca (75), Klebsiella 

quasipneumoniae (54), Klebsiella quasivariicola (4), Klebsiella sp. (22) and 

Klebsiella variicola (55) are omitted. Finally, beside Salmonella enterica, 

Salmonella bongori (2) and Salmonella sp. (15) are left out. Bacterial species 

are written alphabetically, alongside number of their occurrences in the 

database. 

Results and corresponding visualisations for the described procedure will 

be given in Chapter 6. 
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6.  Results and Discussion 

This chapter will be divided into two crucial analyses – classification of 

fragmented chromosomes and plasmids, and leave-one-out cross-validation 

performed on three significant aforementioned bacterial species. 

 

6.1. Classification 
 

Classification procedure attempts to deliver correct classification of 

chromosomes and plasmids, or at least one with the least amount of inaccuracies. 

First, classification for randomly chosen single chromosome and plasmid is 

provided. Next, classification is conducted on whole dataset of plasmids (5622) and 

hundred randomly chosen chromosomes. The reason for choosing only hundred 

chromosomes is their size which makes the classification exceedingly time-

consuming. Finally, there is an example of filtering out the best hit in every step, with 

the purpose of making the classification increasingly difficult. 

Chromosome AL513382.1 is randomly chosen, fragmented and classified at 

chromosome blast penalty cutoff of 100%, i.e. no cutoff, and cutoff of 99%. Figure 

6.1 and Figure 6.2 illustrate the worsening of classification, but it is still considered 

acceptably accurate. Moreover, one of the contigs (206_ AL513382.1) with high 

percentage of plasmid hits is chosen and compared before and after performing the 

chromosome blast penalty cutoff and presumably its classification is much worse, 

which is shown in Figure 6.3 and Figure 6.4. 
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Figure 6.1: Classification of chromosome AL513382.1 with no cutoff 

 

 

Figure 6.2: Classification of chromosome AL513382.1 with 99% cutoff  
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Figure 6.3: Detail plot of contig 206_AL513382.1 with no cutoff 

 

 

Figure 6.4: Detail plot of contig 206_AL513382.1 with 99% cutoff  
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Looking at Figure 6.5 and Figure 6.6, it can be concluded that classification 

of plasmid (AL513382.1) is worse, comparing to the one of chromosome in Figure 

6.1. and Figure 6.2. Furthermore, the impact of plasmid blast penalty cutoff can be 

seen in Figure 6.8 which contains noticeably fewer plasmid hits than the case 

without cutoff illustrated in Figure 6.7.  

 

 

Figure 6.5: Classification of plasmid AL513383.1 with no cutoff 
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Figure 6.6: Classification of plasmid AL513383.1 with 99% cutoff 

 

 

Figure 6.7: Density plot of plasmid AL513383.1 with no cutoff 
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Figure 6.8: Density plot of plasmid AL513383.1 with 99% cutoff 

 

Above-mentioned conclusions were made only on the basis of single, 

randomly chosen chromosome and plasmid. In order to acquire outcomes of greater 

significance, classification is made for all plasmids from database and hundred 

randomly chosen chromosomes as described before. The test is again divided into 

two cases: no cutoff and cutoff of 99%. Outcome is shown in Table 6.1, where 

columns represent number of chromosome fragments which have >x% plasmid 

portion, divided by total number of chromosome fragments (6.1), and vice versa for 

plasmids (6.2). 

In conclusion, remarkably similar results repeat for multiple chromosomes 

and plasmids, as they were for single ones, so generalisation is feasible and it is 

justified to take only hundred chromosomes into consideration. Moreover, 

chromosomes achieve better classification results than plasmids and introduction of 

cutoff worsens the classification results, which was also the case for single 

chromosomes and plasmids. Additionally, whilst examining the rows of Table 6.1, it 

can be seen that values quickly tend to drop to 0%. This fact will be well-illustrated 

in Figure 6.19 and Figure 6.20 in Section 6.2. 
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 𝐶 =  
𝑛𝑜. 𝑜𝑓 𝑐ℎ𝑟. 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ > 𝑥% 𝑝𝑙𝑎𝑠𝑚𝑖𝑑 𝑝𝑜𝑟𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑟. 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠
 × 100% (6.1) 

 

 𝑃 =  
𝑛𝑜. 𝑜𝑓 𝑝𝑙𝑎. 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ > 𝑥% 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 𝑝𝑜𝑟𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑙𝑎. 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠
 × 100% (6.2) 

 

 

Table 6.1: Potentially ambiguous chromosome/plasmid fragments 

 
> 0 % 

plasmid/chromo 
> 25 % 

plasmid/chromo 
> 50 % 

plasmid/chromo 
> 75 % 

plasmid/chromo 

Chromosome, 

 no cutoff 
1.98 % 0.77 % 0.54 % 0.42 % 

Chromosome,  

cutoff 99% 
7.53 % 5.02% 3.79 % 3.24 % 

Plasmid, 

no cutoff 
24.32 % 12.13 % 6.10 % 2.34 % 

Plasmid, 

cutoff 99% 
27.17% 18.23 % 11.10 % 4.98 % 

 

Third approach is removal of best hit and then doing the classification, in 

every iteration. First and second approaches eliminate only self-hits in the case of 

no cutoff, and hits with identity greater than cutoff for chosen chromosome or 

plasmid blast penalty cutoff. Method described in this section is depicted as a kind 

of a ‘middle-ground’ between filtering out only the self-hit, and possibly filtering out 

too many hits, using the cutoff parameter. Just filtering out the self-hits might not 

truly eliminate all self-hits, because there might be a very nearly identical plasmid in 

the database. For that exact reason, the results obtained by this method should be 

more accurate. 
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The flow of described experiment is shown in Figure 6.9, where it can be 

noticed that percentage of chromosome hits and ‘none’ (unclassified parts) is slowly 

rising. Grey part represents chromosome, red part plasmid and blue part none, i.e. 

unclassified portion. With every step forward, the graphs look more and more like 

the one in Figure 6.6. Furthermore, slow increase in chromosome and none sections 

is shown in Figure 6.10. 

Lastly, it can be concluded that with the reduction of cutoff, i.e. identity filter 

for plasmid, next best hit is to a chromosome. This shows that classification 

technique rather misclassifies, than un-classifies, i.e. classify as none. The same 

conclusion can also be drawn for chromosomes as seen in Figure 6.2 – greater 

amount of plasmid, than none portion is present. 

 

 

Figure 6.9: Flow of best hit removal experiment 
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Figure 6.10: Increase of chromosome and none portion in the best hit removal experiment 

 
 
 

6.2. Cross-Validation 
 

Cross-validation is conducted on three fore-mentioned bacterial species, with 

Escherichia coli being the most frequent one in the database. There are eleven 

graphical illustrations for each species, but entirety of them will be shown only for 

Escherichia Coli, whilst other data will be stored in table form for easier analysis 

purposes. Diagrams for other two species can be omitted, because of their similarity 

to the ones for E. coli. ROC curves, as the most insightful visualisation methods in 

this case, will be shown for all three species. It is important to mention that all of the 

following graphs and calculations are made in statistics.R script. 

First, there are four graphs for chromosome fragments and four for plasmid 

fragments, with no cutoff. In Figure 6.11 and Figure 6.15 relationship between 

correctly classified fragments (100% chromosome or plasmid, respectively) and 

potentially ambiguous fragments (>0% plasmid or chromosome portions, 

respectively) is shown. In Figure 6.12 and Figure 6.16 the portion of >50% plasmid 

or chromosome in above-defined potentially ambiguous fragments can be seen. 
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The reason for plotting the diagrams for specifically 50% is the possibility to classify 

chromosome as chromosome, and plasmid as plasmid fragment if the hit is >50% 

chromosome and plasmid, respectively. Figure 6.13 and Figure 6.17 show 

percentage of plasmid portions in potentially ambiguous fragments, whilst Figure 

6.14 and Figure 6.18 show the same for ‘none’.  

Even though percentage of >0% plasmid is much higher than the one in the 

first row of Table 6.1, it can be seen in Figure 6.12 and Figure 6.13 that vast majority 

of them are still below 50%, which indicates that classification is still quite 

reasonable. Furthermore, results for plasmids which can be seen in the third row of 

Table 6.1 and Figure 6.15 are extremely similar, which is interesting considering 

that cross-validation was conducted for ‘unknown, never-seen’ plasmids, i.e. the 

ones which are not contained in the database. Moreover, in Figure 6.16 and Figure 

6.17 it is illustrated that even though some fragments have chromosome portions, 

they are mostly quite low. 

 

 

 

 

 

Figure 6.11: Correctly classified chromosome fragments (100% chromosome) 
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Figure 6.12: Portion of chromosome fragments with >50% plasmid part in potentially ambiguous 

chromosome fragments (>0% plasmid) 

 

 

 

 

Figure 6.13: Distribution of plasmid portions in potentially ambiguous chromosome fragments 
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Figure 6.14: Distribution of none portions in potentially ambiguous chromosome fragments 

 

 

 

 

Figure 6.15: Correctly classified plasmid fragments (100% plasmid) 

 

 



32 
 

 

 

Figure 6.16: Portion of plasmid fragments with >50% chromosome part in potentially ambiguous 

plasmid fragments (>0% chromosome) 

 

 

 

 

Figure 6.17: Distribution of chromosome portions in potentially ambiguous plasmid fragments 
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Figure 6.18: Distribution of none portions in potentially ambiguous plasmid fragments 

 

 

Next, in attempt to plot the ROC curve for plasmid prediction, true positive, 

false positive, true negative and false negative values are required. On the one 

hand, every known plasmid fragment Pi prediction consists of chromosome (ci), 

plasmid (pi) and none (ni) percentage, so that the following equation is valid: ci + pi 

+ ni = 100%. Next step is to define the threshold XP for plasmid classification and 

claim that the classification of Pi is correct if pi is greater or equal to XP and that Pi 

is indeed a plasmid, whereas if pi is lower than XP we consider Pi to be a 

misclassified fragment. On the other hand, the same procedure is carried out for 

each known chromosome fragment Cj, by defining the threshold XC, used as the 

cutoff for cj, in order to provide chromosome classification. 

True positive value (TP) is percentage of plasmid fragments (Pi) classified as 

plasmid, while false positive value (FP) is percentage of chromosome fragments (C j) 

also classified as plasmid. In Figure 6.19 true positive (red line) and false positive 

(blue line) are plotted against threshold XP. Furthermore, true negative rate (TN) is 
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percentage of chromosome fragments (Cj) classified as chromosome, whilst false 

negative rate (FN) is percentage of plasmid fragments (Pi) classified as 

chromosome as well. In Figure 6.20 true negative rate (blue line) and false negative 

rate (red line) are plotted against threshold XC. 

In conclusion, lines in Figure 6.19 and Figure 6.20 are monotonically 

decreasing, i.e. fewer fragments meet the cutoff, while XP and XC are increasing. It 

can again be seen that classification for chromosomes is more accurate, with line 

in Figure 6.20 staying near 100% with the gradually increasing XC threshold. 

Finally, sensitivity (true positive rate) and specificity (true negative rate) are 

calculated based on formulae (4.1) and (4.2) and ROC curve plotted in Figure 6.21. 

ROC curve shows that plasmid prediction for ‘unknown’ plasmids is quite 

reasonable, even though there are room for some improvements. 

 

 

Figure 6.19: True and false positive values for plasmid prediction 
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Figure 6.20: True and false negative values for plasmid prediction 

 

 

 

 

Figure 6.21: ROC curve for Escherichia coli 
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Figure 6.22: ROC curve for Klebsiella pneumoniae 

 

 

 

Figure 6.23: ROC curve for Salmonella enterica 
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Through thorough analysis of ROC curves in Figure 6.21, Figure 6.22 and 

Figure 6.23 and statistics in Table 6.2, it can be determined that classification of 

Salmonella enterica is undoubtedly the best one, particularly for chromosomes. 

Classification of plasmids for Escherichia coli and Salmonella enterica is quite 

similar, whilst the one for Klebsiella pneumoniae shows the worst results.  

All things considered, classification of unknown chromosomes and plasmids 

is expectedly worse than the one shown in Table 6.1, but it is still quite successful, 

especially when taking into consideration the fact that the classification is conducted 

on queries that have not been seen before, i.e. are not contained in the database. 

 

Table 6.2: Potentially ambiguous chromosome/plasmid fragments for three bacterial species 

 
> 0 % 

plasmid/chromo 
> 25 % 

plasmid/chromo 
> 50 % 

plasmid/chromo 
> 75 % 

plasmid/chromo 

Chromosome, 

 Escherichia 
coli 

5.83 % 2.48 % 0.86 % 0.31 % 

Chromosome,  

Klebsiella 
pneumoniae 

5.42 % 2.71 % 1.62 % 0.94 % 

Chromosome, 

Salmonella 
enterica 

2.22 % 0.60 % 0.18 % 0.03 % 

Plasmid, 

Escherichia 
coli 

25.85 % 13.59 % 7.83 % 4.84 % 

Plasmid,  

Klebsiella 
pneumoniae 

34.87 % 22.65 % 16.62 % 11.62 % 

Plasmid, 

Salmonella 
enterica 

24.19 % 13.91 % 10.66 % 8.11 % 
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6.3. Implementation comparison 

The above-mentioned results are obtained using the BLAST method. There 

is no reason to repeat all of the visualisations and graphs for this thesis’ method, 

because they are quite similar, so comparison is going to be reported in 

percentages. 

First of all, execution speed of classification method using algorithm 

implemented in this thesis was in average 27% greater than whilst using existing 

BLAST method. For comparison, classification of hundred randomly chosen 

chromosomes with BLAST method lasted approximately 26 hours, while 

classification with this thesis’ algorithm lasted approximately 18.5 hours. 

Furthermore, duration of classification for whole dataset of plasmids, using the 

BLAST method, is roughly 4 whole days, whereas the implementation, using 

minimap2 algorithm, lasted circa 3 days. 

Secondly, alignment scores for thesis’ algorithm are worse than BLAST 

algorithm, especially for far away hits, which consequently leads to inferior 

classification results. Results of chromosome classification are in average 5.79% 

worse, i.e. more chromosomes get misclassified or unclassified. It is important to 

state that tests are conveyed on hundred randomly chosen chromosomes because 

of their immense size and thus large time consumption of classification process. In 

average chromosomes have 864 fragments, and with them being the length of 5 

kpb, average size of chromosome is 4320 kpb. Furthermore, plasmid classification 

is 6.3% worse, and they tend to get misclassified as chromosome, rather than to be 

unclassified. 

In conclusion, implemented method, using minimap2, is much more effective 

considering time consumption, but gives poorer results while conducting the 

classification. Future work should include improvements of the alignments, i.e. 

sequence similarity comparisons, particularly for far away hits, whilst still not 

sacrificing computing efficiency if feasible. 

 

 



39 
 

 

7. Conclusion 

The main concern of this thesis is analysis of a reference based plasmid 

prediction algorithm for short read assemblies based on BLAST, and attempt at 

developing novel plasmid prediction algorithm which is based on minimap2. Existing 

BLAST algorithm demonstrates better classification results, whilst the thesis’ 

algorithm based on minimap2 proved to have shorter execution time. 

Classification is conducted on both known and unknown plasmids and 

chromosomes, which are divided in k-length fragments in order to get the illusion of 

incomplete assembly. Furthermore, cross-validation is carried out for the three most 

frequent and clinically important bacterial species in database: Escherichia Coli, 

Klebsiella Pneumoniae and Salmonella enterica. The results are expectedly worse 

than the ones for known species, but are still proven to be quite reasonable. 

To conclude, classification results are mainly accurate, but there is still room 

for improvement. Described algorithms and automatization of plasmid prediction in 

general have a great potential, particularly with the increase of known plasmids in 

databases.  
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Using Reference Database for Plasmid Prediction 

Abstract 

The main concern of this thesis is analysis of a reference based plasmid prediction 

algorithm for short read assemblies based on BLAST, and development of novel 

algorithm based on minimap2. Even though it has shorter execution time, thesis’ 

algorithm demonstrates poorer classification results than existing BLAST algorithm, 

so future improvements are needed. Classification is conducted on both known and 

unknown plasmids and chromosomes, which are parted in k-length subsequences 

in order to mimic incomplete assemblies. Furthermore, cross-validation is carried 

out for the three most frequent and clinically important bacterial species in database: 

Escherichia Coli, Klebsiella Pneumoniae and Salmonella enterica. Source code is 

available at: https://github.com/lbcb-edu/BSc-thesis-18-19/tree/sdeur.  

Keywords: bacterium, plasmid, chromosome, classification, cross-validation 

 

Korištenje referentne baze za predviđanje plazmida 

Sažetak 

Glavna zadaća ovoga rada jest analiza algoritma zaduženog za predviđanje 

plazmida na temelju referentne baze za kratka očitanja, temeljenog na BLAST-u, te 

razvoj novog algoritma temeljenog na algoritmu minimap2. Unatoč tome što ima 

kraće vrijeme izvođenja, algoritam razvijen u ovom radu pokazuje slabije rezultate 

klasifikacije, nego postojeći BLAST algoritam, stoga su potrebna buduća 

poboljšanja. Klasifikacija se provodi i na poznatim i na nepoznatim plazmidima i 

kromosomima, koji su podijeljeni na podnizove duljine k. Nadalje, unakrsna 

validacija provodi se za tri najučestalije i medicinski najbitnije vrste bakterija u bazi, 

sljedećih naziva: Escherichia Coli, Klebsiella Pneumoniae i Salmonella enterica. 

Izvorni kod dostupan je na: https://github.com/lbcb-edu/BSc-thesis-18-

19/tree/sdeur. 

Ključne riječi: bakterija, plazmid, kromosom, klasifikacija, unakrsna validacija 

https://github.com/lbcb-edu/BSc-thesis-18-19/tree/sdeur
https://github.com/lbcb-edu/BSc-thesis-18-19/tree/sdeur
https://github.com/lbcb-edu/BSc-thesis-18-19/tree/sdeur
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