
UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND

COMPUTING

MASTER THESIS no. 1861

Classification of 1D-Signal Types

Using Deep Learning

Filip Floreani

Zagreb, June 2019.

I would like to give special thanks to my advisor prof. Mile äikiÊ, Ph.D. for
the support, guidance and engagement from the very beginning.

Furthermore, I would also like to give great thanks to Lovro Vr�ek, mag. phys.
for all his timely assistance and patience during the writing of this thesis.

iii

Contents

1. Introduction 1

2. DNA sequencing and assembly 3
2.1. Overlap-Layout-Consensus . 3
2.2. Read types . 4

3. Deep learning methods 8
3.1. Algorithm components . 9

3.1.1. Loss function . 9
3.1.2. Optimization . 10

3.2. Common operations . 11
3.2.1. Pooling . 11
3.2.2. Activations . 12

3.3. Convolutional Neural Networks 12
3.3.1. One-dimensional CNNs . 15

3.4. Recurrent Neural Networks . 16
3.4.1. Backpropagation through time 18
3.4.2. Long Short-Term Memory 19

3.5. Autoencoders . 21
3.5.1. Variational autoencoders 23

4. Dataset 28
4.1. Pairwise Mapping Format . 28
4.2. Preprocessing . 28

5. Results and evaluation 32

6. Conclusion 38

iv

Bibliography 40

List of Figures 43

List of Tables 44

v

1. Introduction

Bioinformatics is defined as an interdisciplinary scientific field, encompassing in it
computer science, statistics, biology and information processing. It is concerned
with developing methods and software tools for a better understanding of biolog-
ical data. The first mentions of it were back in 1970 when it was defined as the
study of information processes in biotic systems. With the advent of new tech-
nologies, the area of research has been ever growing, with some of the primary
disciplines today being sequence analysis, gene and protein expression, analysis
of cellular organisms, etc.

Thanks to the dramatic reduction in operating costs and improvements in data
processing, sequence assembly has been a greatly popularized field within bioin-
formatics over the last twenty years or so. Sequence assembly can be described as
a process of combining small DNA fragments received from a sequencing device
into a full-fledged DNA sequence. These fragments are ordered by overlapping
them with one another and seeing which ones fit together best, much in the same
way as one goes when assembling a puzzle. Of course, there are specific issues
with this process, and even though today’s sequencing devices have made great
leaps from their first generation, some of these fragments will still end up wrongly
detected or malformed. These fragments tend to wreak havoc on the assembly
process. Knowing which fragments to include in the assembly and which to skip
is crucial for a successful result. More on the types of malformed fragments and
the problems they cause can be found in chapter 2.

It is because of these issues that much research has been directed into discov-
ering methods and techniques for the detection and removal of these fragments.
Some of these methods are based on the use of deep learning algorithms. Through
the use of long chains of complex nonlinear functions, these algorithms try and
detect hidden characteristics and patterns in the underlying data in order to apply
them to various learning tasks, such as classification, clustering or dimensionality

1

reduction. The specifics of the deep learning algorithms used in this thesis are
described in chapter 3.

Chapter 4 concentrates on the data used, how it is initially formatted, what it
represents and what transformations are applied to convert it into a form suitable
for feeding into a deep network. Finally, the results and final discussion can be
found in chapter 5.

2

2. DNA sequencing and assembly

The process of determining the order of nucleotides in DNA is called DNA se-
quencing. Knowing the inner workings of an organisms DNA is the key to under-
standing its genetic function and evolution. Data obtained by this process is now
widely used in even the most basic biological research, while also being applied
in various other fields such as medical diagnosis, forensic biology, or virology.
For example, by comparing a healthy to a mutated DNA sequence, doctors and
scientists can diagnose a host of various cancers and genetic disorder [7].

To be able to reconstruct a DNA sequence fully, one must complete two steps.
Firstly, through the usage of a sequencer1, generate fragments of DNA called
reads. The main problem with this is the length of the sequence that is being
examined, with some of the longer ones spanning into the tens of billions. The
most advanced sequencers today can only read some 100.000 base pairs at a time
with a satisfying degree of accuracy. This characteristic is why their output is a
collection of reads and not a single sequence. For this reason, a second step is
required called genome assembly, which takes the created reads and uses them to
reconstruct the original sequence.

2.1. Overlap-Layout-Consensus

To assemble the reads received from the sequencer into a single DNA sequence
again, a three-step approach is used (Figure 2.1). These steps are:

1. Overlap

2. Layout

3. Consensus
1Sequencer - Scientific instrument used to determine the order of nucleotides in a DNA

sample

3

In the first step, all the reads are taken and an overlap graph is built to
indicate the number of overlapping consecutive base pairs between reads. This is
also the most resource-consuming step of the assembly process. The layout step
is concerned with simplifying the previously created overlap graph by removing
all edges that can be transitively inferred from other edges, followed by bundling
stretches of the graph into contiguous blocks called contigs. The final step takes
the contigs and picks the most likely nucleotide sequence for each of them, while
also handling errors created by the sequencer when creating reads. Contigs that
are identified to be connected and order between them is defined are grouped in
blocks called sca�olds. The end result of the Overlap-Layout-Consensus method
is a collection of one or more sca�olds, depending on the successfulness of all the
previous steps.

Figure 2.1: High level overview of the OLC approach to de novo sequencing. Source:
[9]

2.2. Read types

The most significant issues in the genome assembly process described in the pre-
vious section have to do with the overlapping step. The number of overlaps of

4

each base pair in a single read with base pairs from other reads can be visualized
by creating a coverage chart. The general assumption here is that the discrim-
inative features of a read translate to its chart, which by extension means that
classifying a chart also assigns the same type class to its associated read. There
are four mayor read types that should be examined.

Regular reads are ones that have no outstanding features visible in their
charts, with the majority of overlaps being in a relatively narrow range of values
(the order of this range should not be of importance when ordering the read type).
This means that the shape of the signal is more or less flat throughout all base
pairs (see Figure 2.2).

Figure 2.2: Regular coverage chart

Repeat reads have one or more characteristic sections on their coverage
charts. These sections indicate to the presence of a set of consecutive base pairs
that repeat themselves at various positions throughout the referenced genome.
Even though they represent valid data (meaning that they can be found in the
original sequence), they vastly complicate the assembly process. From a com-
putational perspective, repeats create ambiguities in alignment, which, in turn,
can produce biases and errors when interpreting results. Simply ignoring repeats
is also not an option, as this creates problems of its own and may mean those
important biological phenomena are missed [20]. These ambiguities are most

5

prominent when very short reads are received from the sequencer. If there are
no reads long enough to reach over a repeating region into regular regions before
and after it, the system will not be able to tell which read should go where in the
final sequence (see Figure 2.3).

Chimeric reads are ones that give out the most concern, as, unlike the previ-
ous types, they represent invalid data. These reads are the result of malfunctions
in the sequencer which make it skip a part of the sequence and, by doing so, create
a read that contains base pairs that are in reality set far apart from each other.
It is for this reason that reads like these should be discovered and removed before
the assembly process so that they do not corrupt the resulting sequence. Making
their discovery somewhat tricky is the fact that chimeric reads tend to be few
and far between in most cases, which is why researchers are heavily focused on
discovering new ways for their prediction and removal. The upside is that these
reads have very characteristic coverage charts containing a noticeable spike in the
signal at the location where the two sections make contact with each other. The
sections on both sides of the spike have a significant amount of overlap compared
to other reads, but almost no overlap exists along their connecting region, thus
manifesting itself as a negative spike in the coverage signal, as shown in Figure
2.4b.

Figure 2.3: Repeat reads assembly ambiguities

6

(a) Repeat read coverage chart

(b) Chimeric read coverage chart

Figure 2.4: Irregular coverage charts

7

3. Deep learning methods

Deep structured learning, or more commonly called deep learning or hierarchical
learning, has emerged as a new area of machine learning research during the past
decade or so. It is the intersection of neural networks, artificial intelligence, op-
timization and pattern recognition. Due to this interleaved structure, there isn’t
one single definition of deep learning to quote on, though it is usually defined as
a sub-field of machine learning that exploits many layers of non-linear informa-
tion processing in order to model complex relationships among data. Common to
most high-level definitions are two key aspects. First, that deep models consist
of multiple layers of nonlinear operations, and second, that the learning methods
of feature representation are based on successively higher abstraction levels [3].

Within the field of machine learning in general, there are two main types of
tasks - supervised and unsupervised ones, with the main di�erence between the
two being the existence of prior knowledge of the output values. Therefore, the
goal of supervised learning is to create the best approximation of the relationship
between the input and output values, while unsupervised learning aims to infer
the natural structure present in the input data.

A separate categorization can also be done in aspect to model types, with the
ones considered here being classification, regression, clustering and dimensionality
reduction. With regard to the previously mentioned learning types, classification
and regression are considered to be supervised learning models. By doing classifi-
cation, the model learns to assign classes (labels from a predefined set) to samples
of input data. Regression models, on the other hand, return a continuous vari-
able instead of a label, which makes them useful for the detection of relationships
between variables. The last two model types, clustering and dimensionality re-
duction, are regarded as unsupervised models. With clustering, the objective is
to find di�erent groups (clusters) within the given data by structuring o� sam-
ples that are the most similar to each other. Lastly, dimensionality reduction

8

is defined as a process of reducing the number of variables under consideration
by obtaining a set of principal variables through the use of feature selection and
extraction [16].

3.1. Algorithm components

3.1.1. Loss function

The cost or loss function has an important job in that it must faithfully distill
all aspects of a model down into a single number in such a way that improve-
ments in that number are a sign of a better model. It is essential, therefore,
that the function represents our design goals to a high degree. If a poor error
function is chosen which obtains unsatisfactory results, the fault comes down to
the researcher for badly specifying the goal of the search.

Unfortunately, there is no one-size-fits-all loss function. There are various
factors involved in choosing one, such as the type of the algorithm or the ease
of calculating derivatives. Broadly speaking, they can be divided into two cat-
egories depending on the type of learning task, resulting in either regression or
categorization losses.

Cross-entropy loss

The loss function used with all models in this thesis is the cross-entropy loss or
the negative log-likelihood. Before the actual function is fully defined, a couple
of key definitions and assumptions must be made.

A function that maps an observation to a label is called a classifier and is
usually defined as a model fw with parameters w. The process of training a
model (finding the optimal parameters) is then obviously done by maximizing
the likelihood of the model’s parameters. If it is assumed that all samples are
independent and identically distributed, then the likelihood over all examples
can be decomposed as a product of likelihoods of individual samples (with y

(n)

representing the n-th ground-truth label, and ŷ
(n) representing the n-th predicted

label) [23].
L

1Ó
y

(n)
Ô

,

Ó
ŷ

(n)
Ô2

=
Ÿ

n

L

1
y

(n)
, ŷ

(n)
2

(3.1)

9

The second assumption states that all class labels are one-hot encoded, repre-
sented as vectors of N elements where only the corresponding index element is
equal to 1, while all others are set to 0. If this is true, the likelihood of the n-th
example is its exact predicted value:

L

1
y

(n)
, ŷ

(n)
2

= y
(n)
n ŷn

(n)
, n = 1, ..., N, y

(n)
n = 1 (3.2)

Returning to the likelihood defined in 3.1, applying a monotonic function, such
as a logarithm, to it does not change the original maximization goal. This, in
turn, is equivalent to minimizing the negative log likelihood, and when taking
into account 3.2, the loss functions final form is:

≠ log L

1Ó
y

(n)
Ô

,

Ó
ŷ

(n)
Ô2

=
ÿ

n

H

1
y

(n)
, ŷ

(n)
2

(3.3)

3.1.2. Optimization

As stated in the previous section, the priority goal of a deep learning model is to
minimize a loss function, whose value then determines the final performance of
the entire network on a given dataset. Thus, one can think of deep learning as
just a large optimization problem, essentially a complex mathematical function
with thousands or even millions of parameters. Accounting for the complexity
and non-linearity of the entire neural network architecture, and it becomes clear
that the solution will not be available in closed form1. It is for this reason that
a di�erent approach is needed, namely by using iterative optimization methods
like gradient descent and its descendants.

All optimization methods share one common trait, requiring the calculation
of the derivatives of the loss function L with respect to layer parameters. The
coupling of parameters between layers can make this process quite complex (pri-
marily as a result of using the product rule), and if not implemented cleverly, can
make the final gradient descent calculations painfully slow. It is for this reason
that a particular algorithm is introduced to calculate these derivatives, called
backpropagation.

When using a feedforward neural network to accept an input x and produce an
output y, information flows forward through the network. The input provides the
initial information that then propagates up to the hidden units at each layer and

1A mathematical expression that can be evaluated in a finite number of operations

10

finally produces the output result. This is called forward propagation. During
training, forward propagation can continue onward until it produces a scalar loss.
The back-propagation algorithm allows the information from the loss to then
flow backward through the network in order to compute the gradient. The term
backprop is often misunderstood as meaning the entire learning algorithm, but
it actually refers only to the method for computing the gradient, while another
algorithm, such as stochastic gradient descent, is used to perform learning using
this gradient [6].

These learning algorithms, also called optimization algorithms, use the gradi-
ent of the loss function to tweak the network parameters in order to minimize the
final loss value. A gradient is a vector which shows the direction of the functions
rise, requiring the algorithm to move in the opposite direction while searching for
the minima. This search does not come without a few challenges, mainly concern-
ing local minimums, saddle points and vanishing gradients. As it was the case
with the loss function, no optimization algorithm is perfect, but it has become
common practice today to use some of the more advanced adaptive algorithms to
try and overcome these issues, with one of them being Adam [11]. According to
the original authors, the bias-correction introduced in Adam helps it to slightly
outperform RMSprop, another advanced adaptive algorithm, towards the end of
optimization as gradients become sparser, making it the currently the best overall
choice [17].

3.2. Common operations

3.2.1. Pooling

The role of a pooling layer is to aggressively downsample input feature maps
by applying a predefined mathematical operation. Ordinarily, these operations
either take the mean or the maximum value of data inside a moving window.
Pooling is commonly applied after a convolution layer in order to progressively
reduce the number of parameters and computation in the network, which allows
for control over overfitting. In all cases, pooling helps to make the representation
become invariant to minor translations of the input, becoming more adept at
detecting a specific feature, rather than binding a feature to a specific location
inside a sequence.

11

Figure 3.1: Average and max pooling on a 4x4 feature map. Source: [5]

3.2.2. Activations

The activation function can be seen as a mathematical transition between the
input and output of a given neuron. A deep network without an activation func-
tion boils down to a linear regression model, which has limited performance,
especially when it comes to complex tasks. Since activation functions are at their
core simply nonlinear mathematical functions, introducing them into the network
architecture allows for the computation of nontrivial problems. A good activa-
tion function should then be nonlinear, preferably continuously di�erentiable (for
successful backpropagation) and monotonic. Some of the most used nonlinear ac-
tivations include the sigmoid, hyperbolic tangent, ReLU (Rectified Linear Unit)
and its derivatives (Figure 3.2).

3.3. Convolutional Neural Networks

The fundamental di�erence between a fully connected layer and a convolution
layer is that the former learn global patterns in their input feature space (e.g.,
taking in a whole image at once), whereas the latter learn local patterns. They
have been of great use in image recognition, thanks to their ability to detect and
recognize various complex hierarchies and patterns. Lower layers learn small local
patterns such as edges, while higher layers learn larger patterns made up of the
features of the previous layers, and so on [2]. Another advantage of convolutions
is the number of parameters used by each layer. A fully connected layer, as the
name suggests, connects every input to every output, with each connection having
its own weight parameter. Comparing this to local connections in a convolution
layer, in which only a handful of inputs control a single output, it is clear that
they relieve much of the heft that comes with using fully connected layers, hence

12

(a) Sigmoid (b) Hyperbolic tangent

(c) ReLU (d) Leaky ReLU

Figure 3.2: Nonlinear activation functions. Source: [19]

speeding up the learning process (see Figure 3.3).

A convolution layer is defined by four hyperparameters - filter size, output
depth, stride and padding. A filter is essentially a group of weights with which
the input features are convolved. The filter size defines the number of neighboring
elements for a single position, while the output depth simply states how many
filters have been defined. Even though the filter size and number are hyperpa-
rameters, the weights inside them are not, starting o� with random values, with
the learning algorithm modifying them during training.

To process a single input map, the filter slides around it and computes the
sum of the elements it covers, with each element multiplied by its corresponding
weight from the filter. An additional bias term is also added, and a single number,
the weighted sum, is produced for each position that the filter slides over (see
Figure 3.4 for a visual example).

13

Figure 3.3: Convolutional and fully connected layer comparison. Source: [6]

Padding and strides

Using an out-of-the-box convolution results in an output feature map of smaller
spatial dimensions compared to the input. This can be avoided, if required,
by applying padding. Padding, another hyperparameter, consists of adding an
appropriate number of rows and columns on each side of the input feature map so
as to make it possible to fit the center convolution windows around every input
tile. It is common to fill the padded area with zeros so to not a�ect the output
values. In addition to the aforementioned benefit of keeping the spatial sizes
constant, applying zero-padding actually improves performance and prevents the
information at the borders being ignored too quickly [10].

The other factor that can influence the output size is strides. A stride is the
distance between two successive windows and is also a hyperparameter of a con-
volution layer. By using a stride greater than one, the width and height of the
feature map end up downsampled by this factor (in addition to any changes in-
duced by border e�ects). Strided convolutions are rarely used in practice though,
despite that they can come in handy for some types of models. In the end, the
most reasonable subsampling strategy is to first produce dense maps of features
and then look at the maximum activation of the features over small patches,

14

Figure 3.4: Example of a convolution operation with a 3x3 filter. Source: [15]

Figure 3.5: Usage of padding in preservation of output dimensions

rather than looking at averaged or global input patches, which could result in
missed or diluted feature information.

3.3.1. One-dimensional CNNs

CNNs share the same characteristics and follow the same approach, no matter if
they are 1D, 2D or 3D. The only di�erences are, clearly, in the input dimension-
ality and the way that filters slide over the data. The same properties that make
convnets excel at computer vision also make them highly relevant to sequence
processing. Time can be treated as a spatial dimension, like the height or width
of a 2D image. This means, that even though the name suggests that the input
data should have a single dimension, the network is set up to requires a 2D tensor.
The first dimension defines the number of time steps in a single example, which
in layman’s terms stands for the total length of a 1D input vector. The other

15

parameter defines the number of features for each step. Taking again a 1D input
vector, this parameter is set to 1, as there is only a single numeric value for every
step.

Figure 3.6: 1D convolutional layer. Source: [2]

One di�erence, though, is the fact that you can a�ord to use larger convolution
windows with 1D CNNs. With a 2D convolution layer, a standard 3x3 convolution
window contains nine feature vectors; but with a 1D convolution, a window of
size 3 contains only 3 feature vectors, allowing for the use of larger values in 1D
networks.

3.4. Recurrent Neural Networks

Fully connected and convolutional networks that have been described so far have
a common characteristic, in that they have no memory. What this means is that
each input is processed independently, with no state kept in between. Recurrent
Neural Networks are similar to the human brain, which is a large feedback network
of connected neurons that somehow can learn to translate a lifelong sensory input
stream into a sequence of useful outputs.

An RNN takes in a three-dimensional tensor as its input, with two of those

16

three being quite similar to the 1D CNN input defined in the section above. The
first dimension again defines the number of time steps (sequence length), and the
second defines the number of features in a single step. The third dimension is
new and shows the number of examples in a mini-batch, basically the number of
input records (collections of points for a single source entity) to model per batch.

Figure 3.7: Comparison of normal an RNN input vectors. Source: [15]

Recurrent networks take as their input, not just the current example, but also
what they have perceived previously in time. The decision a network made at
time step t ≠ 1 a�ects the decision it will reach later at time step t. This means
that every RNN cell has two input sources, the present, and the recent past,
which combine into a unified hidden state that serves as "memory". A single cells
hidden state at time t is then defined as:

h
(t) = ◊h

1
Wh

(t≠1) + Ux
(t) + b

2
(3.4)

The U and W weight matrices behave similarly to CNN filters, determining how
much importance to accord to both the present input and the past hidden state.
The final loss will return via backpropagation and be used to adjust their weights
during the learning process. A bias vector b can also be defined and added to
the hidden state. Unlike the previously considered networks, RNNs share their
weight matrices between cells, meaning that for an entire layer with multiple
connected cells, only a single instance of both the U and W matrices exist at
one time [22].
For the sake of simplicity, the architecture of the first cell in the network is kept

17

the same, with only the initial hidden state being set to zero:

h
(0) = 0 (3.5)

The projection of each cell into the output layer is then calculated as:

o
(t) = ◊o

1
V h

(t) + c

2
(3.6)

As was the case with the hidden state equation, a third weight matrix V (shared
throughout the cells) is used to filter the hidden state before passing it through
to the output layer. The ◊o activation function can be applied here if necessary;
otherwise, it simply defaults to the identity function. Lastly, if the network is
tasked with classification, the output probability is simply a softmax function
applied over the output layer:

ŷ
(t) = softmax

1
o

(t)
2

(3.7)

Theoretically, any of the activation functions could be used for the ◊h and
◊o functions applied to the hidden state and the output projection, but the hy-
perbolic tangent is usually the preferred option. The main reason for this is to
prevent a combinatorial explosion by squashing the values into a [≠1, 1] range.
A hidden state activated by a ReLU function is defined as:

h
(t) = ReLU

1
Wh

(t≠1) + Ux
(t) + b

2

t æ T ∫ 1 x
(t) = 0 b = 0 h0 = 1

After T steps, disregarding the current step input and bias, the hidden state
enters the combinatorial explosion phase:

h
(T) = w

T
, w > 0

3.4.1. Backpropagation through time

The problem with applying regular backpropagation to an RNN is its cyclic na-
ture. Unlike regular feed-forward networks which are acyclic and unidirectional
and for which the loss derivatives could be calculated from the layer above, RNNs
do not have such layering. The equation for calculating the hidden state loss
derivative for a single RNN cell is defined as:

ˆL
ˆh(t) = ˆL(t)

ˆh(t) + ˆL(t+)

ˆh(t) (3.8)

18

Figure 3.8: Structural diagram of an RNN cell. Source: [22]

By examining this equation (3.8), it becomes clear that every hidden state loss
derivative depends on all upstream gradients from its successor all the way to the
last cell in the layer. As this dependency is unique to RNNs, a modified back-
propagation algorithm, called backpropagation through time (BPTT), is used for
training.

At its core, BPTT is just a regular backpropagation, with a subtle twist
at the first step. It begins by unfolding the RNN in time. Then the plain
backpropagation algorithm is used to find the gradient of the cost with respect
to all the network parameters, with the algorithm starting out from the last cell
and working its way up to the first one [22].

3.4.2. Long Short-Term Memory

One of the appeals of RNNs is the idea that they should be able to connect
previous information to a present task. For most tasks, it is usually enough to
look at recent information to successfully perform them, but there are some tasks
that require more context and longer-term dependencies, without which they can

19

not perform as it would be expected. In theory, standard RNNs are more than
capable of handling such dependencies, albeit with carefully picked parameters.
Unfortunately, in practice, it has been shown that RNNs struggle with grasping
these dependencies [1].

To tackle the long-term dependencies problem, a new type of RNN was
created, called the Long Short-Term Memory network (LSTM). Introduced by
Hochreiter and Schmidhuber in 1997, they are explicitly designed to remember
information for long periods of time [8]. Owing to this is the modified structure
of a single cell, which now has four layers inside it, instead of the regular single
layer in a plain RNN (Figure 3.9).

The core component of an LSTM cell is the so-called cell state. One can
imagine it as a conveyor belt of sorts, running parallel to the sequence being
processed, with information jumping onto the conveyor to be stored for later use,
and jump o� again when needed. The jumping of information onto the cell state
is controlled by a set of three activation gates that define how much information is
being added or removed from the state. Mathematically, the cell state is defined
as:

s
(t) = f

(t) § s
(t≠1) + g

(t) § ŝ
(t) (3.9)

The first of the three gates, called the forget gate layer, controls what information
should be removed from the cell state. Its task is to examine the previous step ht≠1

and the current input xt and apply a simple sigmoid to decide which information
from s

(t≠1) should be canceled out.

f
(t) = ‡

1
Wfh

(t≠1) + Ufx
(t) + bf

2
(3.10)

Deciding what information to add to the cell state is the job of the next layer,
aptly named the input gate layer. The equation is defined in the same way as
the forget gate layer, just using di�erent weight parameters (3.11). An additional
candidate state is calculated by applying the hyperbolic tangent to the inputs
(3.12). This new state is then combined with the input gate layer and used to
create the new cell state as stated in equation 3.9.

g
(t) = ‡

1
Wgh

(t≠1) + Ugx
(t) + bg

2
(3.11)

ŝ
(t) = tanh

1
Wsh

(t≠1) + Usx
(t) + bs

2
(3.12)

20

Finally, it is time to define the output of an LSTM cell. Firstly, the cell inputs
are run through yet another sigmoid gate to decide what part of them should
be output (3.13). The cell state passes through a hyperbolic tangent to push
its values into a [≠1, 1] range. Results of these two steps are then multiplied to
create the final output of the cell (3.14) [14].

q
(t) = ‡

1
Wqh

(t≠1) + Uqx
(t) + bq

2
(3.13)

h
(t) = q

(t) § tanh
1
s

(t)
2

(3.14)

Figure 3.9: Structural diagram of an LSTM cell. Source: [14]

3.5. Autoencoders

Up until now, all described networks have fallen under the category of supervised
learning. The thing is, clean, perfectly labeled datasets are not that easy to come
by. The number of unlabeled or partially labeled samples is often larger than
the number of labeled samples since the former are less expensive and easier to
obtain. A never-ending problem of supervised learning algorithms is not having
enough labeled data. One way of addressing this problem is by adding cheap and
abundant unlabeled data, hoping that it will help build a better model than just
by using supervised learning. The approach of using both a smaller set of labeled
and a larger set of unlabeled data is called semi-supervised learning.

Autoencoders are defined as neural networks that are trained to attempt to
copy their input to their output. Each autoencoder may be viewed as consisting

21

of two parts: an encoder function h = f(x) and a decoder that produces the
reconstruction r = g(h). Even though they are tasked with learning to copy
input to the output, If they somehow manage to set r = g(f(x)) = x everywhere,
then they stop being especially useful. Instead, they are designed to be unable to
learn a perfect copy. Because the model is now forced to prioritize which aspects
of the input it should copy, it tends to learn useful patterns and properties in
the data along the way. One way to obtain useful features in the latent layer
is to constrain it to have a smaller dimension than the input/output layers. An
autoencoder whose latent dimension is less than the input dimension is called an
under-complete autoencoder. Learning an under-complete representation forces
the autoencoder to capture the most salient features of the training data.

Figure 3.10: Representation of a basic autoencoder. Source: [13]

Because neural networks are capable of learning nonlinear relationships, au-
toencoders can be thought of as a more powerful nonlinear generalization of
PCA2. Whereas PCA attempts to discover a lower dimensional hyperplane which
describes the original data, autoencoders are capable of learning nonlinear man-
ifolds (continuous, non-intersecting surfaces).

Training autoencoders is done the same way as with all other deep networks,
by minimizing a predefined loss function, which usually correlates with the dif-
ference between the input and its reconstruction. For this correlation to be true,
the encoder and decoder need to cooperate, so that the encoder extracts as many
useful features from the input data, which the decoder then uses to provide a
reconstruction as similar as possible to the input.

2Principal Component Analysis — Mathematical procedure that transforms a number of
correlated variables into a smaller number of uncorrelated variables (principal components)

22

Even though many implementations use a simple shallow autoencoder with
only a single layer encoder/decoder, this does not have to be the case. Recent
studies have shown that increasing the depth of the hidden layers can result in
reduced computational cost and the amount of training data required [6]. There
are also many other types of autoencoders out there, with the most popular ones
being denoising, sparse, convolutional and variational autoencoders.

3.5.1. Variational autoencoders

One of the more advanced types of autoencoders is the variational autoencoder
(VAE). They are called “autoencoders” only because the final training objective
that derives from this setup does have an encoder and a decoder, and resembles
a traditional autoencoder [4].

Suppose that every example x can be generated through a random variable
z. More formally, if z is conforms to a distribution p(z), then x can be sampled
from the conditional distribution p(x|z). The problem with this is that only x is
known, with the characteristics of z attempting to be inferred. Mathematically
speaking, p◊(z|x) needs to be computed, with it being equal to:

p(z|x) = p(x|z) p(z)
p(x) (3.15)

As p(z) is an independent distribution, it can be safely assumed and is chosen
to match the normal distribution N (0, 1). A normal distribution is used for its
simple formula and the ability to generate any other distribution from it [4].
Regarding p(x), the goal during training is to maximize the probability of each
example in the dataset using the following equation:

p(x) =
⁄

p(z) p◊(x|z) dz (3.16)

Looking at this equation, a problem arises. The integral used proves to be ana-
lytically intractable, meaning that the resulting distribution is also intractable.
Propagating this issue back to 3.15, it turns out that sampling z from the condi-
tional distribution p(z|x) cannot be done in the proposed manner. The solution
to this is to try and approximate it by using another distribution q„(z|x). If the
parameters can be defined in such way that this distribution is very similar to
p◊(z|x), then it can be used to approximately infer the intractable distribution

23

p(z|x). For the representation of this distribution, a multinomial normal distri-
bution can be used, with its parameters usually determined by a deep network.
Finally, this replacement distribution can then be written as:

qÏ(z|x) = N (gµ(x; Ï), g‡(x; Ï)) (3.17)

With the distributions defined, the encoder part of the VAE will be handling the
learning of q„(z|x), while the decoder will be assigned with learning p◊(x|z).

The next task is to find the optimal values for „ and ◊. The way the model
is currently set up, it is exposed to a certain degree of variation when encoding
a single sample, resulting in smooth latent spaces on a local scale, at least for
similar samples. Ideally, there should also be some overlap between samples
that are not very similar, in order to be able to interpolate between classes later
on e�ciently. However, since no limits have been set on the sampled µ and ‡,
the encoder could technically learn to generate very distant means for di�erent
classes, clustering them apart and with minimal deviation, e�ectively cordoning
o� classes from each other. In a perfect world, encodings should be as close as
possible to each other while still being distinct, allowing for smooth interpolation
and construction of new samples. Training VAEs with regular techniques will not
honor the described behavior, meaning that it must be somehow added manually.

Figure 3.11: Variational autoencoder architecture (dashed lines represent sampling
from a distribution). Source: [22]

Optimizing the objective

The original loss is a straightforward maximum log-likelihood (MLE), which has
already been explained in detail in section 3.1.1.

log(p(x)) =
ÿ

z

q(z|x) log(p(x))

24

=
ÿ

z

q(z|x) log
A

p(z, x)
p(z|x)

B

=
ÿ

z

q(z|x) log
A

p(z, x)
q(z|x) · q(z|x)

p(z|x)

B

=
ÿ

z

q(z|x) log
A

p(z, x)
q(z|x)

B

+
ÿ

z

q(z|x) log
A

q(z|x)
p(z|x)

B

L = Lv + DKL(q(z|x) Î p(z|x)) (3.18)

Interestingly enough, the log probability can, through some mathematical trans-
formations, be decomposed into two separate components, the lower variational
bound Lv and the Kullback-Leibler divergence DKL. The Kullback-Leibler (KL)
divergence is defined as the measure of how one probability distribution is dif-
ferent from a second. In the context of Bayesian inference, it is the amount of
information lost when one distribution is used to approximate the other. Assum-
ing a high enough precision, the two distributions will be identical and the KL
divergence will equal zero [22].

To maximize the overall likelihood, the lower variational bound Lv must also
be maximized. Therefore, further decomposition is necessary:

Lv =
ÿ

z

q(z|x) log
A

p(z, x)
q(z|x)

B

=
ÿ

z

q(z|x) log
A

p(x|z) p(z)
q(z|x)

B

=
ÿ

z

q(z|x) log
A

p(z)
q(z|x)

B

+
ÿ

z

q(z|x) log(p(x|z))

= ≠DKL(q(z|x) Î p(z)) + Eq(z|x)(log(p(x|z))) (3.19)

The latter component represents the quality of reconstruction and is essentially
the probability that x is sampled from p(x|z) with z being from q(z|x), while the
former shows how much the conditional distribution q(z|x) di�ers from the prior
p(z). This KL divergence can be considered as a regularization factor in the final
loss function [6].

Maximizing the lower variational bound as defined in 3.19 using backpropa-
gation leads to yet another obstacle. It is impossible to calculate the gradient

25

of the loss function through a nondeterministic sampling function because the
algorithm has no clue how to calculate a gradient at this point. To overcome this
problem, the nondeterministic sampling function can be approximated by firstly
randomly sampling Á from a standard Gaussian N (0, 1), and then adding it to
the latent distribution’s mean and variance in the following manner:

z = µ + ‡ § Á (3.20)

This maneuver is called the reparameterization trick (Figure 3.12), as z is left
with essentially the same distribution it had before, but is now di�erentiable and
the backpropagation can now pass on through to the encoder without issue.

At last, it is time to express the definite formula for the loss function. As the
distribution p(x|µ, ‡) is a Gaussian and the multivariate normal distribution is
assumed to have a diagonal covariance matrix (all its variables are independent),
the probability can then be written as:

p(x|µ, ‡) =
NŸ

i=1
p (xi|µi, ‡i) (3.21)

To combine this equation with the quality of reconstruction defined in 3.19, a
logarithm is applied:

log p(x|µ, ‡) = log
MŸ

i=1
p (xi|µi, ‡i)

= log 1
Ô

2fi
M · rM

i=1 ‡i

· e
≠

qM

i=1
(xi≠µi)2

2‡2
i

= log 1
Ô

2fi
M ≠ log

MŸ

i=1
‡i ≠

Mÿ

i=1

(xi ≠ µi)2

2‡
2
i

(3.22)

Assuming that only a single sample from z is required for the training to work
well, only the log probability remains:

log p(x|µ, ‡) = ≠
Mÿ

i=1

A

log ‡i + (xi ≠ µi)2

2‡
2
i

B

(3.23)

Applying the same methods to the KL regularization factor from 3.19, the equa-
tion is transformed to:

DKL(q(z|x) Î p(z)) = ≠1
2

Nÿ

i=1

1
1 + log ‡

2
zi

≠ µ
2
zi

≠ ‡
2
zi

2
(3.24)

26

Combining 3.23 and 3.24, the final definitive loss function is:

L(i) =
Mÿ

i=1

A

log ‡i + (xi ≠ µi)2

2‡
2
i

B

≠ 1
2

Nÿ

i=1

1
1 + log ‡

2
zi

≠ µ
2
zi

≠ ‡
2
zi

2
(3.25)

Optimizing this loss results in the generation of a latent space which maintains
the similarity of nearby encodings on the local scale via clustering, yet globally is
very densely packed near the latent space origin. this is the equilibrium reached
by the cluster-forming nature of the reconstruction loss, and the dense packing
nature of the KL divergence loss, forming distinct clusters the decoder can decode.
Thus, when randomly sampling a vector from the same prior distribution of the
encoded vectors, the decoder will successfully decode it. And if interpolating,
there are no sudden gaps between clusters, rather a smooth mix of features a
decoder can understand [18].

(a) Regular form

(b) Reparameterized form

Figure 3.12: Latent state form comparison before and after reparameterization trick
application. Source: [22]

27

4. Dataset

The data used for the training and testing of all models is a representation of
the whole genome sequence of the Escherichia Coli bacteria (NCTC 86). This
sequence has been converted from the original FASTA/FASTQ format into a more
suitable format for analyzing overlaps by using the minimap tool. The result is
the Pairwise mapping format (PAF) that is then forwarded into a preprocessor
for transformation and conversion.

4.1. Pairwise Mapping Format

The Pairwise mApping Format (PAF) is a lightweight mapping format that de-
scribes the overlapping regions of pairs of reads, with the information on the
starting and ending locations, length, quality, etc. There are twelve TAB delim-
ited columns, whose short description can be viewed in table 4.1. All fields are
obligatory, but each row may optionally have additional fields in the SAM-like1

typed key-value format at the end of each mapping.

For the purposes of this thesis, only a handful of values from each mapping
is used, with these being the query sequence name, length, start and end coordi-
nate. All other information may be ignored and will not be used in the following
preprocessing steps [12].

4.2. Preprocessing

Before the data can be used for model training, the overlaps must be calculated
and stored in a separate file. For each new query in a PAF file, a new data model
is created, containing four parameters - query ID, query length, overlap type and

1Sequence Alignment/MAP format — Generic text format for storing read alignments
against reference sequences

28

Col Type Description
1 string Query sequence name
2 int Query sequence length
3 int Query start coordinate (BED-like)
4 int Query end coordinate (BED-like)
5 char ‘+’ if query and target on the same strand; ‘–’ if opposite
6 string Target sequence name
7 int Target sequence length
8 int Target start coordinate on the original strand
9 int Target end coordinate on the original strand
10 int Number of matching bases in the mapping
11 int Number bases, including gaps, in the mapping
12 int Mapping quality (0–255 with 255 for missing)

Table 4.1: PAF columns description

the overlap sequence. As described in section 2.2, an overlap can fall into one
of several categories: regular, repeat or chimeric. An additional category, low-
quality overlaps, has also been added here to represent overlaps whose average
overlap count is found below a predefined threshold.

Once a data model is created, all mappings tied to its query ID are analyzed
and the overlap count is updated for each query index accordingly. Upon parsing
all associated mappings, the parser normalizes the overlap sequence so that they
all match in total length. This is an important step as the initial length varies
greatly, with the shortest overlaps having only a few hundred indexes, while the
longest ones reaching all the way up to thirty thousand plus indexes (see Figure
5.1). By analyzing the initial lengths of all overlaps for the NCTC 86 PAF file, it
was decided that all entries will be scaled to 5000 indexes. Downscaling is done
simply by calculating the number of indexes that should be removed and then
removing them at random positions so to not a�ect the overlap characteristics
in the data model. Upscaling, on the other hand, is a bit more complex, as new
data needs to be generated in order to match the defined length. Firstly, the
number of indexes to be interpolated is calculated, the same way as it is done for
downscaling. Then, random positions are chosen from the current length. New
indexes are inserted at these positions, with the values being a mean of the values

29

to their immediate left and right. These steps are repeated until the total length
does not equalize with the predefined length.

Upon normalization, each entry is written into a shared TSV2 file for later use.
The file contains four columns matching the attributes of the previously described
data model (query ID, original length, overlap type and overlap sequence). The
overlap sequence is a comma-delimited list of values, one for each index. This
data is what is used for training of the models. Additionally, in order to help
the optimization process, all values are normalized into the [0, 1] range. This
transformation does not have an e�ect on the shape or characteristics of the
data, only the scale of its values. As the actual value is not directly used, it can
be safely scaled down.

For the purpose of generating labeled data, around four hundred samples
have been manually categorized by referencing the overlap charts. The charts are
generated by simply parsing the TSV file and plotting the overlap sequence. The
rest of the generated samples have been left uncategorized.

Figure 4.1: Bar plot of query sequence length in the original NCTC86 dataset

2Tab-separated value — Simple text format for storing data in a tabular structure

30

Dataset No. samples
Labeled data (training) 231

Labeled data (test) 99
Unlabeled data 7461

Table 4.2: Data distribution

An additional problem is the unbalanced nature of the classes. Even though
not many samples have been manually classified, out of the classified ones, repeat
and regular sequences are most prominent and account for more than 85 percent
of the total set. The most problematic ones are chimeric reads, with only 15
instances in a dataset of 330 sequences, accounting for only 0,05 percent of the
total labeled data.

31

5. Results and evaluation

Three di�erent models were created and evaluated, each of them theoretically
described in chapter 3. These are:

1. One-dimensional convolutional neural network

2. Long short-term memory recurrent neural network

3. Variational autoencoder with an external classifier

Common settings include the use of the Adam optimizer with a learning rate
of 10≠4 and a batch size of 64. If not stated otherwise, the activation function
defaults to ReLU. To prevent overfitting and cut down on unneeded execution
time, an early stop was implemented into each training process, in such way that
if the validation loss has a positive trend in five continuous epochs, the learning is
automatically cut o�. The architectures of the implemented models are defined
in tables 5.1, 5.2 and 5.3 below.

Regarding the 1D-CNN, several di�erent architectures have been designed,
most di�ering in the number of convolutional layers and the use of pooling lay-
ers. The best performing one consists of twelve layers, including three pairs of
convolutional layers. Hyperparameters for this model includes the kernel size and
amount of filters for the convolutions and the pool size for the pooling layers. A
grid search for these hyperparameters was executed, resulting in the values visible
in table 5.1.

The LSTM model proved to be an issue with long static sequences like these.
Even though the final model does not have that many parameters in total, the
learning process turned out to be extremely slow, comparing to all other tested
models. This has also a�ected the overall architecture, keeping it rather simple

32

Layer Hyperparameters
1D Convolution Filters = 128; Kernel size = 23
1D Convolution Filters = 64; Kernel size = 23
Max. pooling Pool size = 10

Batch normalization —
1D Convolution Filters = 64; Kernel size = 23
1D Convolution Filters = 32; Kernel size = 23
Max. pooling Pool size = 10

Batch normalization —
1D Convolution Filters = 32; Kernel size = 23
1D Convolution Filters = 16; Kernel size = 23

Global average pooling —
Fully connected Units = 3

Table 5.1: Layer architecture for a 1D-convolutional neural network

Layer Hyperparameters
LSTM Units = 32
LSTM Units = 32
Flatten —

Fully connected Units = 3

Table 5.2: Layer architecture for an LSTM recurrent neural network

(see table 5.2). All in all, there are two long short-term memory layers, each
with 32 units, with other hyperparameters left default. As was the case with the
1D-CNN, the unit number was determined by a simple grid search.

Lastly, several implementations of a variational autoencoder have been con-
structed, with the main one being a relatively simple triple layer fully-connected
architecture. Each of these components is described in table 5.3 below. As the
autoencoder does not require labels for training, and with labeled data being
scarce, the entire unlabeled subset was used. Once the autoencoder training is
complete, the encoder is extracted as a separate component and used to trans-
form labeled sequences into latent representations. These representations, along
with the accompanying labels, are then fed into a classifier for training. As the

33

Deep variational autoencoder

Encoder Decoder
Layer Hyperparameters Layer Hyperparameters

Fully-connected Units = 1536 Fully-connected Units = 512
Fully-connected Units = 1024 Fully-connected Units = 1024
Fully-connected Units = 512 Fully-connected Units = 1536

Fully-connected Units = 5000

Table 5.3: Layer architecture for a deep variational autoencoder

training process comes to a finish, a smaller subset of the labeled data is used for
classifier testing. This way, only a small subset of data needs to be labeled so that
classification metrics can be calculated, while all other samples are forwarded to
the autoencoder. Since the latent representation is of much lower dimensionality,
regular machine learning classifiers can also be used side by side. Considered
classifiers are a simple fully-connected feed-forward neural network, a non-linear
Gaussian support vector machine, and a k-nearest neighbors algorithm. Just like
the 1D-CNN, these models also have the early stopping condition built to try and
prevent overfitting.

Figure 5.1: Structure of the VAE + FC model. Unlabeled data is fed into the
variational autoencoder for training. The trained encoder then encodes labeled data
into the latent state and forwards it to the classifier which outputs the classes.

All classifiers have been trained on 70 percent of the original labeled dataset,

34

with the remaining 30 percent left for testing and validation. As stated in the
paragraph above, since the autoencoder does not require a labeled set for training,
it can use the full potential of the unlabeled data set which include more than
7000 samples. As stated in table 4.2, this train-test split results in 231 samples for
training and 99 for testing and validation. The models were trained inside Jupyter
notebooks hosted on a remote server, with the hardware including Nvidia Tesla
K80 graphic cards with 12 GB of VRAM, Intel Xeon CPUs and an additional 61
GB of standard RAM, hosted on Floydhub1. All developed code can be found on
Github2, publicly available under an MIT license.

An overview of the performance of all models is given in table 5.4. The
main point of reference for determining the success or failure of the implemented
model is a thesis by äebrek, T. (2017), which was tasked with the same problem,
the only di�erence being that the input data were images of overlap charts. A
classification report, together with a confusion matrix, has been calculated for
each implementation, with the F1 score being listed for easy model comparison.

1D-CNN LSTM VAE+SVM VAE+FC
F1 score 0.5466 0.5800 0.7300 0.6733

Table 5.4: F1 score for each tested model

FF SEMI-AE M1+M2 SEMI-GAN
F1 score 0.7408 0.9000 0.9341 0.9708

Table 5.5: Macro F1 score for each model from äebrek (2017). FF = Simple feed-
forward neural network; SEMI-AE = Semi-supervised regular autoencoder; M1+M2 =
Semi-supervised variational autoencoder model; SEMI-GAN = Semi-supervised gener-
ative adversarial network

Unfortunately, even a quick skim through the confusion matrices of the tested
models (tables 5.6, 5.7, 5.8, 5.9) leads to the conclusion that there is no model
that could faithfully recognize chimeric reads with a satisfying degree of certainty,
with most of them tending to classify these reads as repeats. This was something
that could have been expected, mostly due to the small number of these reads
in the testing subset. On a positive note, there are almost no cases where some

1www.floydhub.com
2www.github.com/�oreani/masters-thesis

35

Regular Repeat Chimeric
Regular 11 11 0
Repeat 0 70 0

Chimeric 0 6 1

Table 5.6: Confusion matrix for the 1D-CNN model

Regular Repeat Chimeric
Regular 14 9 0
Repeat 3 67 0

Chimeric 0 5 1

Table 5.7: Confusion matrix for the LSTM RNN model

other read type ends up as a chimeric one, which is a good indicator of the
possible area of interest for future work. Comparing the F1 scores to the ones
from äebrek’s work, even though some of the models di�er in architecture, it is
clear that the models implemented here still need some work, with his best score
being an almost perfect 0.9708, a far shot from the best ones here [21].

One important thing that can be inferred from the total scores in table 5.4
is that there is a statistically significant di�erence between the models that use
autoencoders and those that do not. This is a step in the right direction when it
comes to the question of using semi-supervised models. Even though the autoen-
coder does not classify the samples directly, it plays a major part in the process.
Dimensionality reduction is especially important in cases like these when large
samples with many features are used. This type of data tends not to play nice
with any but the most simple models, like LSTMs. Additionally, by using varia-
tional autoencoders, one can greatly benefit from its generative structure. This
means that not only are the input samples being represented in a compressed
state, but that new samples can also be easily generated by sampling the latent
dimension and decoding new input samples from them through a decoder.

36

Regular Repeat Chimeric
Regular 23 7 0
Repeat 5 58 0

Chimeric 0 3 3

Table 5.8: Confusion matrix for the deep VAE + SVM model

Regular Repeat Chimeric
Regular 14 9 0
Repeat 2 68 0

Chimeric 0 4 2

Table 5.9: Confusion matrix for the deep VAE + FF model

37

6. Conclusion

The main purpose of this thesis was to create a deep learning network for clas-
sification of one-dimensional overlap signals depending on their type, defined to
be either regular, repeat or chimeric. Several ideas have been tried out, concen-
trating on using the signals in their raw vectored form instead of converting them
to charts. The compared methods are a 1D-convolutional neural network, a long
short-term memory recurrent neural network and a combined model based on a
variational autoencoder connected to a 1D-CNN.

The original PAF dataset has been converted into a makeshift database, with
each entry defining one overlap query. To obtain some labeled data, around four
hundred samples were manually classified. Several problems have been identified
while analyzing the dataset contents, with the main issue being a gross distance
between class representations, with chimeric reads being the most underrepre-
sented.

Regarding the results, the best overall model is considered to be the varia-
tional autoencoder with an additional Support Vector Machine classifier. The
autoencoder does marvels when it comes to dimensionality reduction, although
it tends to struggle with consistently representing some read types. Out of the
tested classifiers, SVMs tend to do best when it comes to drawing boundaries
between latent samples, which may have to do with its Gaussian kernel being
similar to distributions used by the autoencoder. All that said, comparing these
models with similar works shows that there is still a long way to go before any of
the implemented models can come close to the currently leading ones.

There is still a lot that can be done in order to obtain better results. Firstly,
a more balanced dataset would have a substantial impact on the end result, as
in the current situation, all models seem to struggle with classifying chimeric
reads. Another approach to this issue is to consider chimeric reads as anomalies

38

and treat the problem as anomaly detection, a heavily researched field with a
lot of good references to start from. Pivoting the problem again, the 1D-signal
can be imagined as a waveform, which would then make it applicable for the use
of classification methods like Dynamic Time Wrapping or Echo state networks.
There is also hope for the future application of autoencoders and other generative
methods, as there will always be a shortage of labeled data.

39

Bibliography

[1] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies
with gradient descent is di�cult. Trans. Neur. Netw., 5(2):157–166, March
1994. ISSN 1045-9227. doi: 10.1109/72.279181. URL http://dx.doi.org/
10.1109/72.279181.

[2] François Chollet. Deep Learning with Python. Manning, November 2017.
ISBN 9781617294433.

[3] Li Deng, Dong Yu, et al. Deep learning: methods and applications. Foun-
dations and Trends in Signal Processing, 7(3–4):197–387, 2014.

[4] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908, 2016.

[5] Wenfeng Gong, Hui Chen, Zehui Zhang, Meiling Zhang, Ruihan Wang, Cong
Guan, and Qin Wang. A novel deep learning method for intelligent fault di-
agnosis of rotating machinery based on improved cnn-svm and multichannel
data fusion. Sensors, 19(7), 2019. ISSN 1424-8220. doi: 10.3390/s19071693.
URL https://www.mdpi.com/1424-8220/19/7/1693.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[7] Anthony J.F. Gri�ths. Dna sequencing, 2012. URL https://www.
britannica.com/science/DNA-sequencing.

[8] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[9] National Human Genome Research Institute. Shotgun sequencing. URL
https://www.genome.gov/genetics-glossary/Shotgun-Sequencing.

40

[10] Andrej Karpathy. Lecture notes from cs231n convolutional neural net-
works for visual recognition, 2018. URL http://cs231n.github.io/
convolutional-networks/.

[11] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. 2014. URL https://arxiv.org/abs/1412.6980.

[12] Heng Li. Minimap and miniasm: fast mapping and de novo assembly for
noisy long sequences. Bioinformatics, 32(14):2103–2110, 03 2016. URL
https://doi.org/10.1093/bioinformatics/btw152.

[13] Gerard Martinez. Autoencoders for the compression of stock mar-
ket time series, 2019. URL https://towardsdatascience.com/
autoencoders-for-the-compression-of-stock-market-data-28e8c1a2da3e.

[14] Christopher Olah. Understanding lstm networks, 2015. URL http://colah.
github.io/posts/2015-08-Understanding-LSTMs.

[15] Josh Patterson and Adam Gibson. Deep Learning: A Practitioner’s Ap-
proach. O’Reilly, 2017. ISBN 978-1-4919-1425-0.

[16] S. T. Roweis and L. K. Saul. Nonlinear Dimensionality Reduction by Locally
Linear Embedding. Science, 290:2323–2326, December 2000. doi: 10.1126/
science.290.5500.2323.

[17] Sebastian Ruder. An overview of gradient descent optimization algorithms,
2016. URL https://arxiv.org/abs/1609.04747.

[18] Irhum Shafkat. Intuitively understanding variational au-
toencoders, 2018. URL https://towardsdatascience.com/
intuitively-understanding-variational-autoencoders-1bfe67eb5daf.

[19] Kai Siebenrock. Activation functions. URL https://www.kaggle.com/
siebenrock/activation-functions.

[20] Todd J. Treangen and Steven L. Salzberg. Repetitive dna and next-
generation sequencing: computational challenges and solutions. Nature Re-
views Genetics, 13, Nov 2011. URL https://doi.org/10.1038/nrg3117.
Review Article.

41

[21] Tomislav äebrek. Classification of 1d-signal types using semi- supervised
deep learning. Master’s thesis, Faculty of Electrical Engineering and Com-
puting, University of Zagreb, 2017.

[22] S. äegviÊ, M. Tutek, et al. Lecture notes from deep learning, 2019. URL
http://www.zemris.fer.hr/~ssegvic/du.

[23] Jan änajder and Bojana Dalbelo BaöiÊ. Machine learning. Unpublished
book, 2014.

42

List of Figures

2.1. High level overview of the OLC approach to de novo sequencing . 4
2.2. Regular coverage chart . 5
2.3. Repeat reads assembly ambiguities 6
2.4. Irregular coverage charts . 7

3.1. Average and max pooling on a 4x4 feature map 12
3.2. Nonlinear activation functions . 13
3.3. Convolutional and fully connected layer comparison 14
3.4. Example of a convolution operation with a 3x3 filter 15
3.5. Usage of padding in preservation of output dimensions 15
3.6. 1D convolutional layer . 16
3.7. Comparison of normal an RNN input vectors 17
3.8. Structural diagram of an RNN cell 19
3.9. Structural diagram of an LSTM cell 21
3.10. Representation of a basic autoencoder 22
3.11. Variational autoencoder architecture 24
3.12. Latent state form comparison before and after reparameterization

trick application . 27

4.1. Bar plot of query sequence length in the original NCTC86 dataset 30

5.1. Structure of the VAE + FC model 34

43

List of Tables

4.1. PAF columns description . 29
4.2. Data distribution . 31

5.1. Layer architecture for a 1D-convolutional neural network 33
5.2. Layer architecture for an LSTM recurrent neural network 33
5.3. Layer architecture for a deep variational autoencoder 34
5.4. F1 score for each tested model . 35
5.5. Macro F1 score for each model from äebrek (2017) 35
5.6. Confusion matrix for the 1D-CNN model 36
5.7. Confusion matrix for the LSTM RNN model 36
5.8. Confusion matrix for the deep VAE + SVM model 37
5.9. Confusion matrix for the deep VAE + FF model 37

44

Identifikacija tipova 1D-signala metodama dubokog u�enja

Saûetak

De-novo sastavljanje genoma proces je temeljen na preklapanju i analizi kratkih
genetskih o�itanja. Uslijed raznolikih tehni�kih izazova, odre�ene vrste laûnih
o�itanja i preklapanja mogu tako�er biti sintetizirane, öto uvelike oteûava is-
pravno sastavljanje originalne sekvence. Jedna od metoda za otkrivanje takvih
preklapanja je i pretvorba istih u 1D-signal, pomoÊu kojih se onda moûe jed-
nostavnije zaklju�iti koji tip preklapanja predstavlja. U okviru ovog rada, pred-
stavljeno je nekoliko metoda duboko u�enja za klasifikaciju ovih signala, to�nije
1D-konvolucijske mreûe, povratne mreûe, kao i primjena autoenkodera. Dodatno,
prikazana je i njihova primjena na stvarnim podacima, kao i usporedba usp-
jeönosti.

Klju�ne rije�i: bioinformatika, sastavljanje genoma, laûna preklapanja, duboko
u�enje

Classification of 1D-Signal Types Using Deep Learning

Abstract

The de novo genome assembly process is based on overlapping and analyzing
short reads of genetic information. Due to various technical challenges, certain
types of false overlaps can also be generated, which greatly impedes successful
reconstruction. One of the methods for detecting such overlaps is by generating
a 1D-signal for each read, which can then be used to determine its exact overlap
type. This thesis proposes several deep learning methods for classifying these sig-
nals, including 1D-convolutional and recurrent networks, as well as autoencoders.
A detailed comparison of their application on real-world data is also included.

Keywords: bioinformatics, sequence assembly, false overlaps, deep learning

