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1 Introduction

Drinfeld twists of Hopf algebras [1] provide a systematic way of producing new examples in noncommu-
tative geometry. Given a Hopf algebraH with a coproduct ∆0, a counit ε0, and an element F ∈ H ⊗H
satisfying a 2-cocycle condition and a normalization (counitality) condition [2, 3, 4, 5], often called a
Drinfeld twist, one defines a new coproduct, ∆F (−) = F −1∆0(−)F , which is coassociative due to the
2-cocycle condition. Moreover, H as an algebra, together with the new coproduct ∆F becomes a new
twisted Hopf algebra HF . Along with a Hopf algebra, many associated constructions like its represen-
tations, comodules, module algebras and so on, are twisted as well, using standard formulas involving
the twist F . The systematic nature of the twisting procedure makes it suitable for finding new physical
models with the Hopf algebra covariance built in.

In 1989, a new construction of a deformation cocycle is proposed by Coll, Gerstenhaber and Giaquinto
in [6]. Their construction starts with a k-algebra A with multiplication µA and two derivations φ, ψ : A→
A satisfying [φ, ψ] = λψ for some λ ∈ k. The action of the 2-dimensional Lie algebra L generated
by φ and ψ on A by derivations extends to a unique action . of the Hopf algebra U(L) on A making
it a U(L)-module algebra. They prove [6, 7] that µA ◦ (φ ⊗ ψ) is a Hochschild 2-cocycle which may
be integrated to yield a formal deformation of A. The deformed multiplication on A[[t]] is given by
µA ◦ (1 ⊗ 1 + tφ ⊗ 1)1⊗ψ◦ (. ⊗ .) for λ = 1. This formula involves the element

(1 ⊗ 1 + tφ ⊗ 1)1⊗ψ =

∞∑
n=0

tnφn ⊗

(
ψ

n

)
=

∞∑
n=0

tn

n!
φn ⊗ ψ(ψ − 1) · · · (ψ − n + 1) ∈ (U(L) ⊗U(L))[[t]], (1)

which is a (Drinfeld) 2-cocycle twist for the Hopf algebra U(L)[[t]]. They provide several examples.
Their construction is reanalyzed in detail in [7] and the 2-cocycle twist has been rediscovered in [8].
Algebras obtained by variants of their method are now often called Jordanian deformations. Most studied
examples are a Jordanian deformation of the universal enveloping algebra U(sl(2)) (and its dual) and
more general Jordanian quantum groups, leading to the corresponding Jordanian classical r-matrices and
quantum R-matrices (some of which were known before, e.g. [9], Example 1, due D. Gurevich; [10],
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2.2). Regarding that U(sl(2)) can be embedded into Yangian Y(sl(2)), it is not surprising that more
elaborate versions of Jordanian twists are used to obtain new deformations of Yangians [11, 12, 13], with
applications to integrable models, chain models in particular [14]. A comprehensive study of a related
class of classical r-matrices can be found in [15].

Here we present another approach to new Jordanian deformations. Closer to the setup of our paper,
consider the universal enveloping algebra of the 2-dimensional solvable Lie algebra with generators H
and E with [H, E] = E. Define

H<m> = H(H + 1) · · · (H + m − 1), H<0> = 1. (2)

Giaquinto and Zhang in [16], Theorem 2.201, proposed the Jordanian twist [8] in r-symmetrized form

F −1
GZ =

∞∑
m=0

tm

m!

m∑
r=0

(−1)r
(
m
r

)
Em−rH<r> ⊗ ErH<m−r>, (3)

This twist can also be written as

F −1
GZ =

∞∑
m=0

tm
∞∑

r=0

(−E)m−r
(
−H

r

)
⊗ Er

(
−H

m − r

)

=

∞∑
k,l=0

tk+l(−E)k
(
−H

l

)
⊗ El

(
−H
k

)
. (4)

We shall use a different notation in this paper, namely

E = P, H = −D, [D, P] = −P. (5)

This suggests an interpretation of D as the relativistic dilation operator and P as the momentum in
some applications. We introduce a family of twists F −1

GZ,u, parametrized by parameter u, via an explicit
series (7). This family interpolates between the Jordanian twists F −1

0 and F −1
1 where

F0 = exp
(
− ln

(
1 −

1
κ

P
)
⊗ D

)
and F1 = exp

(
−D ⊗ ln

(
1 +

1
κ

P
))
. (6)

Our main interest in Jordanian twists is due to their appearance [17, 23] in the study of κ-deformed
Minkowski space (where the intepretation of D and P as the dilation and momentum operators also
makes sense), where κ is viewed as being linked to the scale of quantum gravity [18, 19, 20].

Any Drinfeld twist F can be modified by any 1-cocycle ω ∈ H , producing a new twist (ω−1 ⊗

ω−1)F∆(ω), see [4]. In an earlier paper [21], this procedure has been used to obtain a certain twist F −1
R,u

for every u. In that context, it has been written in the form of a product of three exponential factors,
see also reference [22]. Regarding that it is obtained from a 2-cocycle by modification by a 1-cocycle
implies that it is itself a 2-cocycle.

Twists FGZ,u and FR,u generate the same Hopf algebra. It is proved in this paper that our generalized
Giaquinto-Zhang twist F −1

GZ,u satisfies the same differential identity as F −1
R,u, including the initial condi-

tion; consequently the two twists coincide. The importance of this result is that while F −1
GZ,u is introduced

via an explicit series expansion more suited for other calculations, the very construction of F −1
R,u ensures

that it is a 2-cocycle; we however also exhibit an elaborate proof of the 2-cocycle condition, directly
from the definition of F −1

GZ,u.
The exposition is organized as follows. In Section 2, we define an interpolation F −1

GZ,u via an explicit
expansion and show that it has the claimed limits at u = 0 and u = 1. In Subsection 2.1, we prove
directly from the definition thatF −1

GZ,u satisfies the 2-cocycle condition. In Subsection 2.2, we compute the

1The twist F in [16] is renamed here as F −1.
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corresponding star product and in 2.3 the twisted coproduct ∆pµ. In 2.4 we introduce noncommutative
coordinates and their realizations. Section 3 is dedicated to the family FR,u of Jordanian twists obtained
from a simple Jordanian twist F0 (6) via twisting by a 1-cocycle. We start the section by introducing FR,u

as a product of three exponential factors. Then we compute the corresponding deformed Hopf algebra
in 3.1, introduce the corresponding noncommutative coordinates and realizations in 3.2 and compute the
star products in 3.3. In Section 4, we present two different proofs both showing that FGZ,u equals FR,u.
The first proof in 4.1 is by showing that they solve the same Cauchy problem (an ordinary differential
equation with initial condition). The second proof in 4.2 uses a comparison among the star products.
The final Section 5 is the conclusion. An Appendix is added presenting a proof of an identity used in the
proof in 2.1 of the 2-cocycle condition for F −1

GZ,u.

2 Generalization of the Giaquinto-Zhang twist

We define the generalized Jordanian twist F −1
GZ,u via an explicit expansion,

F −1
GZ,u =

∞∑
k,l=0

(
1
κ

)k+l

((u − 1)P)k
(
D
l

)
⊗ (uP)l

(
D
k

)
. (7)

The twist F −1
GZ,u interpolates between F −1

0 and F −1
1 . For u → 0 one can easily see [23] that (7) reduces

to

F −1
0 =

∞∑
m=0

(
−1
κ

)m

Pm ⊗

(
D
m

)
= eln(1− 1

κ P)⊗D (8)

For u = 1

F −1
1 =

∞∑
m=0

(
1
κ

)m (
D
m

)
⊗ Pm = eD⊗ln(1+ 1

κ P) (9)

For u = 1
2 this reduces to the twist introduced in [16], where

t =
1
2κ
, E = P, and H = −D (10)

2.1 2-cocycle condition

Theorem 1. For arbitrary u, twists F −1
GZ,u satisfy the 2-cocycle condition given by(

(∆0 ⊗ 1)F −1
GZ,u

)
(F −1

GZ,u ⊗ 1) =
(
(1 ⊗ ∆0)F −1

GZ,u

)
(1 ⊗ F −1

GZ,u). (11)

Proof. If we write

fn :=
∑

k+l=n

((u − 1)P)k
(
D
l

)
⊗ (uP)l

(
D
k

)
then

F −1
GZ,u =

∞∑
n=0

(
1
κ

)n

fn

with fn not depending on κ and f0 = 1 ⊗ 1. In terms of fi, the 2-cocycle condition becomes a sequence
of equations for all n,

n∑
i=0

((∆0 ⊗ 1) fi) ( fn−i ⊗ 1) =

n∑
i=0

((1 ⊗ ∆0) fi) (1 ⊗ fn−i)
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In the first order in 1/κ,
f1 = (u − 1)P ⊗ D + uD ⊗ P

(∆0 ⊗ 1) f1 + f1 ⊗ 1 = (1 ⊗ ∆0) f1 + 1 ⊗ f1,

and in the second order,

f2 = (u − 1)2P2 ⊗

(
D
2

)
+ (u − 1)uPD ⊗ PD + u2

(
D
2

)
⊗ P2

(∆0 ⊗ 1) f2 + ((∆0 ⊗ 1) f1) ( f1 ⊗ 1) + f2 ⊗ 1 = (1 ⊗ ∆0) f2 + ((1 ⊗ ∆0) f1) (1 ⊗ f1) + 1 ⊗ f2.

For general order n, it should hold that

∞∑
k1, k2, l1, l2 = 0

k1 + k2 = k, l1 + l2 = l, k + l = n

[
∆0

(
Pk1

(
D
l1

))
⊗ Pl1

(
D
k1

)] [
Pk2

(
D
l2

)
⊗ Pl2

(
D
k2

)
⊗ 1

]

=

∞∑
k1, k2, l1, l2 = 0

k1 + k2 = k, l1 + l2 = l, k + l = n

[
Pk1

(
D
l1

)
⊗ ∆0

(
Pl1

(
D
k1

))] [
1 ⊗ Pk2

(
D
l2

)
⊗ Pl2

(
D
k2

)]

This can be rewritten as

k∑
k1=0

l∑
l1=0

[
∆0

(
Pk1

(
D
l1

))
⊗ Pl1

(
D
k1

)] [
Pk−k1

(
D

l − l1

)
⊗ Pl−l1

(
D

k − k1

)
⊗ 1

]

=

k∑
k1=0

l∑
l1=0

[
Pk1

(
D
l1

)
⊗ ∆0

(
Pl1

(
D
k1

))] [
1 ⊗ Pk−k1

(
D

l − l1

)
⊗ Pl−l1

(
D

k − k1

)]

k∑
k1=0

l∑
l1=0

[
∆0(Pk1)(Pk−k1 ⊗ Pl2−l1)

(
(D − k + k1) ⊗ 1 + 1 ⊗ (D − l + l1)

l1

)
⊗ Pl1

(
D
k1

)] [(
D

l − l1

)
⊗

(
D

k − k1

)
⊗ 1

]

=

k∑
k1=0

l∑
l1=0

[
Pk1 ⊗

(
∆0(Pl1)(Pk−k1 ⊗ Pl−l1)

)] [(D
l1

)
⊗

(
(D − k + k1) ⊗ 1 + 1 ⊗ (D − l + l1)

k1

) ((
D

l − l1

)
⊗

(
D

k − k1

))]

Let us compare the terms of type PA ⊗ PB ⊗ PC with A + B + C = k + l = n on both sides. We
see only the terms with C = l1 on the left-hand side and only the terms with A = k1 on the right-
hand side. We also need to take into account ∆0(Pk1) =

∑k1
a=0

(
k1
a

)
Pk1−a ⊗ Pa on the left-hand side and

∆0(Pl1) =
∑l1

b=0

(
l1
b

)
Pb ⊗ Pl1−b on the right-hand side to obtain

k∑
k1 = 0

k − a = A

k1∑
a=0

(
k1

a

)(
(D − k + k1) ⊗ 1 + 1 ⊗ (D − l + C)

C

) ((
D

l −C

)
⊗

(
D

k − k1

))
⊗

(
D
k1

)

=

l∑
l1 = 0

l − b = C

l1∑
b=0

(
l1
b

)(
D
l1

)
⊗

(
(D − k + A) ⊗ 1 + 1 ⊗ (D − l + l1)

A

) ((
D

l − l1

)
⊗

(
D

k − A

))
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k∑
k−a=A,k1=0

(
k1

k − A

)(
(D − k + k1) ⊗ 1 + 1 ⊗ (D − l + C)

C

) ((
D

l −C

)
⊗

(
D

k − k1

))
⊗

(
D
k1

)
=

=

l∑
l−b=C,l1=0

(
l1

l −C

)(
D
l1

)
⊗

(
(D − k + A) ⊗ 1 + 1 ⊗ (D − l + l1)

A

) ((
D

l − l1

)
⊗

(
D

k − A

))
for every k, l ∈ N0, and all A ≤ k, C ≤ l.

In terms of the new variables

x = D ⊗ 1 ⊗ 1, y = 1 ⊗ D ⊗ 1, z = 1 ⊗ 1 ⊗ D,

and taking into account that k + l = n, we reduce the 2-cocycle condition to the identity(
x

l −C

) k∑
k1=k−A

(
k1

k − A

)(
x + y − k − l + k1 + C

C

)(
y

k − k1

)(
z
k1

)

=

(
z

k − A

) l∑
l1=l−C

(
l1

l −C

)(
y + z − k − l + l1 + A

A

)(
x
l1

)(
y

l − l1

)
(12)

for all A ≤ k and C ≤ l. This is restated as (64), and then proved, in the Appendix. �

For C = 0 the identity (12) reduces to

k∑
k1=k−A

(
k1

k − A

)(
y

k − k1

)(
z
k1

)
=

(
z

k − A

)(
y + z − k + A

A

)
. (13)

2.2 Star product

We now introduce an action . of P and D on the space of formal power series in variables xµ, where
µ = 0, 1, . . . , n, by formulas

(P . f )(x) = −ivµ
∂ f (x)
∂xµ

, (D . f )(x) = xµ
∂ f (x)
∂xµ

, (14)

where the constants vµ are such that v2 ∈ {−1, 0, 1} and the Einstein summation rule is understood. We
also denote x = (xµ) and ∂µ = ∂

∂xµ
.

A star product ∗ is then defined as

f ∗ g = m
(
F −1

GZ,u(. ⊗ .)( f ⊗ g)
)

(15)

for all formal power series f , g in xµ [24]. In particular, for f = eikx and g = eiqx,

eikx ∗ eiqx = m
(
F −1

GZ,u(. ⊗ .)(eikx ⊗ eiqx)
)

=: eA(u;k,q,x) (16)

where
kx = kαxα and qx = qαxα

are elements of the Minkowski space-time algebra, the function A is implicitly defined by (16) and m
denotes the multiplication map on usual functions. Using the actions of P and D on eikx, it follows that

P . eikx = (v · k) eikx, P . eiqx = (v · q) eiqx,
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where (v · k) = vαkα, (v · q) = vαqα. For j < l,(
P j

(
D
l

)
. eikx

)∣∣∣∣∣∣
x=0

= 0, (17)(
Pn

(
D
n

)
. eikx

)∣∣∣∣∣∣
x=0

= (v · k)n, (18)(
Pn+1

(
D
n

)
. eikx

)∣∣∣∣∣∣
x=0

= (n + 1)(v · k)n+1. (19)

The following identities hold(
D
n

)
. eikx =

(ikx)n

n!
eikx, n ∈ N0, (20)

(
P j

(
D
l

)
. eikx

)∣∣∣∣∣∣
x=0

=

(
P j .

(ikx)l

l!
eikx

)∣∣∣∣∣∣
x=0

=

(
j
l

)
(vαkα) j. (21)

Then we have(
eikx ∗ eiqx

)∣∣∣∣
x=0

=

∞∑
n=0

(
u(u − 1)
κ2

)n

(v · k)n(v · q)n =
1

1 − u(u−1)
κ2 (v · k)(v · q)

= eA(u;k,q,x) |x=0 (22)

We now calculate the partial derivatives of the star product,

∂µ
(
eikx ∗ eiqx

)∣∣∣∣
x=0

=

∞∑
j,l=0

(
1
κ

) j+l {
ikµ((u − 1)P) j .

[
(v · k)l

l!
+

(v · k)l−1

(l − 1)!

]
eikx

}{
(uP)l .

(v · q) j

j!
eiqx

}∣∣∣∣∣∣
x=0

+

+

∞∑
j,l=0

(
1
κ

) j+l {
((u − 1)P) j .

(v · k)l

l!
eikx

}{
iqµ(vP)l .

[
(v · q) j

j!
+

(v · q) j−1

( j − 1)!
eiqx

]}∣∣∣∣∣∣
x=0

= i(kµ + qµ)
∞∑

n=0

(
u(u − 1)
κ2

)n

(v · k)n(v · q)n + i(kµ + qµ)
∞∑

n=0

(
u(u − 1)
κ2

)n

n(v · k)n + (v · q)n +

+i
[
kµ

u
κ

(v · q) + qµ
(u − 1)
κ

(v · k)
] ∞∑

n=0

(
u(u − 1)
κ2

)n

(n + 1)(v · k)n(v · q)n

= iDµ(k, q)
1

1 − u(u−1)
κ2 (v · k)(v · q)

and

∂µ
(
eikx ∗ eiqx

)∣∣∣∣
x=0

= i
(
kµ

(
1 +

u
κ

(v · q)
)

+ qµ

(
1 +

u − 1
κ

(v · k)
)) ∞∑

n=0

(
u(u − 1)
κ2

)n

(n + 1)(v · k)n(v · q)n

= iDµ(k, q)
1

1 − u(u−1)
κ2 (v · k)(v · q)

= iDµ(k, q)
(
eikx ∗ eiqx

)∣∣∣∣
x=0

(23)

Note that

iDµ(k, q) =

(
∂A(u; k, q, x)

∂xµ

)∣∣∣∣∣∣
x=0

. (24)

It follows that

Dµ(k, q) =
kµ

(
1 + u

κ (v · q)
)

+ qµ
(
1 + u−1

κ (v · k)
)

1 − u(u−1)
κ2 (v · k)(v · q)

. (25)



Family of Jordanian twists 7

2.3 Twisted coproduct ∆(pµ)

Let now pµ = −i∂µ be the momentum operator. Let us define ∆pµ by

∆pµ = Dµ(p ⊗ 1, 1 ⊗ p) =
pµ ⊗

(
1 + u

κP
)

+
(
1 + u−1

κ P
)
⊗ pµ

1 ⊗ 1 − u(u−1)
κ2 P ⊗ P

, P = vαpα (26)

We want to show that ∆pµ is the deformed coproduct with respect to the twist FGZ,u,

∆pµ = FGZ,u∆0 pµF −1
GZ,u, (27)

where

∆0 pµ = pµ ⊗ 1 + 1 ⊗ pµ. (28)

Using (28) and (26), we may rewrite (27) as

F −1
GZ,u

pµ ⊗
(
1 + u

κP
)

+
(
1 + u−1

κ P
)
⊗ pµ

1 ⊗ 1 − u(u−1)
κ2 P ⊗ P

= (pµ ⊗ 1 + 1 ⊗ pµ)F −1
GZ,u

and, after multiplying from the right by the denominator 1 ⊗ 1 − u(u−1)
κ2 P ⊗ P, as

F −1
GZ,u

(
pµ ⊗

(
1 +

u
κ

P
)

+

(
1 +

u − 1
κ

P
)
⊗ pµ

)
= (pµ ⊗ 1 + 1⊗ pµ)F −1

GZ,u

(
1 ⊗ 1 −

u(u − 1)
κ2 P ⊗ P

)
. (29)

We shall show the equality in (29) by splitting it into a sum of two equalities, (30) and (34), which are
then separately proved. Descriptively, (30) involves all those summands in expanded (29) where, in one
of the factors, pµ is at the left side from the tensor product,

F −1
GZ,u

(
pµ ⊗

(
1 +

u
κ

P
))

= (pµ ⊗ 1)F −1
GZ,u

(
1 ⊗ 1 −

u(u − 1)
κ2 P ⊗ P

)
. (30)

To prove this equality, we first observe that by induction the equality [P,D] = P implies the commutation
relation

pµ

(
D
k

)
=

(
D + 1

k

)
pµ (31)

Hence

P
(
D
k

)
=

(
D + 1

k

)
P (32)

i.e., (
D
k

)
P = P

(
D − 1

k

)
(33)

We calculate the left-hand side of (30) as

F −1
GZ,u

(
pµ ⊗

(
1 +

u
κ

P
))

=

∞∑
k,l=0

(u − 1
κ

P
)k (

D
l

)
⊗

(uP
κ

)l (D
k

) (pµ ⊗ 1 +
u
κ

pµ ⊗ P
)

=

∞∑
k,l=0

( (u − 1)P
κ

)k (
D
l

)
⊗

(uP
κ

)l (D
k

)
+

(
(u − 1)P

κ

)k (
D
l

)
⊗

(uP
κ

)l+1 (
D − 1

k

) (pµ ⊗ 1)
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and the right-hand side of (30) as

(pµ ⊗ 1)F −1
GZ,u

(
1 ⊗ 1 −

u(u − 1)
κ2 P ⊗ P

)
=

=

∞∑
k,l=0

( (u − 1)P
κ

)k (
D + 1

l

)
⊗

(uP
κ

)l (D
k

)
−

(
(u − 1)P

κ

)k+1 (
D
l

)
⊗

(uP
κ

)l+1 (
D − 1

k

) (pµ ⊗ 1)

Comparing the terms of type Pk ⊗ Pl for all k and l, we find(
(u − 1)P

κ

)k (
D
l

)
⊗

(uP
κ

)l (D
k

)
+

(
(u − 1)P

κ

)k

l
(

D
l − 1

)
⊗

(uP
κ

)l (D
k

)
D − k

D

=

(
(u − 1)P

κ

)k

(D + 1)
(

D
l − 1

)
⊗

(uP
κ

)l (D
k

)
−

(
(u − 1)P

κ

)k

l
(

D
l − 1

)
⊗

(uP
κ

)l k
D

(
D
k

)
and (

(u − 1)P
κ

)k (
D
l

)
⊗

(uP
κ

)l (D
k

)
=

(
(u − 1)P

κ

)k

l
(

D
l − 1

)
⊗

(uP
κ

)l (D
k

)
+

(
(u − 1)P

κ

)k

(D + 1)
(

D
l − 1

)
⊗

(uP
κ

)l (D
k

)
=

(
u − 1)P

κ

)k (
D

l − 1

)
(D − l + 1) ⊗

(uP
κ

)l (D
k

)
=

(
(u − 1)P

κ

)k (
D
l

)
⊗

(uP
κ

)l (D
k

)
which proves (30).

Analogously, we prove the equality of the remaining summands in (29),

F −1
GZ,u

((
1 + (u − 1)

1
κ

P
)
⊗ pµ

)
= (1 ⊗ pµ)F −1

GZ,u

(
1 ⊗ 1 −

u(u − 1)
κ2 P ⊗ P

)
(34)

Now (30) and (34) add to (29). Hence this proves (27), that is

∆pµ = FGZ,u∆0(pµ)F −1
Gz,u.

The coproduct ∆pµ satisfies the coassociativity condition

(∆ ⊗ 1)∆pµ = (1 ⊗ ∆)∆pµ. (35)

Equation (27) can be rewritten as

∆0 pµF −1
GZ,u = F −1

GZ,u∆pµ. (36)

This enables us to obtain explicit formulas for the derivatives of the star product and for the star
product from Subsection 2.2. Namely, for the partial derivatives of the star product, we compute

∂µ(eikx ∗ eiqx)
(16)
= ∂µmF −1

GZ,u(eikx ⊗ eiqx)
= m(∂µ ⊗ 1 + 1 ⊗ ∂µ)F −1

GZ,u(eikx ⊗ eiqx)
= mi∆0(pµ)F −1

GZ,u(eikx ⊗ eiqx)
(36)
= imF −1

GZ,u∆(pµ)(eikx ⊗ eiqx)
(26)
= miF −1

GZ,uDµ(p ⊗ 1, 1 ⊗ p)(eikx ⊗ eiqx)
= imF −1

GZ,uDµ(k, q)(eikx ⊗ eiqx)
= iDµ(k, q)mF −1

GZ,u(eikx ⊗ eiqx)
(16)
= iDµ(k, q)(eikx ∗ eiqx),

(37)
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where m denotes the multiplication map for usual functions. Knowing the partial derivatives (37) and the
initial value (22) of the star product at x = 0, we finally obtain

eikx ∗ eiqx = eiDµ(k,q)xµ 1

1 − u(u−1)
κ2 (v · k)(v · q)

(38)

where Dµ(k, q) is given in (25). This star product is associative in agreement with the fact that twists
F −1

GZ,u satisfy the 2-cocycle condition (11).

2.4 Noncommutative coordinates and realizations

Here we introduce noncommutative coordinates x̂µ, the commutation relations among them and their
realizations. We use realizations of elements of noncommutative algebras via a Heisenberg algebra
with generators xµ, pν, [xµ, xν] = 0, [pµ, pν] = 0, [xµ, pν] = −iδµ,ν. The following expression defines
noncommutative coordinates x̂µ [24],

x̂µ = m
(
F −1

GZ,u(. ⊗ 1)(xµ ⊗ 1)
)

= xµ
(
1 +

u
κ

P
)

+
i
κ

vµ(1 − u)
(
1 +

u
κ

P
)

D

=

(
xµ + (1 − u)

i
κ

vµD
) (

1 +
u
κ

P
)

+
u(1 − u)
κ2 ivµP (39)

Noncommutative coordinates x̂µ satisfy a κ-deformed Heisenberg algebra that corresponds to the κ-
Minkowski space [19, 20, 25, 26, 27, 28, 29, 30]

[x̂µ, x̂ν] =
i
κ

(vµ x̂ν − vν x̂µ) (40)[
pµ, x̂ν

]
=

(
−iδµ,ν +

i
κ

vν(1 − u)pµ
) (

1 +
u
κ

P
)

(41)

In the case u = 0,

x̂µ = xµ +
i
κ

vµD. (42)

In the case u = 1,

x̂µ = xµ
(
1 +

u
κ

P
)
. (43)

Using this realization of x̂µ and the method from [24] we obtain the same star product (38).

3 Interpolation between Jordanian twists induced by a 1-cocycle

Another construction for a generalized Jordanian twist is possible [21]. This twist, here denoted FR,u,
has been introduced as a product of three exponential factors,

FR,u = exp
(u
κ

(PD ⊗ 1 + 1 ⊗ PD)
)

exp
(
− ln

(
1 −

1
κ

P
)
⊗ D

)
exp

(
∆0

(
−

u
κ

PD
))

(44)

where u is a real parameter, u ∈ R. The symbol R in the subscript refers to the position of the dilatation
generator in the formula, namely it is on the right with respect to P. The classical r-matrix corresponding
to twists FGZ,u (7) and FR,u (44) does not depend on the parameter u, namely

r =
1
κ

(D ⊗ P − P ⊗ D). (45)
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The above form (44) of the family of twists FR,u is obtained from a simple Jordanian twist F0, using
a transformation by a 1-cocycle. Namely, according to Drinfeld [1, 4], if F is any normalized Drinfeld
twist and ωR is any element in the Hopf algebra satisfying the normalization ε(ωR) = 1, then the formula
Fω := (ω−1⊗ω−1)F∆(ω) defines a normalized Drinfeld twist again (that is, the 2-cocycle and counitality
conditions are satisfied again). In particular, if F = 1 ⊗ 1 we get a 2-coboundary twist (ω−1 ⊗ω−1)∆(ω).
If the two twists, F and Fω, transform one into another by a 1-cocycle, we say that they are cohomol-
ogous in the sense of nonabelian cohomology [4]. In this case, twisted Hopf algebras HF and HFω are
isomorphic [4] and, for each H-module algebra M, the corresponding twistings MF and MFω are also
mutually isomorphic as algebras. If ω is group like, Fω is evidently obtained from F by an inner auto-
morphism. Regarding that cohomologous twists give isomorphic mathematical objects, one sometimes
thinks of these twists as gauge equivalent.

If F = F0 is a simple Jordanian twist, and ω = ωR = exp
(
−u
κPD

)
, we obtain the twist FR,u =

FωR = (ω−1
R ⊗ ω

−1
R )F0∆(ωR), see [21]. This also shows that, for any u, twist FR,u satisfies the 2-cocycle

and normalization conditions. Regarding that u appeared by gauge transforming F0, we can view u as
a gauge parameter (the reader should not confuse u with a spectral parameter involved in some other
Jordanian deformations). For u = 0, twist FR,u simplifies to F0 and for u = 1 to F1.

3.1 Hopf algebra

The coalgebra sector of the Hopf algebraHFR,u for the deformation with FR,u is given by the formulas

∆FR,u pµ =
pµ ⊗

(
1 + u 1

κP
)

+
(
1 − (1 − u) 1

κP
)
⊗ pµ

1 ⊗ 1 + u(1 − u)
(

1
κ

)2
P ⊗ P

(46)

∆FR,u D =

(
1 ⊗ 1 +

u(1 − u)
κ2 P ⊗ P

) D ⊗
1

1 + u
κP

+
1

1 − 1−u
κ P
⊗ D

 (47)

S FR,u(pµ) = −
pµ

1 − (1 − 2u) 1
κP

(48)

S FR,u(D) = −

(
1 −

1 − u
κ

P
)

D

1 − 1−2u
κ P

1 − 1−u
κ P

 (49)

A similar analysis as in Section 2 for ∆FGZ,u pµ leads to the conclusion that ∆FGZ,u D = ∆FR,u D.

3.2 Noncommutative coordinates and realizations

In general, we consider realizations of the form

x̂µ = xαϕαµ(p) + χ(p) (50)

We can obtain the appropriate realization via the twist as follows

x̂µ = m
(
F −1

R,u(. ⊗ 1)(xµ ⊗ 1)
)

=
(
xµ + i

κvµ(1 − u)D
) (

1 + u
κP

)
+ u(1 − u) i

κ2 vµP
(51)

3.3 Star product

Using the above realization of x̂µ [24], we get

eikx ∗ eiqx = eiDµ(u;k,q)xµ+iG(u;k,q)

= eiDµ(u;k,q)xµ 1

1 +
u(1−u)
κ2 (v · k)(v · q)

(52)
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where k and q belong to the n-dimensional Minkowski spacetimeM1,n−1 and where

Dµ(u; k, q) =
kµ

(
1 + u

κ (v · q)
)

+
(
1 − 1−u

κ (v · k)
)

qµ

1 +
u(1−u)
κ2 (v · k)(v · q)

(53)

as in Equation (25), and finally

G(u; k, q) = i ln
(
1 +

u(1 − u)
κ2 (v · k)(v · q)

)
. (54)

Remark 2. Note that the corresponding quantum R-matrix is given by

RR,u = F 21
R,uF

−1
R,u = exp(u(PD ⊗ 1 + 1 ⊗ PD)R0 exp(−u(PD ⊗ 1 + 1 ⊗ PD)), (55)

where

R0 = exp
(
−D ⊗ ln

(
1 −

P
κ

))
exp

(
ln

(
1 −

P
κ

)
⊗ D

)
=

∞∑
k,l=0

(
−D

l

) (
−P
κ

)k
⊗

(
−P
κ

)l (D
k

)
. (56)

Both twists, F −1
GZ,u and F −1

R,u, lead to the same Hopf algebra, the same realizations of noncommutative
coordinates x̂µ and likewise for the star product eikx∗eiqx. This suggests that there must be a close relation
between the two twists, F −1

GZ,u and F −1
R,u. In the next section, we present a proof that indeed F −1

GZ,u = F −1
R,u.

4 Proofs of the equality of the two twists

4.1 Differentiation with respect to parameter u

Differentiating F −1
R,u from Equation (44) with respect to the parameter u gives

κ
dF −1

R,u

du
= (P ⊗ D + D ⊗ P)F −1

R,u + [PD ⊗ 1 + 1 ⊗ PD,F −1
R,u]. (57)

Differentiating F −1
GZ,u from Equation (7) with respect to u gives

κ
dF −1

GZ,u

du
= (P ⊗ D + D ⊗ P)F −1

GZ,u + (P ⊗ 1 − 1 ⊗ P)
∞∑

k,l=0

−k + l
κk+l (u − 1)kPk

(
D
l

)
⊗ (uP)l

(
D
k

)
. (58)

Using the commutation relations[
PD, Pk

(
D
l

)]
= (l − k)Pk+1

(
D
l

)
(59)

and [
PD, Pl

(
D
k

)]
= (k − l)Pl+1

(
D
k

)
, (60)

we find that the right-hand sides of (57) and of (58) agree,

RHS = (P ⊗ D + D ⊗ P)F −1
GZ,u + [PD ⊗ 1 + 1 ⊗ PD,F −1

GZ,u]. (61)

This shows that F −1
R,u and F −1

GZ,u as functions of the parameter u satisfy the same ordinary differential
equation, while the initial conditions agree. Indeed, at u = 0,

F −1
R,u=0 = F −1

0 = F −1
GZ,u=0. (62)

Therefore F −1
R,u ≡ F

−1
GZ,u.
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4.2 Proof of the equality of the two twists

In the following proposition we state the conditions under which the two twists are equal, along with a
simple proof.

Proposition 1. Let P be the Poincaré Weyl algebra generated with momenta pµ, Lorentz generators Mµν

and dilatation D. Two twists F1 ∈ U(P) ⊗ U(P) and F2 ∈ U(P) ⊗ U(P) are identical if all the star
products are identical, i.e. for all f and g in the Minkowski space time algebra,

f ∗ g = m
(
F −1

1 (. ⊗ .)( f ⊗ g)
)

= m
(
F −1

2 (. ⊗ .)( f ⊗ g)
)
. (63)

Proof. If all star products are the same, F −1
1 and F −1

2 could differ by an element in the right ideal J0
generated by the elements (xµ ⊗ 1 − 1 ⊗ xµ) for all µ [31, 32, 33]. However, J0 ∩ U(P) ⊗ U(P) = 0,
hence F1 = F2. �

Since we already proved that the twists FR,u and FGZ,u give the same star products eikx ∗eiqx, the twists
FR,u and FGZ,u must be identical. Moreover, we have proved that the noncommutative coordinates x̂µ and
twisted coproducts ∆pµ and ∆D from both twists are identical. Since FR,u satisfies the normalization and
cocycle conditions, FGZ,u also satisfies them.

5 Conclusion

We have constructed a 1-parameter family FGZ,u (7) of Jordanian twists that interpolates between the
simple Jordanian twists F0 and F1 defined in Equation (6). We explicitly proved that F −1

GZ,u satisfies
the 2-cocycle condition (11). For u = 1

2 , FGZ,u= 1
2

coincides with FGZ [16]. We have calculated the
corresponding star product eikx ∗ eiqx (38) and the corresponding deformed Hopf algebra structure. In
Section 3, we have presented another interpolation between Jordanian twists cohomologous to F0 via a
1-cocycle depending on u [21]. It is pointed out that F −1

GZ,u and F −1
R,u generate the same star product and

the same deformed Hopf algebra. In Section 4, a new result is presented that F −1
GZ,u = F −1

R,u, implying
that FGZ,u can be written in the form of a product of three exponential factors. Twist FR,u automatically
satisfies the 2-cocycle condition as it is obtained from a simple Jordanian twist by twisting by a 1-
cocycle [4]. We note that for the twist F −1

GZ [16], the star product, an explicit form of the twist FGZ and
the deformed Hopf algebra structure, were not known in the literature so far. Jordanian twists have been
of interest in the recent literature [34, 35, 36, 37, 38, 39]. We note that our results could be useful in
future applications of Jordanian twists.

Acknowledgments. We thank Anna Pachol for useful discussions. Z.Š. has been partly supported
by the Croatian Science Foundation under the Project “New Geometries for Gravity and Spacetime”
(IP-2018-01-7615) and by the grant 18-00496S of the Czech Science Foundation.

A Appendix

Lemma 1. If x, y, z are mutually commuting variables, and k, l, A,C with A ≤ k, C ≤ l nonnegative
integers, then(

x
l −C

) k∑
k1=k−A

(
k1

k − A

)(
z
k1

)(
x + y − k − l + k1 + C

C

)(
y

k − k1

)

=

(
z

k − A

) l∑
l1=l−C

(
l1

l −C

)(
x
l1

)(
y + z − k − l + l1 + A

A

)(
y

l − l1

)
(64)
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Proof. To make the proof more transparent, we make a change of summation indices

i = k1 − k + A, j = l1 − l + C, (65)

hence k1 = i + k − A and l1 = j + l −C, to restate Equation (64) as(
x

l −C

) A∑
i=0

(
i + k − A

k − A

)(
z

i + k − A

)(
x + y − l + i − A + C

C

)(
y

A − i

)

=

(
z

k − A

) C∑
j=0

(
j + l −C

l −C

)(
x

j + l −C

)(
y + z − l + j −C + A

A

)(
y

C − j

)
(66)

We remind the reader of the simple identity(
r
s

)(
w
r

)
=

(
w
s

)(
w − s
r − s

)
(67)

which we apply in (66) for w = z on the left and for w = x on the right, to obtain an equivalent statement,(
x

l −C

)(
z

k − A

) A∑
i=0

(
z − k + A

i

)(
x + y − l + i − A + C

C

)(
y

A − i

)

=

(
z

k − A

)(
x

l −C

) C∑
j=0

(
x

j + l −C

)(
y + z − k + j −C + A

A

)(
y

C − j

)
. (68)

We expand(
x + y − l + i − A + C

C

)
=

C∑
j=0

(
x − l + C

j

)(
y + i − A

C − j

)
(69)

on the left-hand side, and(
y + z − k + j −C + A

A

)
=

A∑
i=0

(
z − k + A

i

)(
y + j −C

A − i

)
(70)

on the right-hand side of (68). Now both sides involve double summation over i and j. For each fixed
pair (i, j), compare the corresponding summands on the two sides. The factors involving x and z are
identical on both sides. It remains to check that the factors involving y agree. Indeed, by definition,(

y + i − A
C − j

)(
y

A − i

)
=

y(y − 1) · · · (y + i − A + j −C + 1)
(C − j)! (A − i)!

=

(
y + j −C

A − i

)(
y

C − j

)
(71)

�
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