
Comparison of Relational and Time-Series

Databases for Real-Time Massive Datasets

E. Musa*, G. Delač *, M. Šilić * and K. Vladimir*
* University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia

ema.musa26@gmail.com, {goran.delac, marin.silic, klemo.vladimir}@fer.hr

Abstract - Many contemporary technical systems, like

IoT environments, are designed to work perpetually and

collect data in a form of time series. To enable efficient data

aggregation and analysis with time interval constraints, a

special type of databases optimized for time-series has been

developed. In this paper, we conduct a thorough

performance comparison of a time-series database InfluxDB

and a widely used object-relational database PostgreSql. We

present our findings and outline scenarios in which a certain

database has a performance advantage.

Keywords - time-series databases; performance analysis;

InfluxDB; PostgreSql

I. INTRODUCTION

Historically, time-series data has mostly been
associated with applications in finance, but with recent
increase in popularity of Internet of things (IoT)
platforms, the importance of time-series data has grown as
well. Nowadays, time-series data exists in various areas,
such as financial markets, weather forecasting, medical
and biological experiments and more [1][2][3][4]. Large
amounts of data exchanged between servers, applications
and sensors in a particular time order resulted in time-
series databases becoming a standard for storing and
retrieving data. A time-series database (TSDB) is a
database type which is optimized for time-series and time-
stamped data [5].

In this paper we describe main characteristics of time-
series databases and cases where it is more efficient to use
time-series databases as well as cases where using
relational databases has shown better results. Using Visual
Studio .NET environment, pgAdmin platform and
InfluxDB command line we measured the duration of
querying data from a relational database PostgreSQL and
a time-series database InfluxDB. We compared the time
needed for: querying data with a certain time interval
constraint, data aggregation with a time interval
constraint, data aggregation with a time interval constraint
grouped by time intervals, data aggregation with a time
interval constraint grouped by indexed attributes and
finally, inserting data into a database. Given results show
that a relational database holds an advantage over a time-
series database when it comes to querying raw, non-
aggregated data. On the other hand, the main advantage of
using a time-series database over a relational database
includes faster aggregation and faster result grouping by
various time intervals.

The rest of the paper is structured as follows: In
Section 2 we describe main characteristics of time-series

databases focusing on InfluxDB. In Section 3 we describe
the experimental setup which includes PostgreSQL and
InfluxDB database configurations. The results of
measurements are presented in Section 4 and finally, the
conclusion is given in Section 5.

II. RELATED WORK

A time-series database is a database type which is
optimized for time-series and time-stamped data. Time-
series include measurements or events that are tracked,
monitored, sampled and aggregated over time. They can
be related to server metrics, application performances,
network data, sensor data and other types of analytics data
[6].

A time-series database is optimized for measuring
change over time. It is built for handling metrics, events
and measurement that are time-stamped and it allows
users to create, update, destroy and organize various time-
series more efficiently. The key difference between time-
series database and a relational database is in the way data
ordering is managed. While relational databases do not
imply a particular order of inserted data (order by clause
must be used), time-series databases index and process
data with goal to optimize queries that imply ordering in
time. Thus, one of the main differences between the two is
the way indices are implemented. Otherwise, time-series
and relational databases are architecturally similar. Other
notable differences include the tradeoffs when it comes to
adhering to ACID properties versus performance. Time-
series databases do not need to necessarily ensure
durability and strong consistency as time-series data is
usually immutable and generated in a unique point in
time. In addition, it is not necessary to collect all the
possible data, e.g. when continuously collecting a data
from a sensor, it is may not be necessary to store all data
points. For instance, InfluxDB provides eventual
consistency.

Nowadays, an increasing number of companies are
generating large streams of metrics and events prompting
the need for time-series databases in order to facilitate
efficient data access [5]. However, time-series databases,
due to their optimizations, do not always show favorable
properties when it comes to tackling more general purpose
tasks. From an engineering standpoint, it is important to
understand in which use cases time-series databases
perform better when it comes to query execution time, as
well as general resource consumption. Some research
effort has been devoted into addressing these issues
[4][7][8]. For instance, in [8] the authors test InfluxDB

MIPRO 2019/CTS 1065

performance on a very large real-world dataset containing
450 million power consumption readouts. The authors
focus the tests on data insertion speed and disk storage
consumption parameters. In our paper, we aim to further
strengthen the results found in the literature by performing
additional experiments on a real-world dataset. Apart from
the data insertion experiments, we also conducted several
data aggregation experiments.

Currently, the one of the most popular time-series
databases is InfluxDB [9] and as such, we have decided to
utilize it for the purposes of performance comparison with
a relational database. InfluxDB is an open-source
schemaless time-series database with a set of optional
components. It is written in Go programming language
and it is optimized to handle time-series data in particular.
The database environment provides InfluxQL, a SQL-like
query language. The open-source version TICK Stack
provides full time-series database platform including the
InfluxDB core [5].

All data in the InfluxDB database has a column named
time. Column time stores timestamps in RFC3339 UTC
format and is associated with particular data. Another
required part of InfluxDB’s data structure are fields which
consist of a field key and field value. Field keys are strings
and they store metadata. Field values can be of type string,
float, integer or Boolean and they represent the data. The
collection of field-key and field-value pairs form a field
set. Fields are not indexed and they are a required piece of
InfluxDB’s data structure. Tags are optional, and they
consist of a tag key and tag value which are both strings
that store metadata. Different combinations of all the tag-
key and tag-value pairs form a tag set. Unlike fields, tags
are indexed and optional. Measurement acts as a container
for tags, fields and the time column and the measurement
name represents the description of the data that is stored in
associated fields. A single measurement can belong to
different retention policies. Retention policy describes
how long InfluxDB keeps the data. In an InfluxDB
database, a series is a collection of data that share a
retention policy, measurement and tag set. Finally, a point
is the field set in the same series with the same timestamp
[10].

In the example shown in Fig. 1, weather represents the
measurement name. Columns temperature and wind form
fields with field keys temperature and wind. Values 2.0-
11.1 are field values referring to temperature and values
1.9-2.6 are field values referring to wind. Column device
is a tag with a tag key device and two tag values (1 and 2).
An example of an InfluxDB point is presented in Fig. 2.

In a general sense, an InfluxDB measurement is similar
to a table of a relational database, tags are similar to
indexed columns, fields are similar to unindexed columns
and points are similar to table rows.

III. EXPERIMENTAL SETUP

In this section, we describe the experimental setup
used to perform measurements on the PostgreSQL and
InfluxDB databases.

A. Environment

All measurements were performed on a 64-bit
computer with an Intel Core i5 processor and 12 gigabytes
of RAM available.

In the conducted experiment, we have collected a real-
world real-time dataset consisting of twenty million
records and have stored it in a PostgreSQL table. Time
differences between two records in the table varied
depending on numerous parameters and can vary from
milliseconds to days. Specifically, the table stored twenty
million records and had thirty-nine attributes. The data has
a time range from December 8th, 2017 at 19:11:49 to
January 12th, 2018 at 22:59:52 (UTC). There is no
recorded data from December 25th, 2017 to January 1st,
2018. The first most significant attribute contained a
timestamp which corresponded to the moment in time in
which the record was received and the second most
significant attribute contained an object identifier. We
created indexes on the mentioned columns.

The architecture of the implemented experimental
environment is presented in Fig. 3. In order for the
InfluxDB database to contain the same data as the
PostgreSQL database, a Data extractor module has been
created. Its purpose is to retrieve records from
PostgreSQL, create an InfluxDB point depending on a
received record and insert the point into the InfluxDB
measurement. Indexed columns are equivalent to tags
inside an InfluxDB measurement which means that the tag
is going to store the same object identifiers stored inside

Figure 2. Data structure

Figure 3. Point

Figure 1. Experimental Environment Architecture

1066 MIPRO 2019/CTS

the mentioned indexed column. The rest of the data was
stored in fields, except for timestamps which were stored
in a special time column.

Measurement module has been implemented in order
to facilitate measuring operations of query execution time
and to monitor general system resource consumption. It
consists of three submodules: a PostgreSQL Measurement
module which measures PostgreSQL query execution
time, an InfluxDB Measurement module which measures
InfluxDB query execution time and a System Resource
Monitor which measures system performances during
query executions. The first two submodules create a
stopwatch instance, starting it before executing the query
and then stopping it when there are no more query results
to read. The execution time is measured in milliseconds.
The third submodule is started simultaneously with one of
the submodules which measure query execution time. It
measures the processor utilization and the available
memory during the query execution.

B. Experiments

The following experiments were performed to
compare the performance of databases in specific working
conditions. After each experiment the machine was
restarted to ensure equal testing conditions.

1) Querying data
This experiment was designed to check a performance
of a standard query, without data aggregation, on
several time intervals. Specifically, 3 interval lengths
were selected:

 Interval 1: December 9th, 2017 to December
10th, 2017 (one day)

 Interval 2: December 9th, 2017 to December
16th, 2017 (one week)

 Interval 3: December 9th, 2017 to December
23rd, 2017 (two weeks)

Experiments were performed five times each, with the
average values plotted in Fig. 4. The SQL query used for
this experiment is given below (InfluxQL query is
similar):

SELECT timestamp, coilid

FROM positionsample

WHERE timestamp >= '2017-12-09' AND

timestamp < '2017-12-10'

2) Aggregating data
The aggregation experiment was designed to test how

the databases perform when an aggregation function is
used on the data selected from a specific time interval. In
this experiment, the average value of a PostgreSQL
column and an InfluxDB field was selected. The following
intervals were used:

 Interval 1: December 9th, 2017 to December
16th, 2017 (one week)

 Interval 2: December 9th, 2017 to December
23th, 2017 (two weeks)

 Interval 3: December 9th, 2017 to January 9th,
2018 (one month)

 Experiments were performed five times each, with the
average values plotted in Fig. 5. The SQL query used for
this experiment is given below (InfluxQL query is
similar):

SELECT AVG(position)

FROM positionsample

WHERE timestamp >= '2017-12-09' AND

timestamp < '2017-12-16'

3) Aggregating data grouped by time intervals
This experiment was performed to evaluate how the

aggregation function performs on a data selected from a
certain time interval when it is necessary to group the data
by a certain parameter. In this experiment, the data was
groped by the hour, as presented in the query below. The
same intervals were used as in the experiment described in
Section 3.B.2.

Experiments were performed five times each, with the
average values plotted in Fig. 7. The SQL query used for
this experiment is given below (InfluxQL query is
similar):

SELECT date_trunc('hour', timestamp),

AVG(position)

FROM positionsample

WHERE timestamp >= '2017-12-09' AND

timestamp < '2017-12-10'

GROUP BY 1

4) Aggregating data grouped by indexed attribute/tag
The following experiment is set up in the same way as

the aggregation experiment described in Section 3.B.3.
However, in this experiment, the data was grouped using
an indexed attribute (PostgreSQL) and a tag (InfluxDB).
The same intervals were used as in the experiment
described in Section 3.B.3.

Experiments were performed five times each, with the
average values plotted in Fig. 8. The SQL query used for
this experiment is given below (InfluxQL query is
similar):

SELECT AVG(gapdriveside)

FROM positionsample

WHERE timestamp >= '2017-12-09' AND

timestamp < '2017-12-16'

GROUP BY equipmentoid

Here it is important to note that the equipmentoid
has an index in PostgreSQL and is a tag in the InfluxDB.

5) Inserting data
Experiments were performed five times each, with the

average values plotted in Fig. 9. For both PosgreSQL and
InfluxDB the data was inserted in batches (bulk insert)
and the batch size was 1000 data points. There were 3 test
cases each containing 500, 5000 and 50000 data points.
After each experiment the machine was restarted to ensure
equal testing conditions.

MIPRO 2019/CTS 1067

IV. RESULTS AND DISCUSSION

A. Querying data

Querying raw, non-aggregated data with a certain time
interval constraint from a single column/field is more
efficient using the PostgreSQL database as indicated by
the shorter execution time. In addition, the InfluxDB
database consumes more processor time and memory.
Comparison of average query execution time for this case
is presented in Fig. 4. The standard deviations for the
measured values are relatively small and are therefore

presented in the table below the figure. With a time range
of one day to two weeks, query execution time is 83.52%-
89.42% shorter in the case of using PostgreSQL database
compared to using InfluxDB database. Since the results
are not required to be in a particular order (in this case
ordered by time), the result is within expectations.

Standard deviation

DB 1 7 14

PostgreSQL 0.071 s 0.287 s 0.565 s

InfluxDB 0.121 s 0.393 s 0.535 s

Figure 4. Querying data

Standard deviation

DB 7 14 31

PostgreSQL 0.065 s 0.010 s 0.010 s

InfluxDB 0.015 s 0.015 s 0.071 s

Figure 5. Aggregating data

Standard deviation

DB 7 14 31

PostgreSQL 0.037 s 0.038 s 1.741 s

InfluxDB 0.014 s 0.036 s 0.055 s

Figure 7. Aggregating data grouped by time intervals

 Time interval [day]

DB 7 14 31

PostgreSQL 0.012 s 0.012 s 0.072 s

InfluxDB 0.004 s 0.018 s 0.033 s

Figure 8. Aggregating data grouped by indexed attribute/tag

Standard deviation

DB 500 5000 50000

PostgreSQL 0.002 s 0.004 s 0.031 s

InfluxDB 0.024 s 0.014 s 0.070 s

Figure 9. Inserting data

Figure 6. Impact of number of columns on performance

1068 MIPRO 2019/CTS

PostgreSQL is fast and well optimized in selecting
unordered data.

B. Aggregating data

Aggregating data with a time interval constraint from a
single column/field is more efficient using the InfluxDB
database due to exhibited shorter execution time.
Comparison of average query execution time for this case
is presented in Fig. 5 with standard deviations presented
below the figure. By increasing the number of queried
columns/fields, certain changes in InfluxDB performance
occur. With each additional queried field, query execution
time rises almost linearly. This effect can be seen in Fig.
6. (data for the experiment having a 2 week time interval
is presented). For a smaller number of queried columns,
PostgreSQL spends more time on query execution than
InfluxDB. However, with an increasing number of queried
columns, query execution time increases slower in
comparison to InfluxDB and eventually query execution
time becomes shorter compared to InfluxDB. With a time
range of one week to one month, query execution time is
46.87%-77.62% shorter in case when InfluxDB database
is used compared to using PostgreSQL database. This
effect shows that PostgreSQL performs better in cases
when it is necessary to perform simultaneous aggregation
over multiple fields.

C. Aggregating data grouped by time intervals

Aggregating data with a time interval constraint from a
single column/field and with result grouping by time
interval is more efficient using InfluxDB. Comparison of
average query execution time for this case is presented in
Fig. 7 with standard deviations presented below the figure.
Querying data with the same time interval constraint but
with different time grouping (e.g. by day and by week)
doesn’t significantly affect InfluxDB query execution time
but it significantly affects PostgreSQL query execution
time. Shorter grouping time interval results in longer
PostgreSQL query execution time. With a time range of
one week to one month, query execution time is 76.82%-
95.30% shorter in the case of using InfluxDB database
compared to using PostgreSQL database.

D. Aggregating data grouped by indexed attribute/tag

Aggregating data with a time interval constraint from a
single column/field and with result grouping by indexed
attribute/tag is more efficient using the InfluxDB database.
It is also visible that the execution times are lower in both
experiments than it was the case in the previous
experiment. Comparison of average query execution time
for this case is presented in Fig. 8 with standard deviations
presented below the figure. With a time range of one week
to one month, query execution time is 24.76%-63.20%
shorter in the case of using InfluxDB database compared
to using PostgreSQL database.

E. Inserting data

Inserting records/points into a table/measurement is
more efficient using the PostgreSQL database due to
shorter execution time in the performed experiment, using

batch size of 1000. Comparison of average inserting time
is presented in Fig. 9 with standard deviations presented
below the figure. With a range of five hundred to fifty
thousand records/points, inserting time is shorter by
81.90% - 98.45% in case of using PostgreSQL database
compared to using InfluxDB database. The main
conclusion of this experiment is that writing performance
of InfluxDB requires careful consideration and fine-
tuning. It is recommended to use larger batches, when
applicable, as this can improve the writing performance.

F. System resource monitoring

Selecting values from a PostgreSQL column with a
time interval constraint of two weeks resulted in processor
utilization maximum increase of 35.43% when compared
to the idle state, presented in Fig. 10. The query hasn’t
significantly affected the memory usage as shown in Fig.
11. Selecting values from an InfluxDB field with the same
time interval constraint resulted in a maximum processor
utilization increase of 50.69% presented in Fig. 12 and a
maximum drop in the available megabytes of 63.21%
presented in Fig. 13.

Selecting the average value of a PostgreSQL column
with a time interval constraint of one month resulted in
processor utilization increase of 60.82% at most compared
to the idle state. The query hasn’t significantly affected the
memory usage. Selecting the average value of an
InfluxDB field with the same time interval constraint
hasn’t significantly affected general system resource
consumption.

Selecting the average value of a PostgreSQL column
with a time interval constraint of one month and the result
grouping by one day resulted in a maximum processor
utilization increase of 58.56% and a maximum decrease of
the available megabytes of 2.56% when compared to the
idle state. Selecting the average value of an InfluxDB field
with the same time interval constraint and result grouping
hasn’t significantly affected general system resource
consumption.

Finally, selecting the average value of a PostgreSQL
column with the time interval constraint of one month and
the result grouping by indexed attribute resulted in a
maximum processor utilization increase of 59.89% when
compared to the idle state. The query hasn’t significantly
affected the memory usage. Selecting the average value of
an InfluxDB field with the same time interval constraint
and result grouping hasn’t significantly affected general
system resource consumption.

V. CONCLUSION

One of the advantages of using a time-series database
InfluxDB over using a relational database PostgreSQL is
the shorter time needed to execute aggregation functions
over data. Test cases described in Section 4 show that the
execution time for the operation of aggregation with time
interval constraints is 46.87%-77.62% shorter in the case
of using InfluxDB when compared to using PostgreSQL
database. Another advantage includes faster result
grouping by various time intervals without creating
additional indexes as well as result grouping by indexed
attributes/tags. In the mentioned test cases, aggregation

MIPRO 2019/CTS 1069

execution time with a time interval constraint and result
grouping by time interval is 76.82%-95.30% shorter and
aggregation execution time with time constraint and result
grouping by indexed attribute/tag is 24.76%-63.20%
shorter in the case of using InfluxDB compared to the use
of the PostgreSQL database. These characteristics
represent the main advantages in using time-series
databases because massive datasets are mostly useful to
users when they are aggregated and grouped.

The disadvantage of using the InfluxDB database lies
in slow querying of non-aggregated data. Querying data
with a time interval constraint results in an 83.52%-
89.42% shorter query execution time in the case of using
PostgreSQL compared to using InfluxDB database.

Using time-series databases greatly benefits users
whose main concern is processing a large amount of data
with time interval constraints in a short amount of time. A
large amount of available memory is desirable for optimal
InfluxDB database usage.

The future research efforts will focus on checking how
the batch size impacts the performance of InfluxDB
insertion operations. Additionally, it would be beneficial
to explore how the varying data set size impacts the
performance of the experiments presented in this paper.

ACKNOWLEDGMENT

This work has been partially supported by the Croatian
Science Foundation under the project: Reliable Composite
Applications Based on Web Services (IP-01- 2018-6423)

and by the European Regional Development Fund under
the grant KK.01.1.1.01.0009 (DATACROSS).

REFERENCES

[1] Feng, Y., Chi, L., Chi, H., Liu, C., Liu, Z., QoM: An Effective

Querying Method for Time Series Database, Hangzhou, (2012), 1-
1

[2] Dunning, T., Friedman, E., Time Series Databases: New Ways to
Store and Access Data, O'Reilly Media, Incorporated, 2014

[3] Balis, B., et al., Towards an operational database for real-time
environmental monitoring and early warning systems, Procedia
Computer Science, Vol. 108, pp. 2250-2259, 2017

[4] Tahmassebpour, M.,: A New Method for Time-Series Big Data
Effective Storage, IEEE Access, vol. 5, pp. 10694-10699, 2017

[5] Naqvi, S., Yfantidou, S., Advanced Databases: Time Series
Databases and InfluxDB, Bruxelles: Université libre de Bruxelles,
2017

[6] Dix, P., Why Time-Series Matters For Metrics Real-Time and
Sensor Data: What is time-series data, 2016

[7] Rhea, S., et al., LittleTable: A Time-Series Database and Its Uses,
In Proceedings of the 2017 ACM International Conference on
Management of Data (SIGMOD '17), New York, NY, USA, pp.
125-138, 2017

[8] Zaina, A., Reinhardt, A., Huchtkoetter J., Relational or Non-
Relational?: A Comparative Evaluation of Database Solutions for
Energy Consumption Data, Proceedings of the Ninth International
Conference on Future Energy Systems (e-Energy '18). ACM, New
York, pp. 474 – 476, 2018

[9] DB-Engines Ranking of Time Series DBMS, https://db-
engines.com/en/ranking/time+series+dbms, February 2019

[10] InfluxDB key concepts,
https://docs.influxdata.com/influxdb/v1.5/concepts/key_concepts/,
February 2019

Figure 11. Available megabytes – PostgreSQL

Figure 10. Processor utilization - PostgreSQL

Figure 12. Processor utilization - InfluxDB

Figure 13. Available megabytes - InfluxDB

1070 MIPRO 2019/CTS

https://db-engines.com/en/ranking/time+series+dbms
https://db-engines.com/en/ranking/time+series+dbms
https://docs.influxdata.com/influxdb/v1.5/concepts/key_concepts/

