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N-glycosylation is a ubiquitous protein modification, and N-glycosylation pro-

files are emerging as both biomarkers and functional effectors in various

types of diabetes. Genome-wide association studies identified glycosyltrans-

ferase genes as candidate causal genes for type 1 and type 2 diabetes. Studies

focused on N-glycosylation changes in type 2 diabetes demonstrated that

patients can be distinguished from healthy controls based on N-glycome com-

position. In addition, individuals at an increased risk of future disease devel-

opment could be identified based on N-glycome profiles. Moreover,

accumulating evidence indicates that N-glycans have a major role in prevent-

ing the impairment of glucose-stimulated insulin secretion by maintaining the

glucose transporter in proper orientation, indicating that interindividual varia-

tion in protein N-glycosylation might be a novel risk factor contributing to

diabetes development. Defective N-glycosylation of T cells has been impli-

cated in type 1 diabetes pathogenesis. Furthermore, studies of N-glycan alter-

ations have successfully been used to identify individuals with rare types of

diabetes (such as the HNF1A-MODY), and also to evaluate functional signif-

icance of novel diabetes-associated mutations. In conclusion, both N-glycans

and glycosyltransferases emerge as potential therapeutic targets in diabetes.
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Main types of diabetes and current
diagnostic criteria

Diabetes is a chronic disease characterized by hyper-

glycaemia, with accompanying risk of long-term com-

plications which affect nervous system, kidney, eyes

and heart [1,2]. It is estimated that over 420 million

people have diabetes, with prevalence in adult popula-

tion approaching 10% in the developed world [3].

Diabetes caused 10.7% of all global deaths among

people aged between 20 and 79 years in 2017 [3]. Half

of all adult people with diabetes are estimated to

remain undiagnosed [4]. In the United States, 41.7%

of individuals with previously undiagnosed diabetes

developed chronic kidney disease [5]. In the cohort of

individuals with coronary artery disease, measures

including total cholesterol, triglycerides, BMI and

fasting blood glucose were all higher in individuals

with undiagnosed diabetes than in those with estab-

lished diabetes [6]. One study evaluated total eco-

nomic costs of undiagnosed diabetes in the United
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States for the year 2012 on more than 32 billion

USD [7].

Widely accepted classification categorizes main types

of diabetes into type 2 diabetes, type 1 diabetes and

gestational diabetes [3,8]. The most common type of

diabetes is type 2 diabetes, which accounts for approx-

imately 90% of diabetes cases [3,9–11]. In high-income

countries, type 1 diabetes accounts for 7–12%, and

other types of diabetes for 1–3% of diabetes cases

[3,9–12]. Incidence of type 1 diabetes varies hugely

depending on regions [13–15]. Global prevalence of

hyperglycaemia in pregnancy in 2017 was estimated to

be 16.2%, of which 86.4% cases were due to gesta-

tional diabetes [3]. Less common types of diabetes

include monogenic diabetes, such as neonatal diabetes

and maturity-onset diabetes of the young (MODY),

and secondary diabetes [3].

Diabetes diagnosis is based on plasma glucose

concentration, which is measured either in a sample

taken after fasting or 2 h after 75-g glucose intake,

or on HbA1c measurements [3,16,17]. HbA1c, gly-

cated haemoglobin which is formed by the nonenzy-

matic glycation of the haemoglobin A, provides

information on the average blood glucose concentra-

tion during the last 2–3 months, and as such repre-

sents a gold standard for evaluating glycaemic

control in people with diabetes [18]. Yet, it can often

be difficult to assign a type of diabetes to an indi-

vidual, especially as classification is subject to cir-

cumstances at the time of diagnosis [19,20]. For

example, in some individuals with the classical

appearance and clinical diagnosis of type 2 diabetes,

there is evidence of islet autoimmunity [21], and they

may have a slowly progressive type of autoimmune

diabetes.

N-glycosylation and its implication in
diabetes

Over 40 years ago it was shown that levels of specific

glycans bound to serum proteins were increased in

patients with diabetes, of which only a small propor-

tion could be explained by the increase in the levels of

glycoproteins carrying these glycans [22], suggesting a

direct role of glycans in the pathophysiology of dia-

betes, which was subsequently confirmed for some

specific proteins [23]. Here, it is important to stress that

glycosylation should not be mistaken for glycation,

since glycosylation is a complex enzymatic process

strictly regulated by a network of glycosyltransferases,

glycosidases, transcriptional factors, sugar nucleotides

and other molecules [24]. Glycation, on the other hand,

represents the nonenzymatic reaction of reducing sugar

and protein [25], such as the one described for glycated

haemoglobin [18].

Proper glycosylation is important for correct pro-

tein folding, cell structure maintenance, receptor–
ligand interactions, cell signalling, cell–cell recognition
and immune defence [26]. Development of high-

throughput glycan analyses was challenging, especially

due to complex and highly branched structure repre-

sentative of glycans [26]. Recent advances in labora-

tory technologies [27–29] enabled large-scale studies

that evaluate the effects of different genetic variants

on glycosylation patterns and their association with

disease mechanisms through the genome-wide associa-

tion studies (GWASs) [30,31]. Genes associated with

N-glycosylation (a subtype of glycosylation where gly-

cans are linked with N-glycosidic bond to asparagine

[32]) of human proteins were also shown to be associ-

ated with type 1 diabetes, type 2 diabetes and HNF1A-

MODY [30,33,34].

N-glycosylation is a ubiquitous co- and post-transla-

tional modification that enriches protein structure and

function [26,35,36]. Changes in N-glycosylation have

been described in different diseases, including type 1

diabetes, type 2 diabetes, gestational diabetes and

HNF1A-MODY [37–42], and are thus being consid-

ered as biomarkers of ongoing pathological condition.

Remarkably, results from several of these studies

imply that it is possible to distinguish between differ-

ent types of diabetes based on N-glycan profiles and

to even identify individuals at an increased risk of

developing diabetes in the future [38,39,42]. A notable

discovery of aberrant N-glycosylation of pancreatic

beta cell glucose transporter-2 (Glut-2) in type 2 dia-

betes that leads to impairment of insulin secretion and

can be targeted to suppress diabetes provides a

promising new path towards novel drug targets

[23,43,44].

It is important to stress that both human plasma

and immunoglobulin G (IgG) N-glycomes are stable

over time under homeostatic conditions within an

individual [45–47], but at the same time remarkably

sensitive to different pathological processes [48,49],

thus supporting their diagnostic and prognostic

potential. Glycosylation changes are well known to

influence protein function. For example, the addition

of sialic acid converts IgG from proinflammatory,

into an anti-inflammatory agent [50]. Furthermore,

the addition of core fucose to IgG glycans interferes

with IgG binding to FccRIIIa receptors and

decreases its ability to destroy target cells through

antibody-dependent cellular cytotoxicity (ADCC) [51].

This feature is currently being exploited in mono-

clonal antibodies engineering, as lack of core fucose
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increases their clinical efficacy through enhancement

of ADCC [52].

This review will focus on the scientific discoveries of

N-glycosylation changes in type 1 diabetes, type 2 dia-

betes, gestational diabetes and HNF1A-MODY (Fig. 1,

Table 1). Most studies covered in this review are

focusing on the N-glycosylation changes in total

plasma proteins and IgG, even though N-glycosylation

changes in some other proteins in diabetes are increas-

ingly attracting attention [23,44,53,54]. Some of these

changes have been related to diabetes onset, and some

to diabetes complications. Also, there is accumulating

Table 1. Overview of implicated N-glycans and glycosyltransferase genes with proposed mechanism for the pathogenesis of different types

of diabetes.

Type of diabetes Implicated N-glycans Implicated proteins/genes Proposed mechanism Ref.

Type 1 diabetes Highly branched

N-glycans

T cell proteins, MGAT5,

MGAT1

Enhanced T cell N-glycan branching through N-

glycan–lectin interactions decreases T cell

activation and protects against disease (strategy

applied: GlcNAc supplementation to nonobese

diabetic mouse); joint effects of MGAT1

haplotypes and other type 1 diabetes risk gene

variants were examined and proved significant

(MGAT1 and CTLA-4 joint effects)

[105,168,169]

Type 1 diabetes Highly branched

N-glycans

IL-2Ra (CD25) Inhibited IL-2Ra N-glycosylation inhibits its

surface retention time, its downstream signalling

and Th1 cell differentiation; thus, demonstrating

dual role of N-glycosylation in T cell activation

(strategy applied: glucosamine supplementation)

[73]

Type 1 diabetes Highly branched

N-glycans

Total serum proteins,

IgG, a1-acid glycoprotein

Not determined; increase in highly branched N-

glycans on these proteins was associated with

the disease complications

[40,53]

Type 1 diabetes a1,2-fucosylated

N-glycans

FUT2 Causal candidate gene for type 1 diabetes;

suggested relationship between host resistance

to infections and susceptibility to autoimmune

disease through host–pathogen interactions

mediated by glycans

[90,92]

Type 2 diabetes Highly branched

N-glycans

Glut-2, Mgat4a High-fat diet reduced expression of transcription

factors that inhibited expression of the

glycosyltransferase Mgat4a; maintenance of

glucose transporter by Mgat4a(GnT-IVa)-

mediated N-glycosylation preserved glucose

transport (strategy applied: high-fat diet)

[23,43,44]

Type 2 diabetes Highly branched

N-glycans

Total plasma proteins Risk factor; increase in highly branched N-glycans

was associated with higher risk of developing

this disease

[39]

Type 2 diabetes Highly branched

N-glycans

Total plasma proteins, IgG Not determined; increase in highly branched N-

glycans was associated with type 2 diabetes

[41,58,131]

Type 2 diabetes N-glycans with

a2,6-linked

sialic acid (found

among highly

branched N-glycans)

ST6GAL1 Causal candidate gene for type 2 diabetes [106]

HNF1A-MODY Antennary fucosylated

N-glycans, core

fucosylated N-glycans

Total plasma proteins,

HNF1A, FUT3, -5, -6, -8

Risk factor; it was demonstrated that

HNF1A inhibits expression of FUT8 and thus

formation of core fucosylated N-glycans

and activates fucosyltransferases involved in the

formation of antennary fucosylated N-glycans

(FUT3, -5, -6) which are decreased upon loss-of-

function of HNF1A

[30,38,42]

Gestational

diabetes

N-glycans with

sialic acid, fucose,

and mannose

Lactoferrin, secretory IgA Not determined; alterations were observed during

gestational diabetes (comparison between milk

from women with vs. women without GDM)

[37]
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evidence implicating these changes in mechanism

underlying diabetes development (Table 1).

Hexosamine biosynthesis pathway and
its role in diabetes through protein N-
glycosylation

Glucose-provoked tissue damage is, among other path-

ways, also assumed to be mediated through the hex-

osamine biosynthesis pathway (HBP) [55,56]. Under

homeostatic conditions, around 3% of total glucose is

utilized through this pathway [57]. However, under

conditions of hyperglycaemia the percentage of total

glucose utilized through the HBP could be enhanced,

leading to increased levels of the major product of the

HBP, uridine diphosphate N-acetylglucosamine (UDP-

GlcNAc). This was proposed as one of the mecha-

nisms for the observed increase in plasma levels of the

highly branched N-glycan structures in type 1 diabetes

patients, type 2 diabetes patients and even healthy peo-

ple at the increased risk of developing diabetes in the

future [39,40,58].

Uridine diphosphate N-acetylglucosamine, a nucleo-

tide-activated sugar, serves as a substrate for different

glycosyltransferases in the process of eukaryotic pro-

tein N-glycosylation, which occurs when a block of 14

sugars is relocated cotranslationally to specific aspara-

gine residues in the endoplasmic reticulum [32]. Modi-

fications of resulting N-linked glycans continue in the

Golgi complex, where a glycoprotein can undergo a

variety of modifications as it is moving towards its

final intra- or extracellular location. These modifica-

tions can be defined in terms of the quantity of differ-

ent glycans attached (fucosylation, galactosylation,

sialylation, branching) [59] (Fig. 1).

The production of branched N-glycans, and thus the

level of branching (biantennary, triantennary and

tetraantennary N-glycans), is dependent upon UDP-

GlcNAc availability and Golgi enzyme activity [59,60].

All Golgi enzymes responsible for the formation of

branched N-glycans, N-acetylglucosaminyltransferases

I, II, IV and V (GNT-I, -II, -IV and -V), utilize UDP-

GlcNAc as a substrate [61]. The mono-, bi-, tri- and

tetra- antennary N-glycans are enzymatic products of

GNT-I, -II, -IV and -V respectively (Fig. 1) [26].

GNT-V is responsible for the formation of highly

branched tetraantennary N-glycans through extension

of the 1–6 arm of the glycan core with GlcNAc residue

[62]. GNT-V also catalyses the formation of trianten-

nary N-glycans in the cases when two branches extend

from the 1–6 arm of the core, rather than the 1–3 arm

(in the latter scenario triantennary N-glycans are

formed by the action of GNT-IV) [62].

The GNT-V-branched product is the preferred

acceptor, among other branched N-glycans, for subse-

quent addition of the galectin ligand N-acetyllacto-

samine (LacNAc) [63–65]. The majority of galectins

interact with N-glycans at the cell surface, thus form-

ing lattices [66] and increasing glycoprotein cell surface

retention time [54,59,67]. There is accumulating evi-

dence for the role of highly branched N-glycans in

autoimmunity development, a hallmark of type 1 dia-

betes. The proposed mechanism involves different gly-

coproteins present on T cells and alterations of their

lectin-N-glycan interactions [54,59,68–73], which is fur-

ther discussed in the section below.

Ultrasensitivity has been determined within the

Golgi pathway branching machinery [59]. Ultrasensi-

tivity represents sharp, switch-like response over a

narrow range of stimulus with a characteristic sig-

moidal curve [74]. In the terms of Michaelis–Menten

kinetics with a characteristic hyperbolic response,

ultrasensitivity represents a greater sensitivity to a

certain stimulus than the Michaelis–Menten relation-

ship [74]. Affinity for the UDP-GlcNAc decreases

stepwise from GNT-I up to GNT-V [59]. GNT-I

and GNT-II activities are limited by their affinity

for acceptor glycoproteins, whereas GNT-IV and

GNT-V are limited by UDP-GlcNAc concentrations

[59,60,75]; thus increase in the UDP-GlcNAc results

in an ultrasensitive increase in tri- and tetra-

antennary N-glycans [59].

It has also been demonstrated that response to

increasing hexosamine concentration is dependent

upon the number of N-glycans on glycoprotein [59].

Glycoproteins with few N-glycans display switch-like

responses, while glycoproteins with more N-glycans

display hyperbolic responses; thus, they are differen-

tially regulated by UDP-GlcNAc [59]. The switch-like

response has been demonstrated for the glucose trans-

porter and for the cytotoxic T-lymphocyte protein 4

(CTLA-4) [59]; the latter representing an inhibitory

glycoprotein in the process of T cell activation, that

has been identified as one of the causal candidate

genes in type 1 diabetes [76].

A majority of studies in this area focused on UDP-

GlcNAc stimulation of O-glycosylation (O-glycosidic

linkage between glycan and an amino acid containing

a hydroxyl group [77]) when discussing the possible

mechanism of diabetic complications as a consequence

of increased flux through HBP [78,79]. In a recent

study, we have demonstrated that serum N-glycan

alterations are associated with diabetic kidney disease

[40], which is further discussed below. Taken together,

there is accumulating evidence for the role of HBP in

both diabetes onset and diabetes complications.
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Fig. 1. Schematic representation of hexosamine biosynthesis and N-glycosylation pathways inside the cell with indicated

glycosyltransferases that have potential implication in diabetes pathogenesis. Depicted are also N-glycosylated glucose transporter (Glut),

nucleus (blue), endoplasmic reticulum (blue) and Golgi complex (brown). The figure was created in Inkscape [170] using glycan structure

figures created with GLYCOWORKBENCH software [171] and further processed in Inkscape. Blue squares, green circles, yellow circles, purple

diamonds and red triangles represent N-acetylglucosamine (GlcNAc), mannose, galactose, N-acetylneuraminic acid (sialic acid) and fucose

residues respectively. Glut, glucose transporter; HK, hexokinase; GPI, glucose-6-phopshate isomerase; GFAT1, glutamine:fructose-6-

phosphate aminotransferase 1; OST, oligosaccharyltransferase; GlsI, glucosidase 1; GlsII, glucosidase 2; ManI, mannosidase 1; GNT-I, alpha-

1,3-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase; ManII, mannosidase 2; GNT-II, alpha-1,6-mannosyl-glycoprotein 2-beta-N-

acetylglucosaminyltransferase; Gnt-IV, alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase; GNT-V, alpha-1,6-mannosyl-

glycoprotein 6-beta-N-acetylglucosaminyltransferase; GalT, galactosyltransferase; ST6Gal I, beta-galactoside alpha-2,6-sialyltransferase 1;

FucT-III, galactoside 3(4)-L-fucosyltransferase; FucT-V, alpha-(1,3)-fucosyltransferase 5; FucT-VI, alpha-(1,3)-fucosyltransferase 6; Alpha1-

6FucT, alpha-(1,6)-fucosyltransferase; BGnT-3, N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase 3; Alpha(1,2)FT 2, galactoside

2-alpha-L-fucosyltransferase 2.
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Type 1 diabetes

Type 1 diabetes is an autoimmune disease character-

ized by T cell (both the CD4+ helper and the CD8+

killer cells)–mediated destruction of the insulin produc-

ing pancreatic beta cells and defined by the presence of

one or more autoantibodies [8,80,81]. Nevertheless, in

the minority of patients with type 1 diabetes there is

an absence of pancreatic autoantibodies, and in some

patients with clinical diagnosis of type 2 diabetes there

is evidence of islet autoimmunity [8,21,82]. It is esti-

mated that the annual increase in the number of chil-

dren and adolescents diagnosed with type 1 diabetes is

around 3% [83,84]. Early diagnosis of type 1 diabetes

associates with fewer complications at diagnosis and

improved metabolic control in the upcoming years

[85]. Association of the disease incidence with geo-

graphical latitude has been observed [14,15]. Different

incidence rates of type 1 diabetes in two neighbouring

populations with no differences in the frequency of

type 1 diabetes predisposing genotypes were reported

[13]. Type 1 diabetes discordance in monozygotic twins

has also been a subject of different studies [86,87]. This

all supports the major role of environmental factors in

the onset of this worldwide increasing disease and

urges their understanding and identification.

FUT2 as one of the causal candidate genes in

type 1 diabetes

More than 50 genetic loci have been implicated in type

1 diabetes development [88]. The highest genetic suscep-

tibility is mapped to major histocompatibility complex

region [89]. Among the implicated loci, fucosyltrans-

ferase 2 gene (FUT2) is identified as one of the causal

candidate genes [90]. FUT2 encodes a glycosyltrans-

ferase responsible for the addition of fucose a1,2-linked
to the terminal galactose on different glycans and thus,

the formation of the H antigen in body fluids and on

the intestinal mucosa. Individuals homozygous for non-

functional FUT2 allele fail to present histo-blood group

antigens in saliva and mucosal surfaces (termed as non-

secretors) [91]. Genetic study conducted on type 1 dia-

betes individuals associated the nonsecretor genotype

with the susceptibility to this disease; thus, linking the

host resistance to infections with susceptibility to devel-

oping autoimmune disease [92].

MGAT5-mediated N-glycan branching impacts

T cell activation

There is increasing evidence for the role of highly

branched N-glycans in autoimmunity mediated by the

MGAT5 gene [54,68,69]. MGAT5 encodes the alpha-1,6-

mannosyl-glycoprotein 6-beta-N-acetylglucosaminyltrans-

ferase (GNT-V), an enzyme involved in the synthesis of

cell surface ligands for galectins [63–65]. Galectins are

family of LacNac-binding lectins found in the extracel-

lular matrix, at the cell surface, and in the cytosol,

with at least one conserved carbohydrate-recognition

domain [66]. The majority of galectins interact with N-

glycans at the surface of the cell, thus forming lattices

[66] and increasing glycoprotein retention time at the

cell surface [54,59].

Loss of MGAT5 expression lowers T cell activation

threshold due to enhancement of T cell receptors

(TCRs) [54]. Clusters of a certain number of TCRs at

the antigen presentation site are required for T cell

activation [93]. Pretreatment of wild-type T cells with

lactose in order to compete for galectin binding

resulted in TCR clustering; with conclusion that a

galectin–glycoprotein lattice supported by GNT-V-syn-

thesized N-glycans limits TCR recruitment to the site

of antigen presentation [54]. In vivo, MGAT5�/� mice

exhibited several autoimmune phenotypes [54].

Another study showed that galectin-1–induced apopto-

sis of activated human T cells was decreased when N-

glycosylation was inhibited following the treatment of

cells by swainsonine, inhibitor of mannosidase II, an

enzyme upstream of GNT-V in the N-glycosylation

pathway [70,94].

Sensitivity to autoimmune diseases is affected by dif-

ferentiation of CD4+ T cells into cytokine-secreting

proinflammatory Th1 cells (secrete IFN-c and TNF-b)
or anti-inflammatory Th2 cells (secrete IL-4, IL-5, IL-

10, IL-13) [95,96]. Antigen-induced enhancement of

the TCR signalling stimulated Th1 and constrained

Th2 differentiation [97,98]. It was reported that GNT-

V-mediated N-glycosylation negatively regulates Th1

responses and represents an antigen-independent mech-

anism in Th1 and Th2 regulation [72]. GNT-V -medi-

ated N-glycan branching increased the surface

retention time of T cell activation inhibitory glycopro-

tein CTLA-4 [59], one of the causal candidate genes in

type 1 diabetes [76,99].

Nonobese diabetic (NOD) mouse is an animal

model of type 1 diabetes [100]. Studies have demon-

strated that antibodies against IFN-c administrated to

mice prevented the induction of diabetes [101]. Later

studies showed that IFN-cR might play a main role in

CD4+ T cell–mediated beta cell damage; however, not

in CD8+ T cell mediated [102]. Moreover, IL-4 was

shown to prevent insulitis and diabetes development;

again, using NOD mice as models, with similar results

reported for IL-10 [103,104]. Oral GlcNAc supplemen-

tation in these mice enhanced T cell N-glycan branch-

ing and protected against the disease [105]. IL-2Ra
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(CD25) is also an N-glycoprotein involved in T cell

survival and proliferation; its N-glycosylation and thus

also a downstream signalling was inhibited by supple-

mentation with glucosamine; thus, demonstrating a

dual role of N-glycosylation in T cell differentiation

[73]. As previously discussed, the kinetics of GNT-V

and number of N-glycans on glycoproteins should be

kept in mind, as switch-like sigmoidal responses are

characteristic for GNT-V and glycoproteins with few

N-glycans upon increase in GlcNAc [59].

N-glycosylation is associated with complications

in type 1 diabetes

In a recent study we investigated serum N-glycosylation

changes in adult type 1 diabetes patients with kidney

disease and demonstrated that N-glycan profile of both

total serum proteins and of IgG is altered [40]. The most

important observation was increase in complex N-glycans

(highly branched, triantennary and tetra-antennary struc-

tures) and decrease in simpler biantennary N-glycans

among total serum proteins that was correlated with

higher HbA1c, higher albumin-to-creatinine ratio (ACR)

and steeper decline in estimated glomerular filtration rate

(eGFR); reflecting poorer glycaemic control and renal

function [40]. The most complex IgG N-glycan is a

biantennary N-glycan [29], however, again, an increase in

more complex (more galactosylated and sialylated

biantennary structures) and a decrease in simpler

(monogalactosylated biantennary glycans) N-glycans was

observed, and correlated with higher HbA1c, higher ACR

and greater mean annual decline in eGFR [40].

Glycosylation changes in another plasma protein, a1-acid
glycoprotein, have been associated with the vascular

complications in type 1 diabetes [53].

Type 2 diabetes

Type 2 diabetes is the most common type of diabetes

characterized by relative insulin deficiency, peripheral

insulin resistance and thus damaged glucose homeosta-

sis; it is under both genetic and environmental influ-

ences [3,106–109]. Most of the individuals with type 2

diabetes are overweight, obese or have an elevated per-

centage of body fat predominantly in the abdominal

region [110,111]. The link of high-fat diet, obesity and

diabetes has also been demonstrated on animal models

[112,113]. Another common characteristic of this dia-

betes type is that it remains undiagnosed for many

years, especially as hyperglycaemia progresses gradu-

ally and has a long presymptomatic phase [4,7]. The

risk of developing type 2 diabetes is associated with

obesity, age and insufficient physical activity [109].

Loss of glucose-stimulated insulin secretion through

the pancreatic beta cell dysfunction and impaired

beta cell glucose transporter expression has been impli-

cated in type 2 diabetes pathogenesis [114–116].

N-glycosylation of glucose transporter 2 and

novel glycan side-chain biomarkers

Glucose transport system present on the plasma mem-

brane has a role in maintaining the transport of glu-

cose into and out of the cells. Glucose transporters are

a family of integral membrane glycoproteins, compris-

ing 13 members [117,118]. Glucose transporter 2

(Glut-2) is a glucose sensor molecule involved in insu-

lin secretion in pancreatic beta cells, glucose transport

in kidney and intestine, and glucose delivery into the

blood stream through hepatic gluconeogenesis [119].

All vertebrate glucose transporters have a conserved

N-glycosylation site situated usually in the first or fifth

extracellular loop [120].

Reduced Glut-2 expression at the beta cell surface

was observed in mice after high-fat diet [23,116]. Glut-2

murine N-glycosylation was demonstrated to be under

both dietary and genetic influence [23]. The retention of

Glut-2 on the beta cell surface was mediated by GnT-

IVa glycosyltransferase that catalyses the synthesis of a

complex Glut-2 N-glycan and thus stabilizes Glut-2 sur-

face retention by enabling lectin-glycan binding. Both

dietary and genetic obstruction of this process led to

Glut-2 endocytosis, impairment of the insulin secretion

and type 2 diabetes pathogenesis [23]. This was later

confirmed in human and mouse pancreatic cells; high-

fat diet reduced expression of transcription factors,

both Foxa2 and Hnf1a, which inhibited Mgat4a expres-

sion and led to metabolic disorders. Maintenance of

glucose transporter expression by GnT-IVa-mediated

glycosylation preserved glucose transport [43].

Recently, attention has been drawn to an NMR-

derived biomarker, known as GlycA [121–123]. GlycA

originates from the N-acetyl methyl groups mostly

from N-acetylglucosamine residues of glycan branches

from acute phase glycoproteins [124] and is considered

as a marker of a systemic inflammation [124]. Insulin

resistance and beta cell dysfunction is associated with

a low-grade chronic systemic inflammation [125].

Increased levels of the GlycA were significantly associ-

ated with incident type 2 diabetes in a prospective

cohort study [121].

Total plasma protein and IgG N-glycan profiling

in type 2 diabetes

Our recent study demonstrated that it is possible to

recognize individuals at an increased risk of type 2
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diabetes development based on interindividual differ-

ences in glycosylation [39]. Total plasma protein N-

glycome composition was compared between individuals

with registered hyperglycaemia during critical illness,

who are known to be at increased risk of future develop-

ment of type 2 diabetes [126,127], and the individuals

who remained normoglycaemic throughout the same

condition. Replication cohort comprised individuals

with increased levels of HbA1c, incident cases of type 2

diabetes gathered at baseline and controls. Study showed

that increased complexity of N-glycan structures (highly

branched, galactosylated and sialylated) among total

plasma proteins was associated with increased risk of

type 2 diabetes development [39]. The same differences

were subsequently replicated by the analysis of 820 inci-

dent cases of type 2 diabetes in the German part of the

EPIC cohort (C. Wittenbecher, T. Pavi�c, O. Kuxhaus,

N. Selak, F. Vu�ckovi�c, J. �Stambuk, C. Schiborn, D.

Raheli�c, S. Dietrich, O. Gornik, H. Boeing, M. Schulze,

& G. Lauc, unpublished data). We have reported com-

parable results in one more study, this time comprising

individuals from geographically isolated population [58].

Highly branched sialylated N-glycans have also been

shown to increase in other inflammatory diseases

[128,129]. Chronic low-grade inflammation is a com-

mon feature in subjects with type 2 diabetes [130],

which could also indicate that the observed changes

are reflection of the initial inflammatory process. It is

important to stress out that even though in the previ-

ously mentioned study total plasma protein N-glycome

that comprises many different glycoproteins was stud-

ied, significant differences were observed and enabled

identification of individuals at an increased risk of

developing this disease [39]. It would be also important

to further identify and target specific glycoproteins

that are contributing to the observed changes.

In another study comprising individuals with type 2

diabetes authors distinguished between a2,6-linked and

a2,3-linked sialylation and demonstrated different effects

on sialylation dependent on the linkage. Biantennary

a2,6-linked sialylation was increased, and triantennary

a2,3-linked sialylation was decreased in individuals with

type 2 diabetes in comparison to control group [131]. In

this study, authors distinguished between a2,6-linked
and a2,3-linked sialylation and demonstrated different

effects on sialylation dependent on the linkage. Bianten-

nary a2,6-linked sialylation was increased, and trianten-

nary a2,3-linked sialylation was decreased. Antennary

fucose located at the a2,3-sialylated antenna formes ter-

minal sialyl Lewis X (sLeX) epitopes that can be found

on different proteins with sialylated fucosylated glycans

[132]. Competitive binding and thus inhibition of sLeX/

E-selectin interactions has been demonstrated for an

acute phase protein, alpha-1-acid glycoprotein (AGP),

that also expresses sLeX; blocking of sLeX-dependent

immune cell adhesion has been here postulated as an

anti-inflammatory property of AGP glycosylation [133].

It is possible, as authors also suggested [131], that

reduction of a2,3-linked sialylation observed among

individuals with type 2 diabetes could interfere with anti-

inflammatory pathways. Increase in biantennary a2,6-
linked sialylation was speculated in the study to be

derived from immunoglobulin M and haptoglobin and

associated with inflammation [131].

Our study of IgG N-glycosylation in type 2 diabetes

has shown that a proinflammatory and biologically

aged state is reflected on IgG N-glycan profiles [41]. In

this study, decrease in galactosylation and sialylation

of IgG was observed, as well as increase in IgG fuco-

sylated structures with bisecting GlcNac and decrease

in IgG fucosylated structures without bisecting

GlcNac. Decrease in IgG galactosylation is associated

with a proinflammatory state of IgG [134] and has

also been associated with other inflammatory diseases

[135,136]. The addition of sialic acid to the terminal

end of N-glycan is associated with anti-inflammatory

function of the IgG [134]. Core fucose decreases

ADCC [51], while the addition of bisecting GlcNAc is

speculated to have the opposite effect [137]. It has

recently been shown in the mouse model that hyposia-

lylated IgG activates endothelial IgG receptor

FccRIIB and leads to insulin resistance; whereas sup-

plementation with the sialic acid precursor N-acetyl-D-

mannosamine restored IgG sialylation and preserved

insulin sensitivity [138].

ST6GAL1 as a novel candidate risk gene in type 2

diabetes

Genome-wide association studies published recently in

European-descent individuals revealed a novel gene

locus implicated in type 2 diabetes, ST6 beta-galactoside

alpha-2,6-sialyltransferase 1 gene (ST6GAL1) [106]. In

individuals of South Asian ancestry, ST6GAL1 has also

been associated with type 2 diabetes [139]. ST6GAL1

encodes an N-glycosylation pathway protein responsible

for the transfer of a2,6-linked sialic acid to galactose-

containing substrates [140]. Identified type 2 diabetes

risk allele in European-descent individuals was

associated with an increase in ST6GAL1 expression in

islets [106]. This finding further corroborates the

hypothesis that highly branched N-glycans (which are

also highly sialylated) are associated with higher risk of

developing type 2 diabetes [39]. The study investigating

the specific linkage of the sialic acid, as discussed

previously, has demonstrated that total plasma protein
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biantennary N-glycans with a2,6-linked sialic acid are

increased in type 2 diabetes [131]; further confirming the

potential causal relation between a2,6-linked sialic acid

and type 2 diabetes. Another study reported that

St6gal1 knockout mice after high-fat diet exhibited

increased body weight and visceral adipose tissue weight

[141]. This all urges further targeting of ST6GAL1 in

type 2 diabetes.

Other types of diabetes

Maturity-onset diabetes of the young is a monogenic

type of diabetes characterized by hyperglycaemia onset

at an early age (usually before age of 25, but diagnosis

later in life may also occur), damaged insulin secretion

and an autosomal dominant pattern of inheritance [8].

The most frequently reported forms are GCK-MODY,

HNF1A-MODY and HNF4A-MODY [142]. Mutations

in HNF1A and HNF4A genes cause MODY type 3 and

type 1 respectively [143,144]. Many individuals with

MODY remain misdiagnosed; classification is even more

challenging due to phenotypic overlapping with both

type 1 and type 2 diabetes [19,142]. However, since opti-

mal treatments are different, it would be very important

to be able to distinguish between MODY and other types

of diabetes. Contrary to type 2 diabetes, in HNF1A-

MODY and HNF4A-MODY treatment with sulfony-

lureas is the first-line therapy, since it provides excellent

diabetes control for many years [8,145]. Furthermore,

since MODY is inherited as an autosomally dominant

disease, proper diagnosis may lead to recognition of

other affected family members [146].

HNF1A regulates genes in the fucosylation

pathway

In the first conducted GWAS on N-glycome data, we

demonstrated that HNF1A and its downstream target

HNF4A regulate both fucosyltransferase gene expres-

sion and fucose biosynthesis genes. HNF1A was found

to be both required and sufficient for the expression of

multiple genes in the fucosylation pathway, indicating

it might be the master regulator of the protein fucosy-

lation [30]. HNF1A and HNF4A are part of transcrip-

tional regulatory network that controls both liver and

pancreas gene expression [147]. Synthesis of fucosy-

lated glycans requires activity of different fucosyltran-

ferases (FUTs), and a nucleotide-activated form of

fucose, GDP-fucose, as a substrate during this process

[148]. Different important roles for fucosylated glycans

have been described, such as roles in blood transfusion

reactions, initiation of an inflammatory response,

host–microbe interactions, etc. [148–152]. Regulation

of transcription activity of the FUT6 gene has also

previously been demonstrated for HNF4A [153].

GDP-mannose-4,6-dehydratase (GMDS) is involved

in the de novo pathway of the GDP-fucose synthesis

[148]. Quantitative studies have shown that more than

90% of GDP-fucose comes from de novo pathway

[154]; the other pathway for synthesis of the GDP-fu-

cose is termed the salvage pathway [148]. Both HNF4A

and HNF1A were shown to regulate the activity of

GMDS and L-fucokinase [30], fucose biosynthesis

enzymes in both de novo and salvage pathway of the

GDP-fucose synthesis [148].

In mammals, fucose can be linked to other N-glycans

in different linkages; for example, a1,2-linked to the ter-

minal galactose, a1,3- or a1,4-linked to GlcNAc on the

outer branch (antennary fucose), or a1,6-linked to the

inner GlcNAc binding to protein (core fucose) [155]. For

example, FUT1 and -2 are a1,2-fucosyltransferases,
FUT3, -4, -5, -6, -7 and -9 are a1,3- or a1,4-fucosyltrans-
ferases, and FUT8 is a1,6-fucosyltransferase [155]. Our

study demonstrated that HNF1A activates several fuco-

syltransferases involved in the formation of antennary

fucosylated N-glycans and inhibits FUT8, which forms

core fucosylated N-glycans. These results suggest that by

enhancement of antennary FUTs, and downregulation

of FUT8, HNF1A decreases the consumption of the

GDP-fucose for core fucosylation, and thus increases the

GDP-fucose availability for antennary fucosylation [30].

It was postulated that the role of transcriptional fac-

tors HNF1A and HNF4A might be an essential part

of the acute immune response in infection, through

their regulation of fucosylation [30]. E-, L- and P-

selectins require antennary fucose on their target cell

glycoprotein ligands for initiation of inflammation

[156]. It was reported for the Leucocyte adhesion

deficiency type II, a rare inherited disorder of fucose

metabolism, that the lack of fucosylated glycoproteins

leads to immunodeficiency caused by the impairment

of selectin-mediated leucocyte interactions; which was

restored after the oral fucose supplementation [157].

Furthermore, we also showed that fucosylated plasma

N-glycans are correlated with acute phase proteins,

such as C-reactive protein (CRP) [158].

N-glycans as novel biomarkers of HNF1A-MODY

In a study undertaken soon after the discovery of

HNF1A regulation of fucosyltransferase and fucose

biosynthesis genes, we demonstrated that the propor-

tion of antennary fucosylated N-glycans (DG9-glycan

index) provides optimum discrimination between

HNF1A-MODY and other types of diabetes [42]. This

glycan index was significantly lowered in subjects with
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HNF1A-MODY when compared to other diabetes

types (type 1, type 2, GCK-MODY) and to controls.

However, it did not provide good discrimination

between HNF1A and HNF4A-MODY, which was

expected as HNF4A also regulates fucosylation [30,42].

Since a subset of patients with type 1 diabetes main-

tain certain endogenous insulin production at the onset

of diabetes [159], this glycan biomarker could improve

the classification during this period.

The potential of high-sensitivity C-reactive protein

(hs-CRP) as a biomarker for HNF1A-MODY has

been previously demonstrated; lower levels of hs-CRP

were detected in individuals with HNF1A-MODY

than in those with other diabetes types [160,161]. We

have shown that the DG9-glycan index has compara-

ble power in discriminating HNF1A-MODY from

type 2 diabetes; however, it performed better in dis-

crimination from type 1 diabetes. This study also led

to the identification of previously unidentified HNF1A

mutations among diabetes subjects examined, and pro-

vided preliminary evidence for the potential of deter-

mining the pathogenicity of HNF1A variants based on

the DG9-glycan index; and thus to evaluate functional

significance of novel mutations [42].

Next, we assessed the clinical validity of antennary

fucosylated N-glycans and hs-CRP in identifying dam-

aging HNF1A alleles in an unselected population of

young adults with nonautoimmune diabetes; thus,

reflecting a more typical clinical scenario [38]. We have

identified novel variants within the HNF1A gene and

performed the functional assessment of those variants.

Both antennary fucosylated N-glycans and hs-CRP

enabled differentiation of individuals with damaging

HNF1A alleles; both biomarkers performed better in

selecting subjects for genetic testing than classical clini-

cal criteria or the MODY probability calculator [162].

These results imply that it may be possible to identify

individuals with a high risk of having damaging

HNF1A allele based on glycan biomarkers [38].

HNF1A-MODY is caused by mutations in the

HNF1A gene, but our recent studies indicated that this

gene can also be inactivated epigenetically, with func-

tional consequences on the plasma glycome composi-

tion [163]. Some studies reported that a high-fat diet

can lead to epigenetic silencing of HNF1A [43], indi-

cating that both interindividual variation in HNF1A

expression and its epigenetic silencing could be causally

involved in diabetes development, although is it is

currently not possible to know whether this is mediated

by changes in protein glycosylation or some other molec-

ular mechanisms. Nevertheless, changes in N-glycome

composition could still be used as a biomarker of these

early events in diabetes development.

N-glycan profiling in gestational diabetes

Lately, the human milk glycans, comprising both free

oligosaccharides (HMOs) and those conjugated to pro-

teins, have started attracting research attention

[37,164]. It has been demonstrated that human milk

glycoproteins are protective against infective diseases

through antimicrobial and immunomodulatory activi-

ties [165]. In a study comprising women with gesta-

tional diabetes, alterations of human milk lactoferrin

and secretory immunoglobulin A N-glycans have been

reported, suggesting that dysregulation of glucose dur-

ing pregnancy might influence innate immune protec-

tive functions [37]. The N-glycosylation analyses in

gestational diabetes will probably increase in years to

come, as it represents a promising new field.

Conclusions and perspectives

Diabetes classification has not been much revised

through the last decades [166]. Recently, a new dia-

betes stratification was proposed, which considers

heterogeneity within the type 2 diabetes population

and is based on disease progression and risk of dia-

betic complications [167]. Diabetes classification is not

straightforward, and it would be interesting to explore

N-glycan potential in this field. For example, there is

accumulating evidence for occurrence of a new type of

diabetes, termed double diabetes, with classical appear-

ance and clinical diagnosis of type 2 diabetes, but also

presence of pancreatic autoantibodies [21,82]. As

shown for both HNF1A-MODY and type 2 diabetes

[38,39,42], N-glycans have enormous potential as

biomarkers that ought to be exploited in the future.

This could improve the existing therapeutic strategies,

which would bring benefit to both individual patients

and the society.

Although there are multiple laboratory tests used to

diagnose diabetes, there is a lack of reliable biomark-

ers that can predict disease progression and develop-

ment of complications. Therefore, there is a pressing

need to find both new screening tools and strategies

for preventing development of diabetes and its compli-

cations. Studies of N-glycosylation changes have

demonstrated their potential for identifying individuals

at an increased risk of type 2 diabetes development

[39], indicating that interindividual variation in protein

glycosylation might be a novel risk factor in diabetes.

Furthermore, it has been shown that it is possible to

distinguish individuals with different types of diabetes

based on their N-glycome data, as it is the case for the

HNF1A-MODY and its differentiation from other

common and rare types of diabetes [38,42].

1607FEBS Letters 593 (2019) 1598–1615 ª 2019 Federation of European Biochemical Societies

N. Rudman et al. Aberrant protein N-glycosylation in diabetes



N-glycan branching on T cells has been implicated in

the development of type 1 diabetes, and N-glycan

branching on glucose transporter has been implicated in

the development of type 2 diabetes [23,43,44,73,105].

Both discoveries include N-glycan interactions with lec-

tins, which are disrupted upon inhibition of the

proper protein N-glycosylation. Findings presented in

this review open a whole new field of possible targets in

different types of diabetes. Further research is needed

to clarify the exact mechanism underlying some of these

changes and to develop simpler assays which will enable

translating these discoveries to clinical practice.
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