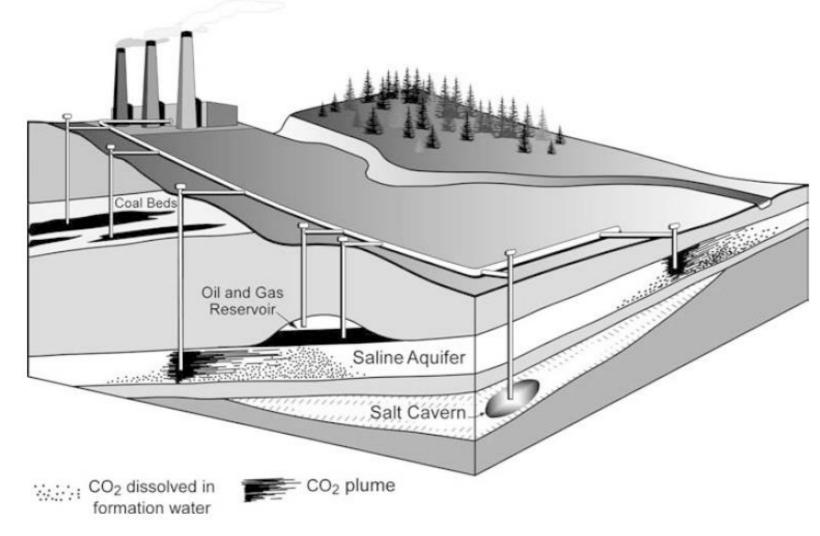
CO2 GEOLOGICAL STORAGE OPTIONS

Bruno Saftić (UNIZG-RGNF)


10.09.2019

Returning carbon back into the subsurface

- · Concieved strictly and the END of CCS chain
- · Long-lasting and safe (modification of O&G upstream technologies)
- Reducing emissions from the LARGE STATIONARY SOURCES
- Public funding needed differing concepts in development
- · Long-term monitoring to ensure performance (and safety)
- Regulation system that uses experience from the mining industry
- In the esence totally different ... (!)

AN "ANTIMINING" CONCEPT

New resource – reliable estimates needed

Various means of storage in geological media dictate development of a portfolio of screening and ranking methodologies

in short time

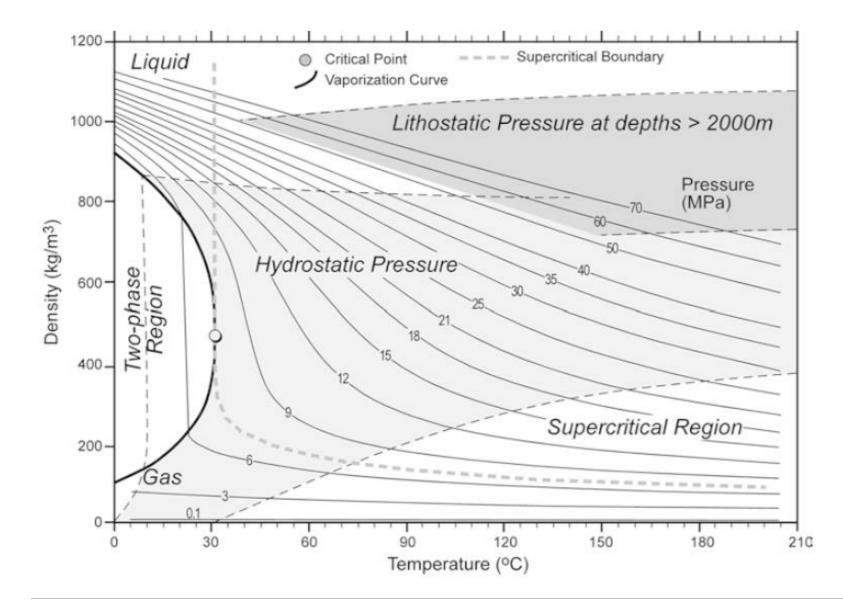
(Bachu, 2003)

What might be the slicky parts?

Competition - just a part of a portfolio of developing technologies

Renewables...

Energy efficiency, fuel switching...


Storage capacity – a new resource (generated by governmental planning) Large investment costs vs. future benefits

Who is to pay anyway?

Concept - abstract and still unproven (?)

Time (and money) needed to develop and test the technology

Conflicts of use... mainly with neighbors ③

"Our material"

Chemical stability

Reactions with rock(s) and brine(s)

Phase changes

CO₂ density as a function of temperature and pressure

(Bachu, 2003)

ENOS

Table 1Criteria for assessing sedimentary basins for CO2 geological sequestration

	Criterion	Classes					
		1	2	3	4	5	
1	Tectonic setting	Convergent oceanic	Convergent intramontane	Divergent continental shelf	Divergent foredeep	Divergent cratonic	
2	Size	Small	Medium	Large	Giant		
3	Depth	Shallow (<1,500 m)	Intermediate (1,500-3,500 m)	Deep (>3,500 m)			
4	Geology	Extensively faulted and fractured	Moderately faulted and fractured	Limited faulting and fracturing, extensive shales			
5	Hydrogeology	Shallow, short flow systems, or compaction flow	Intermediate flow systems	Regional, long-range flow systems; topography or erosional flow			
6	Geothermal	Warm basin	Moderate	Cold basin			
7	Hydrocarbon potential	None	Small	Medium	Large	Giant	
8	Maturity	Unexplored	Exploration	Developing	Mature	Over mature	
9	Coal and CBM	None	Deep (>800 m)	Shallow (200-800 m)			
10	Salts	None	Domes	Beds			
11	On/Off Shore	Deep offshore	Shallow offshore	Onshore			
12	Climate	Arctic	Sub-Arctic	Desert	Tropical	Temperate	
13	Accessibility	Inaccessible	Difficult	Acceptable	Easy	1	
14	Infrastructure	None	Minor	Moderate	Extensive		
15	CO ₂ Sources	None	Few	Moderate	Major		

10.09.2019

"Parametric estimates of storage potential" (Bachu, 2013)

Table 3

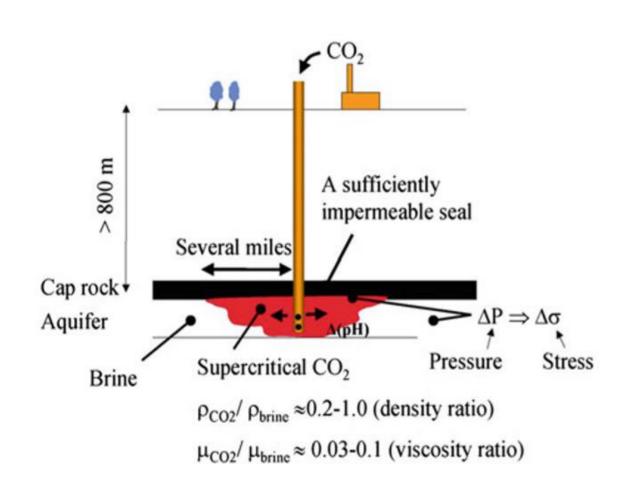
Ranking of Canada's sedimentary basins in terms of suitability for CO2 geological sequestration

Rank	Basin(s)	Characteristics	Score
1	Alberta	Foredeep, giant, deep, mature, coals and salts, good infrastructure, temperate, large point CO_2 sources, large CO_2 emissions	0.96
2	Williston	Intracratonic, large, deep, mature, coals, good infrastructure, temperate, large point CO ₂ sources	0.88
3	Beaufort-Mackenzie	Foredeep, large, deep, exploring, sub-arctic, large hydrocarbon potential	0.60
4	SW Ontario	Arch, shallow, small, over mature, good infrastructure, temperate, CO ₂ sources	0.52
5	Atlantic shelf	Offshore, developing, oil and gas, coals, large CO ₂ point sources	0.35
6	St. Lawrence River	Foredeep, small, temperate, CO ₂ sources, no hydrocarbons and coals	0.31
7	Gulf of St. Lawrence	Off-shore, small, no CO ₂ sources	0.26
8	Arctic islands	On/off shore, arctic, coals, no CO_2 sources and infrastructure	0.24
9	Intramontane	Convergent, small, coals, no CO ₂ sources and infrastructure	0.20
10	Hudson Bay	Mostly offshore, intracratonic, sub-Arctic, no potential, no CO ₂	0.18
11	Eastern Arctic	Offshore, arctic, no potential no CO ₂ sources	0.13
12	Pacific	Convergent trench, off-shore, unexplored, no CO ₂ sources, no infrastructure	0.09

Depleted Oil and Gas Reservoirs

Believing (?!) in sealing capacity of the cap rock (Zhaowen et al., 2006)

- Much lower interfacial tension of the CO₂/water system
- Cap rock sealing pressure must be determined
- Reservoir properties and volumes usually known


In oil reservoirs

- Complex interactions of fluids (phases)
- Usually a large number of old production wells

In gas reservoirs

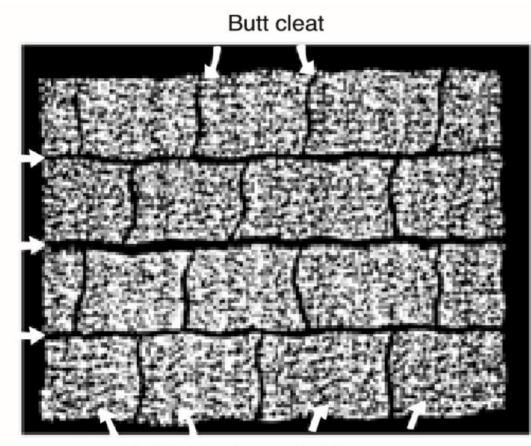
- Large pressure difference
- ✓ Greater depths (usually) larger capacity

Deep Saline Aquifers (Deep Saline Formations)

By far the largest POTENTIAL By far UNDEREXPLORED

... Niemi et al. (2017)

Various trapping mechanisms


- 1. Physical (supercritical phase accumulation)
- 2. Residual (trapped after the plume
- 3. Chemical (reactions with pore water)
- 4. Mineralogical (new carbonates)

Large regional extension

- vicinity of sources
- ✓ avoiding conflicts of interest

Pressure increase/pressure front (?) Definition of a storage complex

Deep Unminable Coal Seams

Matrix blocks containing pores

CO2-ECBM

Three mechanisms (Shi & Durucan, 2005):

physically adsorbed compounds on the internal surfaces of coal

- absorbed within the molecular structure
- within pores and natural fractures

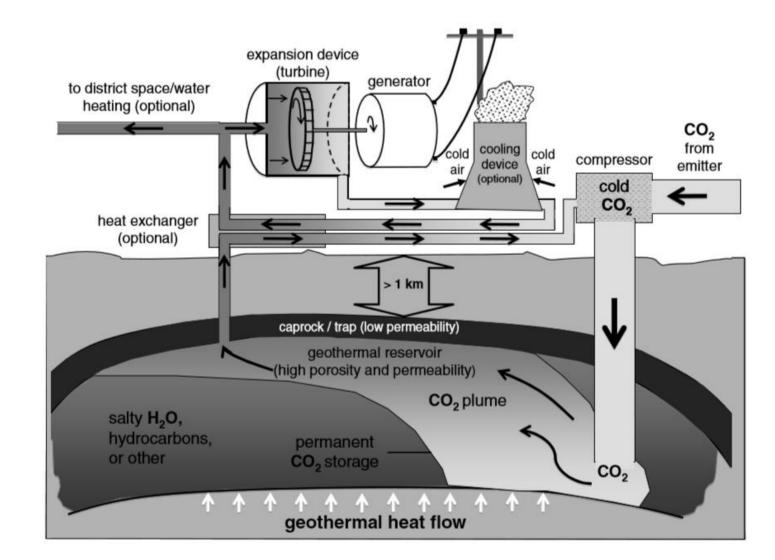
220 Gt of CO_2 (60 GtC) storage capacity worldwide (Stevens, 2002)

CO₂ replaces CH₄ by molecular and transitional diffusion

Enhanced Geothermal Systems

CO2-plume geothermal system (CPG)

- in a deep saline aquifer
- in (EOR) operations


Energy recovered from CPG systems could be used both for electricity generation and for space/water heating

Heat extraction rates up to 3 times greater than those of traditional water-based systems

A model (Randolph & Saar, 2011):

- 1. Initial temperature of 100 °C, pressure of 250 bar
- 2. Permeability 5x10⁻¹⁴m² Porosity 20%
- 3. Rock specific heat 1000 J/kg/ °C
- 4. Thermal conductivity 2.1 W/m/ °C

In average in 25 years with 1 injector ad 4 producers this could give 47 MW of <u>heat</u> energy.

ENOS

New resource – reliable estimates needed

Reservoir type	Lower estimate of storage capacity (GtCO ₂)	Upper estimate of storage capacity (GtCO ₂)
Oil and gas fields	675 ^a	900 ^a
Unminable coal seams (ECBM)	3–15	200
Deep saline formations	1000	Uncertain but possibly 10 ⁴

^aThese numbers would increase by 25 % if 'undiscovered' oil and gas fields were included in this assessment. *Source* IPCC SRCCS (2005)

References

Bachu, S. (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environmental Geology (2003) 44:277–289.

IEAGHG (2011a) Potential for biomass and carbon dioxide capture and storage. 2011/06, July, 2011

Niemi, A., Bear, J. & Bensabat, J. eds. (2017) Geological Storage of CO2 in Deep Saline Formations. Theory and Applications of Transport in Porous Media, Vol. 29, 554 pgs., Springer.

Randolph, J.B. & Saar, M.O. (2011) Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable, porous geologic formations: Implications for CO2 sequestration. Energy Procedia 4 (2011) 2206–2213

Zhaowen, L., Minzhe, D, Shuang, L. & Huang, S. (2006): CO2 sequestration in depleted oil and gas reservoirs – c aprock characterization and storage capacity. Energy Conversion and Management 47, 1372-1382.

Shi, J.Q. & Durucan, S. (2005) CO2 Storage in Deep Unminable Coal Seams. Oil & Gas Science and Technology – Rev. IFP, Vol. 60, No. 3

Stevens, S.H., Spector, D., and Riemer, P.(1998) Enhanced Coalbed Methane Recovery Using CO2 Injection: Worldwide Resource and CO2 Sequestration Potential, SPE 48881, presented at the 1998 SPE International Conference and Exhibition in China held in Beijing, China, 2-6 November 1998.

Stevens, S.H. (2002) CO2-ECBM: Insights from USA and International CBM Pilots, Coal Seq I Forum, Houston, Texas.

www.enos-project.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653718