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Abstract. In this paper, we use evolutionary algorithm to evolve cus-
tomized quantum key distribution (QKD) protocols designed to counter
attacks against the system in order to optimize the speed of the secure
communication. This is in contrast to most work in QKD protocols,
where a fixed protocol is designed and then its security is analyzed to
determine how strong an attack it can withstand. We show that our sys-
tem is able to find protocols that can operate securely against attacks
where ordinary QKD protocols would fail. Our algorithm evolves proto-
cols as quantum circuits, thus making the end result potentially easier
to implement in practice.
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1 Introduction

Quantum cryptography is a fascinating area of study allowing for the achieve-
ment of certain important communication tasks which ordinarily would be im-
possible through classical communication only. One prominent example of this
is quantum key distribution (QKD) which permits the establishment of a secret
key (a classical bit string which may be used for other cryptographic tasks such
as message encryption) between two users A and B, which is secure against
an all-powerful adversary (something impossible to achieve through classical
communication alone). Beyond this theoretical advantage, QKD protocols are
currently a practical technology which has seen several real-world applications.
Indeed, numerous experimental groups have verified the correctness and appli-
cability of QKD. Additionally, there are currently several companies producing
commercial QKD equipment and new QKD networks being established world-
wide. For a general survey of QKD, both the theory and practice, the reader is
referred to [1].

One of the unique properties of quantum communication is that there is (as-
suming the protocol is correct) a direct correlation between the observed noise
in a quantum channel and the maximal amount of information any adversary



could have gained on the information being sent. QKD protocols are able to op-
erate successfully up until a certain noise threshold is reached (called a protocol’s
noise tolerance). Before this threshold is reached, a secure key can be distilled -
however the process grows less efficient as the noise level increases.

Generally, QKD protocols are constructed and then analyzed mathematically
to determine what channels they can operate over (e.g., what are their noise
tolerance), and, furthermore, what their efficiency is for particular channels. As
an example, the BB84 protocol [2] can work over a symmetric channel so long
as the noise is less than 11% [3]. Other protocols exist each with their own noise
tolerances (along with other advantages or disadvantages). However, these noise
tolerance results generally only hold for symmetric channels - over asymmetric
channels, this is not necessarily true! In fact, for certain channels (i.e., attacks
against the protocol), none of the current existing protocols may provide optimal
noise tolerances and communication efficiency. In this paper, we are interested
in the problem of finding QKD protocols optimized to work over given quantum
qubit channels so as to maximize the efficiency of the secret key distribution rate
beyond what current state-of-the-art QKD protocols may be able to do over this
same channel.

In particular, we envision a system whereby users of quantum communica-
tion technology may, after running standard quantum tomographic protocols to
measure the noise in the quantum channel, insert these measurement results
into our algorithm which will then construct a tailor-made QKD protocol specif-
ically designed to counteract the noise in the quantum channel. This quantum
tomographic protocol involves users simply sending and receiving quantum bits
prepared in a variety of manners so as to produce a noise signature of the chan-
nel - i.e., a list of several important channel noise statistics which can be used to
characterize, at least partially, the adversary’s attack. Since adversarial attacks
are, in the worst-case, the cause of the noise in the channel, our system is con-
structing protocols that counteract an all-powerful, quantum capable, adversary.
Other applications of our approach may be to counter changes in operating con-
ditions (e.g., changes in environmental conditions which alter the noise in, say, a
free-space channel). Such a system may be eventually used to create a more effi-
cient quantum secure communication network. Furthermore, our system will, in
fact, give explicit instructions on how to operate quantum devices by providing
to users quantum protocols as basic quantum circuits. Furthermore, the circuits
produced will consist of gates from a user-specified gate set, thus our system can
take into account the capabilities, and limitations, of user hardware.

Our approach will utilize evolutionary algorithms to discover optimized QKD
protocols. Evolutionary algorithms have been used for some time with success
to evolve quantum algorithms [4–6], usually being used to find quantum circuits
that are more efficient than human-constructed versions. Some work using (sim-
ulated) quantum computers to run classical GAs have been also reported [7].
Evolutionary methods have also been used successfully to study classical cryp-
tography [8, 9]. Only recently, they have been applied to the study of quantum
cryptography [10, 11].



In [11], a genetic algorithm (GA) was proposed to optimize QKD protocols
for specific input channels (representing, for example, a particular attack being
launched against a system). However, the approach in [11] required the user to
provide a fixed template specifying an abstract protocol from which the GA
would optimize certain user-specified parameters. Thus, the GA was not free to
explore truly innovative approaches - instead, it was forced to search for protocols
conforming to this predetermined template. Furthermore, this template needed
to be constructed by the user before use.

In this work, we reconsider this problem and use an evolutionary algorithm
(more precisely, evolution strategy) to discover optimized QKD protocols, de-
signed to efficiently operate over a given, observed, quantum channel. Unlike
prior work, our system will not be forced to use a user-defined template. In-
stead, our approach will simply be given a quantum communication channel
(without explicit rules on how to access it) and must evolve a protocol out of
quantum circuits allowing our system, in theory, to produce arbitrarily complex
quantum communication protocols. While authors have considered using evo-
lutionary algorithms to construct quantum circuits for algorithms [12, 13], we
are the first, to our knowledge, to apply these techniques to the construction of
optimized quantum cryptographic protocols using state-of-the-art definitions of
security in that field.

There are several advantages to this approach. First, it allows researchers to
investigate over what channels QKD is even possible. While theoretical upper-
bounds are known, it is not known whether these are tight [14]. Our system may
aid researchers in this investigation. Secondly, and more practically, one may
eventually envision a future quantum communication infrastructure whereby
users have access to adjustable communication equipment. Users A and B may
then, on start-up (or intermittently during operation), run a standard quantum
tomographic protocol to estimate the channel noise (producing the current “noise
signature”), provide these measurement statistics to our algorithm which will
then produce a QKD protocol optimized to counter the observed channel noise
and maximize efficiency. Users may then configure their quantum communication
equipment to run this protocol. This process can be repeated periodically to
account for changes in operating conditions (e.g., changes in attack strategy or
environmental conditions).

Our system, as we will demonstrate, is able to produce QKD protocols with a
higher communication rate than standard state-of-the-art protocols are capable
of producing over certain channels. Indeed, our system can even find protocols
where standard protocols would fail. Our system is also easier to use than prior
work in [11] and, since we are evolving quantum circuits, the protocols output by
our system may be easier to implement in practice than those obtained in [11].
Thus, our approach has the potential to greatly increase the efficiency of a fu-
ture quantum communication network. As quantum communication is a viable
technology now, the methodology we are developing may have the potential to
create a more efficient, and robust, secure communication infrastructure.



2 Quantum Communication and Key Distribution

In this section, we introduce some general quantum communication concepts and
notation. For more information on this subject, the reader is referred to [15].

A classical bit exists in one of two states 0 or 1; the state of a classical bit can
always be determined with certainty and classical bits may be copied arbitrarily.
A quantum bit or qubit, however, can be prepared in infinitely many possible
states. More precisely, a qubit is modeled mathematically as a normalized vector
in C2. Thus, any arbitrary (normalized) vector in this space represents a possible
qubit state. Furthermore, “reading” a qubit (called measuring) is a probabilistic
process which potentially destroys the original state; finally, a qubit cannot be
copied without potentially destroying it.

An arbitrary qubit is denoted by |ψ〉 ∈ C2. Let {|0〉 , |1〉} be an orthonormal
basis in which case we may write |ψ〉 = α |0〉 + β |1〉. Normalization requires
|α|2 + |β|2 = 1. The process of measuring a qubit involves first picking an or-
thonormal basis and then writing |ψ〉 as a linear combination of these basis
vectors (called a superposition). Following this, the actual measurement appara-
tus will take as input the given quantum state, and output one of the two basis
states. The probability of observing a particular basis state is simply the norm
squared of the coefficient in front of the basis vector. For example, measuring
|ψ〉 in the {|0〉 , |1〉} basis produces an output of |0〉 with probability |α|2; oth-
erwise the output is |1〉 with probability |β|2. Note that, once a qubit has been
measured, it collapses to the observed outcome. Thus, not only are measure-
ments probabilistic, but they also disturb the original state, projecting it to the
observed basis vector. These measurement operations are irreversible.

Besides the {|0〉 , |1〉} basis (called the Z basis), two other important bases
are the X = {|+〉 , |−〉} and Y = {|0Y 〉 , |1Y 〉} basis. These states are defined:
|±〉 = 1√

2
(|0〉 ± |1〉) and |jY 〉 = 1√

2
(|0〉+ i(−1)j |1〉).

Qubits are two dimensional systems; more generally, we may model an n-
dimensional quantum state as an element in a Hilbert space of dimension n.
Since such a space is isomorphic to Cn, an n-dimensional state |ψ〉 is simply a
normalized vector in Cn; i.e., |ψ〉 = (α1, · · · , αn)T (transposed as we view these
as column vectors). We denote by 〈ψ| to be the conjugate transpose of |ψ〉. Note
that 〈φ| · |ψ〉 is simply the inner-product of these two vectors. Since this is such
an important operation, the notation is simplified to 〈φ|ψ〉.

Given two quantum states |ψ〉 ∈ Cn and |φ〉 ∈ Cm, we model the joint
state as the tensor product |ψ〉 ⊗ |φ〉 ∈ Cn ⊗ Cm ∼= Cnm. As vectors, if |ψ〉 =
(α1, · · · , αn)T , then |ψ〉 ⊗ |φ〉 = (α1 |φ〉 , · · · , αn |φ〉)T . To simplify notation we
often write |ψ〉 |φ〉 or even |ψ, φ〉.

While measurements irreversibly cause the quantum state to collapse to the
observed basis vector, a second operation allowed by the laws of quantum physics
is state evolution via a unitary operator. U is unitary is UU∗ = U∗U = I (where
we write U∗ to mean the conjugate transpose of U). Since we are in the finite
dimensional setting, one may view U as an n×n matrix satisfying this required
condition. Given an input state |ψ〉 ∈ Cn, the state after evolution via U is
modeled simply as the result of the matrix multiplication U |ψ〉. If U and V are



both unitary, then U ⊗ V is also a unitary operator acting on the tensor space
with its action defined as: (U ⊗ V ) |ψ〉 ⊗ |φ〉 = U |ψ〉 ⊗ V |φ〉.

Given a statistical ensemble of states |ψi〉 prepared with probability pi, we
may model this as a density operator ρ =

∑
i pi |ψi〉 〈ψi|. Such a state may arise

after a measurement is made (since a measurement is a probabilistic process
causing the state to collapse to different vectors |ψi〉 with probabilities pi). More
generally, a density operator is a Hermitian positive semi-definite operator of a
unit trace.

We may perform various important information theoretic computations on
density operators. If ρAE is a density operator acting on Cn ⊗ Cm, then we
write S(AE)ρ to mean the von Neumann entropy of the operator ρAE . For
finite dimensional systems, this is simply: S(AE)ρ = −

∑
i λi log2 λi, where {λi}

are the eigenvalues of ρAE . The conditional von Neumann entropy is denoted
S(A|E)ρ = S(AE)ρ − S(E)ρ, where S(E)ρ is computed using the eigenvalues of
ρE , where ρE = trAρAE i.e., ρE is the result of “tracing out” the A system. If

we write ρAE =
∑
i,j |i〉 〈j| ⊗ ρ

(i,j)
E , then ρE =

∑
i ρ

(i,i)
E .

2.1 Quantum Key Distribution

A QKD protocol’s goal is to establish a shared secret key between two parties
A and B, secure against an all-powerful adversary E. To achieve this, A and
B are allowed to use a quantum communication channel permitting qubits to
be sent between each. Furthermore, a classical authenticated channel is given,
which allows A and B to send messages in an authenticated, but not secret way.
That is, an adversary E may read anything sent on this authenticated channel,
but may not write to it. The adversary is allowed to perform any attack on the
quantum channel (as allowed by quantum physics).

Such protocols consist of two distinct stages: first a quantum communica-
tion stage which consists of numerous iterations, each treated independently
and identically, whereby A sends qubits to B in a variety of ways according
to the rules specified by the protocol; B receives these qubits, performs some
measurement on them, and interprets the measurement result. A single itera-
tion can yield at most one raw key-bit (sometimes an iteration is discarded, for
example, B’s measurement outcome may be “inconclusive” as determined by
the protocol). Ultimately, the goal of this stage is to output a raw key which
is a classical string, N bits long, that is partially correlated, and partially se-
cret. The second stage of a QKD protocol, information reconciliation performs
an error-correcting protocol (done over the authenticated channel thus leaking
more information to E essentially “for free”) followed by a privacy amplification
protocol. The end result is a `(N)-bit secret key which may be used for other
cryptographic purposes.

We consider collective attacks where E treats each iteration of the quantum
communication stage independently and identically. Usually this is sufficient
to prove security against arbitrary general attacks [16]. Such attacks may be
modeled as a unitary operator U acting on the qubit and E’s private quantum
memory (modeled as a vector space Cn). Without loss of generality, we may



assume E’s memory is initially cleared to some “zero” state |0〉E ∈ HE and so
write U ’s action as follows:

U |0, 0〉TE = |0, e0〉+ |1, e1〉 U |1, 0〉TE = |0, e2〉+ |1, e3〉 , (1)

where the states |ei〉 are arbitrary elements in Cn (though unitarity of U imposes
important restrictions on them that we will take advantage of later). Due to
linearity, this above definition is enough to completely define E’s attack on any
arbitrary qubit A may send.

Given a protocol and a description of the attack, one may describe a single
iteration of the protocol as a density operator ρABE . Then, the Devetak-Winter
key-rate equation applies [17, 3]:

r(U) = lim
N→∞

`(N)

N
= S(A|E)ρ −H(A|B), (2)

where S(A|E) is the von Neumann entropy discussed earlier, and H(A|B) is the
conditional Shannon entropy. Of course, we must assume the worst case in that
E chooses an optimal attack U . However, due to the nature of quantum commu-
nication, different types of attacks have, in a way, different “noise signatures”
and, so, A and B can determine a set Γν , where ν is a list of certain important
measurable noise statistics in the channel. Thus, while it is not known for certain
what attack was used, it can be guaranteed that the attack U ∈ Γν . Therefore,
the actual key-rate is: r(ν) = infU∈Γν r(U).

It was shown in [11, 18] how to construct Γν , to arbitrary levels of precision,
in order to compute r. The noise signature ν is constructed from a standard
quantum tomography protocol that users may run before using our algorithm.
In particular, this signature consists of various probabilities pi,j which denotes
the probability that B observes |j〉 if A sends |i〉 (and conditioning on A and B
choosing the correct basis for such an outcome to occur), where i ∈ {0, 1,+, 0Y }
and j ∈ {0, 1,+,−, 0Y , 1Y } (note the asymmetry in the sending set versus the
receiving set is intentional).

From this signature, a straight-forward process exists to construct a set Γ̃ν
consisting of tuples of the form (|e0〉 , · · · , |e3〉) such that the following properties
are satisfied:

1: For every (|e0〉 , · · · , |e3〉) ∈ Γ̃ν , there exists a unitary operator U ∈ Γν
that agrees with Eq. 1. That is, the attack is unitary (so could be implemented
in theory) and it agrees with the observed noise signature ν.

2: For every U ∈ Γν , there exists (|e0〉 , · · · , |e3〉) ∈ Γ̃ν such that the key-rate
if E used attack U is equal to the key-rate produced by the attack described by
vectors (|e0〉 , · · · , |e3〉) up to an arbitrary, user-defined, level of precision. That
is, this construction does not “miss” any important attacks which minimize the
key-rate.

For more information on this process of constructing Γ̃ν , the reader is referred
to [11, 18] (in particular Algorithm 1 from [11]).



2.2 Envisioned System

As stated, all attacks by an adversary induce a particular “noise signature”
and, ordinarily, QKD protocols are constructed and then analyzed to see which
quantum attacks (i.e., what noise signatures) it is secure against. If an attacker
is performing an attack with a noise level outside the known acceptable limits of
the protocol being implemented (or if, even, just natural noise is inducing this
noise), parties must simply abort, or try an alternative protocol and hope it too
can at least operate over the channel. Even if a protocol is secure against this
attack, however, it may be inefficient, requiring the transmission of thousands
of qubits for one single secure key bit.

We are proposing, instead, to produce protocols optimized to counteract a
specific noise signature as observed by the users. We envision users A and B
having access to standard quantum technology, capable of sending and receiving
qubits. Users will begin, after connecting their devices to the quantum chan-
nel, by performing a standard quantum tomography protocol, whereby A sends,
randomly, qubits prepared in the X, Y , or Z bases and with B measuring, in-
dependently of A, in a random basis. Users then use the authenticated classical
channel to disclose all measurement results, thus allowing them to determine the
noise signature ν.

One of the users (either A or B) will then run our algorithm. The algorithm
will take in this noise signature, and, through the use of a genetic algorithm, pro-
duce a QKD protocol as a circuit consisting of rudimentary gates. These gates
may be specified by A and B - that is, they represent basic, low-level quantum
operations which the users’ hardware can actually support. With current tech-
nology, this gate-set would be limited; however, our system is flexible enough
that, should in the future more complicated gates be implemented, the users
may simply insert a description of these gates (as unitary matrices) into our al-
gorithm and it will automatically incorporate them in new protocol generations.

After running our system, users are provided with a complete optimized
protocol. The user running our algorithm (and thus who holds the description of
the protocol) will send the protocol description to the other user, thus allowing
both parties to configure their equipment properly. This transmission is done
over the authenticated channel so that the adversary cannot tamper with the
description to her benefit. The adversary can, however, learn the protocol in its
entirety (thus, the protocol itself is never actually secret).

There are two things that E can do to take advantage of this knowledge of
the evolved protocol. She can change her old attack (used during the quantum
tomography protocol) to a new one such that the noise signature remains the
same. Alternatively, she can change her attack to a new attack with a different
noise signature. Our algorithm’s security analysis will ensure that the protocol
evolved is secure against any attack with the same noise signature (thus, elimi-
nating the first threat). To ensure security against the second threat (E changing
her attack to one with a different noise signature), users must periodically, and
randomly (without warning to E), re-run the quantum tomography protocol to
ensure that the noise signature did not change.



If the noise levels do change, our algorithm may simply be re-run to produce
a new protocol to counter-act this new attack. In practice, one may consider run-
ning this system in large blocks of iterations; each block consisting of “real” iter-
ations (i.e., iterations where the constructed protocol was executed) and “test”
iterations (those used only for verifying the noise signature did not change). If,
after the execution of a large block, the noise signature has changed drastically
(small changes can be handled easily due to the continuity of von Neumann en-
tropy) users must discard this block, re-run the algorithm, and try again. The
reader may be concerned that this allows E to easily create a denial-of-service
attack (where users are constantly discarding and trying again) - however there
are easier ways for E to create such denial of service attacks against any QKD
protocol and so this threat is not unique to our system, but common through-
out any QKD protocol. In this work, we do not consider changes to the noise
signature (and simply assume E keeps her attack - or rather the noise it induces
- constant). There may be very interesting future work directions in discovering
a potentially better method of dealing with them.

3 Our Algorithm

In our work, we will be evolving protocols modeled as quantum circuits. A quan-
tum circuit operates over m wires, each wire “carrying” a qubit. Thus, the joint
state modeling a system running on m wires (i.e., m qubits) is C2m . On each
wire, a gate may be placed, which are simply unitary matrices acting on the
qubit wire. Common gates include:

H =
1√
2

(
1 1
1 −1

)
X =

(
0 1
1 0

)
(3)

R(p, θ, ψ) =

( √
peiθ

√
1− pe−iθ√

1− peiψ −√pe−iψ
)

Gates may also be applied in a “control” mode in which case they act on two
wires: a target wire and a control wire. In this mode, the gate will only act on
the target wire if the control wire is in a |1〉 = (0, 1)T state. This operation may
be done in a unitary manner. Finally, besides unitary gates, a measurement may
be performed on the wire collapsing it, in a probabilistic manner, to a classical
“0” or “1” state.

A protocol is, essentially, a probabilistic computation performed by parties.
Any classical or quantum computation may be performed on a quantum circuit.
Therefore, we will evolve protocols as quantum circuits - one for A and one for
B. Unlike prior work in [11], where protocols are evolved based on solutions to
free parameters within a confined template, this new mechanism will allow the
EA to discover new solutions not restricted to a given template.

Circuits, as mentioned, operate over several wires. By measuring a wire, it
becomes a classical wire (only modeled as a quantum basis state). Of great
importance to any QKD protocol are the following:



1. A single wire to carry a qubit from A to B (passing through the adversary
E).

2. Each party A and B must have, at the end of the protocol, a classical wire
(i.e., a quantum wire that was measured to produce a classical output). This
wire will store their key-bit for the iteration.

3. Each party may have access to additional “optional” wires to be used arbi-
trarily.

A diagram of this scenario is shown in Figure 1. Note that we do not need to
provide additional randomness to our method – indeed, if a protocol requires
randomness, it can first apply an R(p, 0, 0) gate and then a measurement pro-
ducing a classical output of 0 with probability p and 1 with probability 1 − p.
Thus this mechanism is sufficient to model protocols involving quantum and
classical computation, along with random choices.

Fig. 1. A QKD protocol as two circuits GA and GB . Circuit GA is run first after which,
the keyA wire is measured yielding a classical bit. After GA, Eve is allowed to attack
the transit line. Finally, B’s circuit is run, acting on the transit wire, and additional
wires private to B. Then, B’s keyB wire is measured.

3.1 Evolutionary Algorithm Approach and Parameters

A protocol is a specified process for A and B. We restrict ourselves currently
to one-way QKD protocols whereby A sends qubits to B. In general, the qubit
that A sends should depend in some manner (possibly random) on her key-
bit choice for the iteration while B’s measurement result should lead (again
with some potential randomized post-processing) to his key-bit (which should
be correlated to A’s choice of key-bit). This process then repeats in i.i.d. way
over subsequent iterations yielding a raw-key. As discussed earlier, the process
for A and B will be described as a quantum circuit.

In particular, a protocol is a pair Π = (GA,GB) where GA = (gA,1, · · · , gA,nA)
is a list of gates (i.e., a quantum circuit) which A applies in sequence to her
wires (similarly for GB which is B’s half of the protocol). Gates in GA can only
be applied to the transit wire and those wires private to A; similarly, gates in
GB may be applied only to the transit wire and those wires private to B. A
gate, abstractly, simply specifies a type (we support H, X, R(p, θ, ψ), and a
measurement operation, however, other gates or operations may be added or
removed easily) and what wire it is applied to. Any gate may be added in a



“control” mode, thus there is an additional “control” flag which, if true, will
cause the gate to only be applied if a specified target wire is in a |1〉 state; note
this target wire is also part of the gate structure.

Translating the above said into a data structure, we encode a potential solu-
tion (a potential circuit) as a combination of different data types. More specifi-
cally, we use:

1. an integer vector to encode the gate type with values 0 to 3 (see Eq. (3) for
a description of gate types with index 3 meaning a measurement operation),

2. an integer vector to encode the gate target (wire),
3. a bit string vector to denote whether a gate is in control mode (value 1) or

not (value 0),
4. an integer vector to encode the gate control (wire),
5. a vector of floating-point values to encode the parameters of the R gate:
p, θ, ψ. Note, if a different gate type is selected, these values are not used.

The number of elements in each vector is equal to the total number of gates
in a circuit, where the first subset of gates is reserved for the A side and the
remaining ones for the B side. In the evolutionary computation language, the
above data structure represents an individual’s chromosome; an evolutionary
algorithm will keep a set of these individuals, a population, and perform the
search for better individuals using various modification operators and selection
methods.

The fitness of a candidate solution Π = (GA,GB) will be its key-rate (Eq. (2))
against any attack with the given noise signature ν. To compute Eq. (2), we must
not only simulate the quantum system but we must also simulate all possible
U ∈ Γν (or, rather, all U ∈ Γ̃ν which, as discussed, is sufficient to verify security
in the worst-case). To do so, we use a quantum simulator which was specifically
designed to work with the combination of quantum cryptography and evolution-
ary computation, developed originally in [10]. This simulator models arbitrary
multi-user quantum states as density operators stored internally as linked-lists
of so-called KetBra data structures.

A single KetBra encodes a quantity of the form: p |i1, · · · , in〉 〈j1, · · · , jn| ,
with p ∈ C and ik, jk integer indices ranging from 0 to the dimension of the k’th
subspace. In our case, since we are modeling circuits, each subspace is dimension
two (i.e., a quantum wire) and so ik, jk ∈ {0, 1} except for the last subspace which
we assume is held by Eve and so can be higher dimensional. These integer values
may represent basis states or arbitrary vectors to be substituted in later. For all
but E’s wire, these will be basis states (the actual choice of basis is not relevant to
entropy computations). For E’s wire, these integer indices will actually represent
which of the four vectors |ei〉 are to be placed there (see Eq. 1). A linked-
list of these KetBra structures is taken to mean their sum. Since any density
matrix may be written as a sum of terms of the form pi,j |i〉 〈j|, this mechanism
may be used to represent any finite-dimensional quantum system. Given actual
vectors for the |ei〉 it is a simple method to construct an actual density matrix
and then perform the necessary entropy computations to evaluate the key-rate
S(A|E)−H(A|B) (all of which is already supported by the simulator).



Each wire in the protocol is indexed; for our simulation, we order the wires
so that 0 through wA (inclusive, where wA is specified by the user) are private
to A; furthermore, we enforce the condition that 0 always be considered her
key-bit wire (denoted keyA = 0). Wire T = wA + 1 is the “transit” wire which
carries a qubit from A to B. This is simulated simply by allowing A to access
this wire, followed by the adversary, followed, finally by B. Thus all parties can
access wire T , but only in the prescribed order. This ordering is enforced by our
fitness calculation function; indeed, if ever a candidate solution were presented
for fitness evaluation which allowed A access to B’s wires (or B access to A’s
wires), the fitness is defined to be 0 - i.e., “abort.” Wires T + 1 through wB
(inclusive) are private to B with wire keyB = T + 1 being his key-bit wire.
Finally, subspace wB + 1 is Eve’s private quantum memory used during her
attack. We do not assume this is a wire, but a higher dimensional subspace.

Our fitness computation for Π begins by resetting the simulator to the “zero”
state 1 · |0, · · · , 0〉 〈0, · · · , 0| (i.e., all wires and E’s ancilla begin in a |0〉 state).
Next, all gates in GA are applied in sequence (simulating A’s protocol). E then
attacks (which is abstractly simulated using notation from Eq. (1). Then, the
gates in GB are applied in order. Finally, we force a measurement of the keyA and
keyB wires so that they yield classical outcomes 0 or 1 (with various probabili-
ties). At the conclusion, we have in our simulator a density operator description
of our protocol stored as a linked-list of KetBra structures.

At this point, we have a linked-list of KetBra structures representing the
density operator of the protocol. Using an algorithm developed in [11], we may
enumerate through all potential attack vectors |ei〉, substituting them into the
density operator, and thus computing its entropy S(A|E) (a simple function of
the eigenvalues of the resulting matrix). We take the minimum over all possible
|ei〉 produced by the algorithm as we must assume the worst case that E chooses
an optimal attack. Of course, the goal of our EA is to maximize this value over
all circuits (protocols).

Evolutionary Algorithm: In our experiments, we use evolution strategy
(ES) of the type (µ+λ)-ES. In this algorithm, in each generation, parents com-
pete with offspring and from their joint set, µ fittest individuals are kept. In our
experiments, offspring population size λ has a value equal to 4, while the parent
population size µ equals 1. For further information on ES, we refer interested
readers to [19].

In the ES, the offspring may be generated using either a single parent with
the mutation operator, which is the most widely used variant. Additionally, the
offspring may be created by using two or more parents, which corresponds to the
crossover operator. In our experiments with ES we use the mutation operator
only, which takes a parent and randomly modifies a part of its genotype. In each
mutation operation, first a part of the individual’s data structure is selected
at random; then, depending on the type of the selected part, the mutation is
performed in the following manner:



1. for an integer vector, a single random element in the vector is changed to
a new random value (corresponding to either another wire or another gate
type being selected);

2. for a bit string vector, a single element is inverted (changing the control
nature of the gate);

3. for a vector of floating-point values, a single random element is changed
according to the Gaussian distribution with mean 0 and standard deviation
of 1 (thus modifying the parameters of the R gate).
Consequently, for each parent individual, four new individuals are created

in this way; the best of the five individuals is then selected as the new parent
and the process is repeated. In all the experiments, the number of runs for each
configuration is 30 and the stopping criterion is either 100 000 evaluations or
maximum running time of 10 hours per run.

Apart from ES, we also experimented with a genetic algorithm, but we found
ES to converge much faster. This is in part due to the simulator: the duration of
a single evaluation is not constant and varies greatly depending on the solution
quality. The GA tended to generate solutions which take much more time to
evaluate, and this would in turn drastically slow down the convergence. The
ES, on the other hand, managed to perform many more evaluations in the same
amount of time, and consequently reach much better solutions on average.

Summary To summarize our approach, users begin by using their quantum
equipment to run a standard quantum tomographic protocol, resulting in a noise
signature ν (in our evaluations this is simulated). From this, one of the parties,
either A or B, will run the algorithm, providing as input ν. Our algorithm
will produce an optimized protocol, in the form of a quantum circuit consisting
of gates which may be user specified based on the capabilities of their devices.
Whichever party runs the EA will broadcast, through the authenticated public
channel, the gate description so that both parties are able to configure their
equipment appropriately. Note that this also gives E information on the protocol
(i.e., the protocol description is not secret information once it is in operation).
This is not an issue for security, so long as the noise in the channel does not alter
(as our algorithm builds a protocol based on the optimal attack within Γν). To
enforce that E does not change the attack to one outside of Γν , A and B must
periodically, and randomly, re-run the tomographic protocol; should the noise
signature change, they must simply re-run our EA to produce a new protocol
for the new noise signature. Note that we did not consider imperfect parameter
estimation, that addition would not be difficult to introduce by increasing the
size of Γν based on imperfect ν; we leave this as future work. A schematic diagram
of our algorithm and this process is shown in Figure 2.

4 Experimental Results

We evaluate our algorithm over symmetric channels and arbitrary, asymmetric
ones. A symmetric channel is parameterized by a single noise value Q (with



Fig. 2. A diagram of our algorithm and approach. Users begin by providing our system
with the channel noise signature ν (1). The EA will evolve candidate solutions, which
are pairs of circuits (GA,GB) (2). Each candidate solution is sent to the simulator (3) for
fitness evaluation which requires the noise signature to compute. Finally, an optimized
protocol is output (4) from which the users may configure their devices to optimize the
secure key distribution rate.

Q = 0 meaning there is no noise in the channel). In [14], it was shown that
the BB84 protocol [2] (which is also generally the protocol used in practice in
current-day QKD implementations) cannot be surpassed over such symmetric
channels. Thus, this case serves as a useful test to verify the correctness of our
algorithm (our system should be able to find a protocol with a key-rate equal
to that of BB84). Table 1 shows that our approach does, indeed, find protocols
that achieve the optimal BB84 rate.

In the experiments presented here, we consider scenarios where there are 5
gates and 5 wires. Two of the wires belong to the A side, two belong to the B side,
and 1 wire is a joint one. Finally, out of the 5 gates, we consider a scenario where
three gates belong to the A side and two gates belong to the B side. This number
of gates is sufficient to construct most standard, state-of-the-art QKD protocols
known today (including BB84). One could think that such a limited setting
actually gives a small search space size and there is no need for evolutionary
algorithms approach. However, even if we do not consider the floating-point
encoding in our chromosome, we are still left with a search space size of 45 ×
55 × 25 × 35 solutions, which equals to 24 883 200 000 possible configurations.
Additionally, the computational bottleneck is not on the evolutionary side but
on the evaluation side due to the quantum simulator complexity, which prohibits
any possibility of running an exhaustive search.

All the experiments suggest that the number of 100 000 evaluations is suf-
ficient for the algorithm convergence, after which it is more efficient to restart
the run. Convergence for a typical experiment conducted in 30 runs is shown
in Figure 3; at each point up to the maximum number of evaluations, current
best fitness values across all the runs in the form of their minimum, maximum,
median and mean value are shown.



Fig. 3. Convergence rate showing best fitness value over multiple runs.

Table 1. Symmetric channel results for various levels of noise, also comparing with the
BB84 protocol (the six-state version) which is known to be optimal on these channels.
Our algorithm was able to evolve a protocol matching the optimal BB84 rate.

Noise Max Min Avg Std dev BB84 (Opt.)

0.01 0.864 0.864 0.864 0 0.864
0.05 0.497 1.45 · 10−15 0.263 0.2556 0.497
0.1 0.152 1.22 · 10−15 0.061 0.0766 0.152
0.12 0.035 3.22 · 10−15 0.007 0.0152 0.035

We also test over arbitrary, asymmetric channels. For such channels, BB84
is not necessarily optimal, but no known theoretical result exists claiming how
an optimal protocol should be constructed. Thus, evaluating over asymmetric
channels serves as an interesting evaluation test for our system. In particular,
we evaluate over the two asymmetric channels that were considered in [11] for
comparison purposes. These channels are the result of an attack which could
be launched against an actual QKD system; they also cause BB84 to fail (i.e.,
abort). Since these channels were also the ones considered in [11], we can also
compare how our gate-based approach compares with the template-based ver-
sion. The results of this test are summarized in Table 2. Figure 4 shows a sample
protocol output by our algorithm.

5 Closing Remarks

In this paper, we showed how evolution strategy can be used to evolve quantum
cryptographic protocols modeled as quantum circuits. Our approach was able
to find a protocol matching the optimal BB84 key-rate for symmetric channels.
We were also able to find new QKD protocols which can operate over quantum
channels (i.e., against attacks) where ordinary, state-of-the-art QKD protocols
would fail. In a future quantum network infrastructure, our approach would



Table 2. Asymmetric channel results. Here we test on the two randomly generated
channels (i.e., attacks) considered in [11]. Note that for both of these channels, BB84
would fail to establish a key; however, our approach can find protocols with a positive
key-rate. While the key-rate is not as high as the template-based approach from [11]
for these two channels, this is to be expected as we are optimizing protocols built of
a limited set of quantum gates. While our new system proposed here may not achieve
as high a key-rate as the template-based approach, the protocols evolved here are
potentially easier to implement in practice as they are based on simple gates.

Description Max Min Avg Std dev BB84/Ref. [11]

Channel 1 0.066 2.22 · 10−16 5.73 · 10−4 0.00603 0(abort)/.094
Channel 2 0.018 3.33 · 10−16 2.58 · 10−4 0.00197 0(abort)/.042

Fig. 4. A protocol output by our algorithm optimized to run on Channel 1.

allow users to easily adapt their communication protocols to counter quantum
adversaries, thereby improving the efficiency of the secret communication.

Many very interesting open problems remain. It would be very interesting to
provide our system with increased quantum communication resources (such as
two-way channels for example) in order to improve the key-rate. Also providing
our system with classical communication resources allowing for the evolution of
more complex post-processing strategies, known to be important for improving
the key-rate of protocols over noisy channels [3]. We suspect this is one area
where our new approach of evolving quantum circuits for QKD protocols would
be greatly beneficial (prior work in this area would require users to write out in
detail an abstract template which would be challenging for these more powerful
quantum and classical resources). It would also be very interesting to take into
account practical imperfections in the optical devices used. Other areas of future
work could include having the number of gates and wires as part of the solution,
however, this would require improvements in the computational speed of the
simulator used.
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19. T Bäck, D.B Fogel, and Z Michalewicz, editors. Evolutionary Computation 1: Basic
Algorithms and Operators. Institute of Physics Publishing, Bristol, 2000.


