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Abstract—In this paper a level-set approach to topology opti-
mization is presented where level set function is parameterized
using non-uniform rational basis splines (NURBS). Isogeometri-
cal numerical method is used for calculating objective function,
i.e. for performing structural analysis. Objective function is
based on minimizing compliance to find the optimal distribution
of material in the design domain under a specified volume
constraint. Two benchmark examples are presented to illustrate
the method.
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I. INTRODUCTION

Optimal design of structures is desirable in all fields of
engineering. When comes to structural optimization, it is nec-
essary to distinguish three categories of design optimization:
sizing optimization, shape optimization and the most abstract,
topology optimization. Topology optimization implies finding
optimal distribution of material in a design domain, for a
desired objective under specified constraints. Topology opti-
mization has been most widely used in classical mechanics,
however, not limited to [1], [2], [3]. Among various methods
applied for topology optimization, most commonly used are
SIMP (Solid Isotropic Material with Penalization) methods,
ESO (Evolutionary Structural Optimization) methods and var-
ious implementations of density-based method. The level set
method, initially proposed by Sethian and Osher [4] is used for
the first time in structural optimization in work by Sethian and
Wiegmann [5], and afterwards topology optimization using
level set method has attracted many researchers and by now,
many different formulations and implementations of level set
method have been proposed [6], [7], [8]. Main differences
and similarities of these methods, up to 2013, are greatly
summarized in a review paper by van Dijk and co-workers
[9].

The level set method describes the geometry of a structure
via iso-contours of a level set function. In this paper implicit
level set function is parameterized with NURBS surface.
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Sensitivity analysis is calculated based on the direct method
and the level set function is updated in pseudo-time by solv-
ing Hamilton-Jacobi equation numerically, here in by using
explicit forward Euler finite difference method. Method used
for numerical analysis of structures is isogeometric analysis
(IGA) [10], [11], developed in order to bridge the gap between
the design and analysis tools. This means that the same
mathematical description is used for describing geometry and
approximating fields of interest in analysis.

The structure of the paper is as follows: first, brief intro-
duction to isogeometric analysis is given. In the following text
the basis of level set method are presented. Later, sensitivity
analysis for minimum compliance under volume constraint
is given, and all of procedure is summarized in simplified
flowchart. Finally, benchmark examples are presented to test
the developed MATLAB software for topology optimization
using level set method and isogeometric analysis.

II. ISOGEOMETRIC FORMULATION OF PLANE ELASTICITY
STRUCTURAL PROBLEMS

The aim of isogeometric analysis is to unite Computer-
Aided Design (CAD) representation and numerical analysis.
As the CAD description is mostly obtained using spline
geometry (B-Spline, NURBS, T-Spline etc.), the idea behind
isogeometric analysis was to implement basis functions used
to construct geometry as a basis functions to construct approxi-
mated fields of interests, e.g. displacement, as well. Apart from
the good mathematical properties of these basis functions (in
terms of analysis) [11], there is no geometry approximation
since numerical mesh is directly embedded in the geometry via
the knot vectors. Also, refinement procedures keep geometry
intact.

By using NURBS basis functions, displacement field is
defined as follows:

u(ξ, η) =
n−1∑
i=0

m−1∑
j=0

Ri,j(ξ, η)ucpi,j (1)
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Geometry is also defined using the same basis functions:

x(ξ, η) =
n−1∑
i=0

m−1∑
j=0

Ri,j(ξ, η)xcpi,j (2)

where ξ and η are parametric coordinates, Ri,j(ξ, η) NURBS
basis functions, ucpi,jand xcpi,j control points defining displace-
ment and geometry spline, respectively. Recursive definition
of spline basis functions can be found in e.g. [11]

Following the standard procedure for deriving FEM stiffness
matrix, the IGA global coefficient matrix is defined as follows:

K =

∫
V

BTCBdV (3)

where B is the strain-displacement matrix. In this paper
numerical integration is carried out by using standard Gauss
quadrature rule, using two Gauss quadrature points per each
parametric direction. For the sake of brevity, full procedure
is omitted, however, interested reader could refer to plentiful
literature, e.g. [10], [11], [12].

III. LEVEL SET METHOD

In the level set approach, zero contours of a level set
function Φ(x) define boundaries of a structure in a fixed
domain. The level set function is defined over the whole
domain D , and depending on the level set value, the topology
of a structure is defined as follows:

Φ(x) > 0,x ∈ Ω

Φ(x) = 0,x ∈ δΩ
Φ(x) < 0,x ∈ D\Ω

(4)

where Ω is a part of the fixed domain D where material exists.
By letting zero-level of a level set function change in pseudo-
time t , boundary of a structure can be defined as:

S(t) = x(t) : Φ(x, t) = 0 (5)

The equation that describes evolution of a structure boundaries
is Hamilton-Jacobi partial differential equation, and is derived
by total differentiation of the previous equation (5):

∂Φ

∂t
+∇Φ(x, t)

dx

dt
= 0 (6)

where dx
dt is the velocity of the boundary.

IV. ISOGEOMETRICAL APPROACH TO STRUCTURAL LEVEL
SET METHOD

Typically, level set method is based on finite element
method, and the level set function is either implicitly defined or
approximated over finite elements using their shape functions.
Herein, level set function is approximated by using the same
basis functions used for geometry and displacement field, i.e.
NURBS,

Φ(ξ, η) =
n−1∑
i=0

m−1∑
j=0

Ri,j(ξ, η)ϕi,j (7)

where ϕi,j are level set function control point coordinates.
The control points of level set function are also used as

optimization variables. Since the control points of a level
set function mostly do not interpolate the function itself,
enough number of control points is required for discretization.
However, this approach requires less computational time since
no additional determination of level set function values and
control points after updating the function has to be performed.

V. FORMULATION OF OPTIMIZATION PROBLEM

A. Sensitivity analysis

To update the level set function towards optimal topology,
i.e. solve Hamilton-Jacobi equation, it is necessary to properly
define velocity. To minimize the Lagrangian function of the
optimization problem, changes in Lagrangian with respect to
time have to be negative:

∂L(Φ, t)

∂t
=
∂L(Φ, t)

∂Φ
∇Φ(x, t)

dx

dt
< 0 (8)

Based on the steepest descent optimization algorithm, the
velocity is chosen as [7], [13]:

∇Φ(x, t)
dx

dt
= −∂L(Φ, t)

∂Φ
(9)

The derivation of Lagrangian with respect to the level set
function is obtained by sensitivity analysis based on the
formulation of the optimization problem: in this paper, the
objective of the optimization problem is to minimize the
compliance of the structure, for a certain volume constraint,
while satisfying equilibrium in each iteration:

Minimize : J(u,Φ(x)) =

∫
Ω

F (u,Φ(x))H(Φ(x)dΩ

Subject to : keu = f

V ≤ Vmax

(10)

where F (u,Φ(x)) is the strain energy of an element, as
follows:

F (u,Φ(x)) =
1

2
uTkeu (11)

This formulation is converted to the nested formulation of
optimization problem by introducing equilibrium constraint
implicitly into formulation [14]. After conducting sensitivity
analysis the final expression for velocity of the boundary is
[13]:

vn = −1

2

∫
Ω

uTkeuH(Φ(x))dΩ + λ (12)

where λ is Lagrange multiplier for volume constraint that is
updated in each iteration based on KKT conditions, using the
following expression:

λ =

∫
Ω

( 1
2u

Tkeuδ(Φ)|∇Φ|dΩ)∫
Ω

δ(Φ)|∇Φ|dΩ
(13)

If emerges negative from the equation above, λ is set to zero.
It should be emphasized that, in order to avoid numerical
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burden in the form of remeshing in each iteration, smeared
Heaviside function is introduced:

H(Φ) =


α, Φ ≤ ∆
1
2 (1 + sin πΦ

2∆ ), δ < Φ < ∆

1, Φ ≥ ∆

(14)

and its derivative, the smeared Dirac delta function is ex-
pressed as:

δ(Φ) =

{
π

4∆ cos πΦ
2∆ , |Φ| ≤ ∆

0, |Φ| > ∆
(15)

where ∆ is the approximation width of the smeared Heaviside
function. In this paper, approximation width is calculated from
the following relation:

∆ =
√

∆x2 + ∆y2 (16)

where ∆x and ∆y are control points distances in x and y
directions respectively.

B. Hamilton Jacobi equation updating scheme

After appropriately finding the velocity, level set function
can be modified in pseudo time by numerically solving
discretized Hamilton Jacobi equation (using explicit forward
Euler finite difference method):

Φk+1
i,j = Φki,j −∆tvki,j |∇Φ|ki,j (17)

where Φki,j is the value of control point in i-th row and j-th
column of the control mesh, vki,j is the velocity value at the
respective point, calculated from equation (12), corresponding
to the iteration k . Time step is calculated with respect to CFL
condition in order to maintain stability:

∆t =
βmax(∆x,∆y)

|vmax|
(18)

where ∆x and ∆y are control points distances in x and y
directions respectively. β is the move limit factor, which addi-
tionally controls the time step size i.e. the rate of convergence.

C. Flowchart of isogeometrical approach to level set topology
optimization

To summarize the above stated and to complete the full
image of the overall process, the simplified flowchart is given,
Fig.1.
One segment of the full procedure has not been mentioned
yet, however plays important role in the overall convergence:
regularization of the level set function to the signed distance
function, to avoid level set function becoming too steep or
too flat [7], [9], [15]. The regularization is performed after the
initialization of the level set function, and after each update
of the level set function, as can be seen from the flowchart,
Fig.1.

Fig. 1. Flowchart of topology optimization based on level set method and
isogeometric analysis

VI. NUMERICAL EXAMPLES

In the following text, two benchmark examples ( [13], [8],
[16], [17]) will be presented, with focus on implementation
details and their effect on the overall convergence of the
process. It should be noted that all units are consistent, hence
unit symbols are omitted. In both examples the Poissons ratio
is set to ν = 0.3 , and Youngs modulus of elasticity is set to
E = 1 . Heaviside function is approximated with α = 10−4

and ∆ = 0.2
√

∆x2 + ∆y2 where ∆x and ∆y are control
point distances in x and y direction respectively. Move limit
factor is set to β = 0.3.

A. Example 1

Problem setup is shown on Fig. 2: Cantilever beam with
dimension of L = 5 and H = 2.5 is loaded with point load
P = 1 at the end (right edge, lower corner). Left edge is fixed
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Fig. 2. Example 1: Problem setup

Fig. 3. Initial level set function

to support structure. The volume constraint is set to 40% of
the maximum design domain volume.

Fig. 3 shows the initial level set function and xy plane
whose intersection defines initial topology, Fig. 4. Initial level
set function is of degree 3 and defined with 51 × 26 control
points (as in [13]), meaning that the optimization problem
is defined with 1326 optimization variables. The resulted
topology and convergence of the process are presented on
Fig. 5 and Fig. 6, respectively. It can be seen from Fig. 6
that a high amount of noise is introduced, however topology
converges to what is expected ( Fig. 5), with significant re-

Fig. 4. Initial topology

duction in the objective function, i.e. compliance. The process
is terminated at iteration 250 since the termination criterion
threshold (stationarity of Lagrange function) is not reached
due to high amount of noise which is consequence of constant
,,skipping” from feasible space to unfeasible and vice versa,
i.e. the process is too sensitive to Lagrange multiplier.

Fig. 5. Example 1: Resulted topology, after 250 iterations

Fig. 6. Example 1: Convergence graph

B. Example 2

Problem setup is shown on Fig. 7: Cantilever of the same
properties as in previous example is loaded with point load
of amplitude P = 1 at the end center point. The same initial
level set function (Fig. 3) is used for initial solution as in
previous example, Fig. 4. Maximum volume fraction is set
to 40% of the design domain. The topology of the structure
after 250 iterations is presented in Fig. 8. It can be seen from
Fig. 9 that this example is even more prone to convergence
oscillations, and the stationarity of the Lagrange function is not
reached as well. However, as in previous example, topology
of the structure visually converges to what is expected.

VII. CONCLUSION

In this paper, topology optimization is performed using
NURBS for geometry description, level set function approxi-
mation and structural analysis (in the isogeometrical analysis
form). The nested formulation of minimum compliance that
satisfies static equilibrium in each iteration subjected to speci-
fied volume constraint is presented. Based on that formulation,
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Fig. 7. Example 2: Problem setup

Fig. 8. Example 2: Resulted topology after 250 iterations.

sensitivity analysis based on direct method is presented and ve-
locity field that updates Hamilton-Jacobi equation is obtained.
Hamilton-Jacobi equation is updated based on explicit upwind
procedure. The optimization variables are control points of the
level set function.
Two benchmark examples are presented, and although topol-
ogy converges to expected, high amount of noise can be
observed from the convergence graphs of the procedure, due to
high sensitivity to Lagrange volume multiplier. This numerical
difficulty could be avoided by extending the Lagrange func-
tion with penalty term, i.e. by using augmented Lagrangian
formulation.

Fig. 9. Example 2: Convergence graph
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