EXERGY ANALYSIS OF HIGH-PRESSURE FEED WATER HEATING SYSTEM AT THREE POWER PLANT LOADS

V. Mrzljak 1, J. Orović 2, I. Poljak 2 and N. Andelić 1

1 Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia
2 Department of maritime sciences, University of Zadar, Mihovila Pavlinovića 1, 23000 Zadar, Croatia

Email: vedran.mrzljak@riteh.hr, jorovic@unizd.hr, ipoljak1@unizd.hr, nandelic@riteh.hr

Keywords: Feed Water Heating, Exergy Analysis, Exergy Destruction, Exergy Efficiency, Various Plant Loads.

Abstract: The paper presents an exergy analysis of high-pressure feed water heating system from cogeneration power plant at three different loads. Analyzed system consists of feed water pump, feed water heater and pressure reduction valve. Each feed water high-pressure heating system component has the highest exergy destruction at low plant load-188.96 kW for feed water pump, 1064.73 kW for feed water heater and 93.57 kW for pressure reduction valve. Feed water pump has the lowest exergy efficiencies which range is between 77.11 % and 81.35 %, feed water heater has exergy efficiencies between 86.07 % and 89.82 %, while pressure reduction valve has the highest exergy efficiencies (between 93.78 % and 95.67 %).

Introduction
In order to improve steam power plant operation and increase its efficiency, each steam power plant today, regardless of type or developed power, has complex condensate/feed water heating system [1]. Such system is mounted on water returning line to the steam generator, between steam condenser [2] and steam generator [3]. The main purpose of condensate/feed water heating system is increasing water temperature (by water heating with steam extracted from the main turbine). Water heating resulted with fuel savings in the steam generator and simultaneously with increasing the steam power plant efficiency.

Description of the analyzed high-pressure feed water heating system
High-pressure feed water heating system analyzed in this paper operates in low-power cogeneration power plant [4]. Analyzed system consists of three components: feed water pump, feed water heater and pressure reduction valve, as presented in Fig. 1. Feed water pump increases water pressure and delivers it (through the feed water heater) to steam generator. After the pump, feed water passes through heater, which uses steam extracted from the main turbine for feed water heating. Steam extracted from the main turbine, after heat transfer to feed water in the heater, condenses and that condensate was lead back to the deaerator through the pressure reduction valve. Pressure reduction valve decreases condensate pressure, while condensate specific enthalpy remains constant.

Equations for high-pressure feed water heating system exergy analysis

Overall exergy analysis equations
For a volume in steady state, mass balance equation can be defined as [5]:

\[\sum m_{IN} = \sum m_{OUT}.\] (1)

The main exergy balance equation for a volume in steady state can be defined according to [6] and [7] as:

\[\dot{X}_{\text{heat}} - \dot{P} = \sum m_{OUT} \cdot c_{\text{OUT}} - \sum m_{IN} \cdot c_{\text{IN}} + \dot{E}_{\text{ex,D}}.\] (2)

The exergy transfer by heat (\(\dot{X}_{\text{heat}}\)) at temperature \(T\), according to [8] is defined by an equation:

\[\dot{X}_{\text{heat}} = \sum (1 - \frac{T_0}{T} \cdot \dot{Q}).\] (3)

Specific exergy, according to [9] and [10], can be defined by an equation:

\[c = (h - h_b) - T_0 \cdot (s - s_b).\] (4)

The exergy power of any fluid flow (for each observed fluid stream) is defined, according to [11], as:

\[E_{\text{ex}} = \dot{m} \cdot c = \dot{m} \cdot [(h - h_b) - T_0 \cdot (s - s_b)].\] (5)

Exergy efficiency can be defined, according to [12] by an equation:
Exergy analysis equations of each high-pressure feed water heating system component

Exergy analysis equations for each component of high-pressure feed water heating system are presented in this section. Exergy analysis equations for each component are defined by using heating system operating points from Fig. 1. The ambient conditions (dead state) for the exergy analysis are taken as proposed in [13]: pressure of 1 bar and temperature of 25 °C.

The feed water pump (according to [14]):

→ Mass balance:

\[\dot{m}_A = \dot{m}_B, \]

(7)

→ Exergy power input (only water flow):

\[\dot{E}_{ex,p,IN,w} = \dot{m}_A \cdot \epsilon_A, \]

(8)

→ Exergy power input (cumulative):

\[\dot{E}_{ex,p,IN,DU} = \dot{m}_A \cdot \epsilon_A + \dot{P}_p, \]

(9)

→ Exergy power output:

\[\dot{E}_{ex,p,OUT} = \dot{m}_B \cdot \epsilon_B, \]

(10)

→ Exergy destruction:

\[\dot{E}_{ex,p,D} = \dot{E}_{ex,p,IN,DU} - \dot{E}_{ex,p,OUT}, \]

(11)

→ Exergy efficiency:

\[\eta_{ex,p} = \frac{\dot{E}_{ex,p,OUT} - \dot{E}_{ex,p,IN,w}}{\dot{P}_p}. \]

(12)

The high-pressure feed water heater (according to [15]):

→ Mass balance:

\[\dot{m}_B = \dot{m}_E, \]

(13)

→ Mass balance-feed water:

\[\dot{m}_B = \dot{m}_C, \]

(14)

→ Exergy power input:

\[\dot{E}_{ex,h,IN} = \dot{m}_B \cdot \epsilon_D - \dot{m}_B \cdot \epsilon_E, \]

(15)

→ Exergy power output:

\[\dot{E}_{ex,h,OUT} = \dot{m}_C \cdot \epsilon_C - \dot{m}_B \cdot \epsilon_B, \]

(16)

→ Exergy destruction:

\[\dot{E}_{ex,h,D} = \dot{E}_{ex,h,IN} - \dot{E}_{ex,h,OUT}, \]

(17)

→ Exergy efficiency:

\[\eta_{ex,h} = \frac{\dot{E}_{ex,h,OUT}}{\dot{E}_{ex,h,IN}}. \]

(18)

The pressure reduction valve (according to [16]):

→ Mass balance:

\[\dot{m}_B = \dot{m}_F, \]

(19)

→ Exergy power input:

\[\dot{E}_{ex,v,IN} = \dot{m}_E \cdot \epsilon_E, \]

(20)

→ Exergy power output:

\[\dot{E}_{ex,v,OUT} = \dot{m}_F \cdot \epsilon_F, \]

(21)

→ Exergy destruction:

\[\dot{E}_{ex,v,D} = \dot{E}_{ex,v,IN} - \dot{E}_{ex,v,OUT}, \]

(22)

→ Exergy efficiency:

\[\eta_{ex,v} = \frac{\dot{E}_{ex,v,OUT}}{\dot{E}_{ex,v,IN}}. \]

(23)

Operating parameters of the feed water high-pressure heating system at three loads

At each observed cogeneration power plant load (according to the main steam turbine developed power), data for each operating point from Fig. 1 (temperatures, pressures and mass flows) were found in [4] and presented in Table 1 for low plant load, in Table 2 for middle plant load and in Table 3 for high plant load. For each power plant load, specific enthalpies and specific exergies of each fluid stream (in each operating point from Fig. 1) were calculated with NIST REFPROP 9.0 software [17].

Table 1. Operating parameters of the feed water high-pressure heating system-low plant load

<table>
<thead>
<tr>
<th>O.P.</th>
<th>Temperature (°C)</th>
<th>Pressure (bar)</th>
<th>Mass flow rate (kg/s)</th>
<th>Specific enthalpy (kJ/kg)</th>
<th>Specific exergy (kJ/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>151.83</td>
<td>5.0</td>
<td>96.639</td>
<td>640.4</td>
<td>90.07</td>
</tr>
<tr>
<td>B</td>
<td>153.23</td>
<td>7.7</td>
<td>96.639</td>
<td>650.5</td>
<td>98.60</td>
</tr>
<tr>
<td>C</td>
<td>199.55</td>
<td>17.5</td>
<td>8.778</td>
<td>3122.0</td>
<td>1041.80</td>
</tr>
<tr>
<td>D</td>
<td>205.40</td>
<td>17.5</td>
<td>8.778</td>
<td>876.7</td>
<td>171.25</td>
</tr>
<tr>
<td>E</td>
<td>151.83</td>
<td>5.0</td>
<td>8.778</td>
<td>876.7</td>
<td>160.59</td>
</tr>
</tbody>
</table>

Table 2. Operating parameters of the feed water high-pressure heating system-middle plant load

<table>
<thead>
<tr>
<th>O.P.</th>
<th>Temperature (°C)</th>
<th>Pressure (bar)</th>
<th>Mass flow rate (kg/s)</th>
<th>Specific enthalpy (kJ/kg)</th>
<th>Specific exergy (kJ/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>173.27</td>
<td>8.6</td>
<td>32.194</td>
<td>733.4</td>
<td>119.70</td>
</tr>
<tr>
<td>B</td>
<td>174.56</td>
<td>71.0</td>
<td>32.194</td>
<td>742.4</td>
<td>127.34</td>
</tr>
<tr>
<td>C</td>
<td>217.21</td>
<td>71.0</td>
<td>32.194</td>
<td>932.2</td>
<td>196.45</td>
</tr>
<tr>
<td>D</td>
<td>366.08</td>
<td>23.3</td>
<td>2.750</td>
<td>3167.0</td>
<td>1103.30</td>
</tr>
<tr>
<td>E</td>
<td>217.69</td>
<td>22.2</td>
<td>2.750</td>
<td>932.9</td>
<td>193.22</td>
</tr>
<tr>
<td>F</td>
<td>169.89</td>
<td>7.9</td>
<td>2.750</td>
<td>932.9</td>
<td>184.85</td>
</tr>
</tbody>
</table>
Table 3. Operating parameters of the feed water high-pressure heating system-high plant load

<table>
<thead>
<tr>
<th>O.P.*</th>
<th>Temperature (°C)</th>
<th>Pressure (bar)</th>
<th>Mass flow rate (kg/s)</th>
<th>Specific enthalpy (kJ/kg)</th>
<th>Specific exergy (kJ/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>169.89</td>
<td>7.9</td>
<td>33.611</td>
<td>719.8</td>
<td>115.16</td>
</tr>
<tr>
<td>B</td>
<td>171.38</td>
<td>72.0</td>
<td>33.611</td>
<td>728.6</td>
<td>122.84</td>
</tr>
<tr>
<td>C</td>
<td>214.46</td>
<td>72.0</td>
<td>33.611</td>
<td>919.8</td>
<td>191.68</td>
</tr>
<tr>
<td>D</td>
<td>340.73</td>
<td>22.2</td>
<td>2.944</td>
<td>312.0</td>
<td>1068.10</td>
</tr>
<tr>
<td>E</td>
<td>217.69</td>
<td>22.2</td>
<td>2.944</td>
<td>932.9</td>
<td>193.22</td>
</tr>
<tr>
<td>F</td>
<td>169.89</td>
<td>7.9</td>
<td>2.944</td>
<td>932.9</td>
<td>184.85</td>
</tr>
</tbody>
</table>

* Operating points are presented according to Fig. 1.

The results of high-pressure feed water heating system exergy analysis with discussion

Cumulative exergy power input, which enters into the feed water pump, must be divided in two parts-feed water flow and delivered power for pump operation, Fig. 2 and Eq. 9. For all observed power plant loads is valid conclusions that pump delivered power takes a low share in cumulative pump exergy power input. Pump cumulative exergy power input is the highest at low power plant load, due to the highest feed water mass flow at the pump inlet (in comparison with middle and high plant load), Table 1.

Exergy power outputs for all high-pressure feed water heating system components are presented in Fig. 3. The largest exergy power outputs for all feed water heating system components occurs at the low power plant load and amounts 9528.11 kW for feed water pump, 6576.76 kW for feed water high-pressure heater and 1409.62 kW for pressure reduction valve. The lowest exergy power outputs at any power plant load can be seen for pressure reduction valve, while the highest exergy power outputs have the feed water pump, Fig. 3.

Exergy destructions (exergy power losses) for all high-pressure feed water heating system components are highest for low plant load and amounts 188.96 kW for feed water pump, 1064.73 kW for feed water high-pressure heater and 93.57 kW for pressure reduction valve, Fig. 4. The change in exergy destructions for all high-pressure feed water heating system components leads to a conclusion that increase in power plant load resulted with a continuous decrease of exergy destructions for feed water pump and high-pressure feed water heater, while pressure reduction valve does not follow the same trend.

In the entire analyzed high-pressure feed water heating system, the lowest exergy efficiency at any plant load has a feed water pump, Fig. 5. Increase in power plant load resulted with continuous increase in high-pressure feed water heater exergy efficiency. The exergy efficiency change of pressure reduction valve during the increase in plant load is similar to feed water heater, with a difference that pressure reduction valve has the same exergy efficiency at middle and high plant load (which amounts 95.67%).
Conclusions
In the paper has performed exergy analysis of high-pressure feed water heating system from cogeneration power plant at three different loads. The main conclusions of the performed analysis are:
- All feed water high-pressure heating system components have the highest exergy destructions at low plant load. The lowest exergy destructions for feed water heater and feed water pump were observed at high plant load (262.25 kW for heater and 60.87 kW for pump). The pressure reduction valve has the lowest exergy destruction (23.02 kW) at middle plant load.
- In feed water high-pressure heating system, feed water pump has the lowest exergy efficiencies which range is between 77.11 % and 81.35 %. The feed water high-pressure heater has exergy efficiencies between 86.07 % and 89.82 %, while pressure reduction valve has the highest exergy efficiencies (between 93.78 % and 95.67 %).
- Power plant operation at high load will be preferable for the analyzed high-pressure feed water heating system - high power plant load ensures the highest exergy efficiencies and the lowest exergy destructions for the most of feed water heating system components.

Acknowledgment
This research has been supported by the Croatian Science Foundation under the project IP-2018-01-3739, CEEPUS network CIII-HR-0108, European Regional Development Fund under the grant KK.01.1.1.01.0009 (DATACROSS) and University of Rijeka scientific grant uniri-tehnic-18-17447.

Nomenclature
Latin symbols: \(E \) = the total flow exergy (kW), \(h \) = specific enthalpy (kJ/kg), \(m \) = mass flow rate (kg/s), \(p \) = pressure (bar), \(P \) = power (kW), \(Q \) = heat transfer (kW), \(s \) = specific entropy (kJ/kg·K), \(T \) = temperature (°C or K), \(X_{\text{net}} \) = heat exergy transfer (kW). Greek symbols: \(\varepsilon \) = specific exergy (kJ/kg), \(\eta \) = efficiency (%). Subscripts: \(0 \) = ambient state, \(cu \) = cumulative, \(D \) = destruction (exergy loss), \(ex \) = exergy, \(h \) = heater, \(IN \) = inlet (input), \(OUT \) = outlet (output), \(p \) = pump, \(v \) = valve, \(w \) = water.

References

International Conference on Innovative Technologies

IN-TECH 2019

Belgrade

Proceedings

IN-TECH Conference
Belgrade 2019

IN-TECH 2019

Proceedings of International Conference on Innovative Technologies
ORGANIZED IN COOPERATION BETWEEN

University of Belgrade
Faculty of Mechanical Engineering
https://www.mas.bg.ac.rs

University of Rijeka
Faculty of Engineering
www.riteh.uniri.hr

Czech Technical University in Prague
Faculty of Mechanical Engineering
www.fs.cvut.cz

SPONSORS & SUPPORTERS

University of Belgrade
http://bg.ac.rs

Czech Technical University in Prague
Faculty of Mechanical Engineering
www.fs.cvut.cz

University of Rijeka
Faculty of Engineering
www.riteh.uniri.hr

Central European Exchange Program
for University Studies, HR – 108 network
www.ceepus.info
Ali Hashem, O. (Egypt)
Abramov, A (Russia)
Bozek, P. (Slovakia)
Brdarevic, S. (B & H)
Burger, W. (Germany)
Car, Z. (Croatia)
Carjali, E. (Romania)
Carlos Bernardo (Portugal)
Castilla Roldán, M. V. (Spain)
Cep, R. (Czech Republic)
Chen, W. (Netherland)
Cizek, J. (Singapure)
Cosic, P. (Croatia)
Cotetiu, R. (Romania)
Crisan, L. (Romania)
Czan, A. (Slovakia)
Duda, J. (Poland)
Durakbasa, N. (Austria)
Elhalabi, M. (Egypt)
Evin, E. (Slovakia)
Frietsch, M. (Germany)
Filipović, N. (Serbia)
Galvao, J. R. (Portugal)
Genis, V. (USA)
Gomez, M. E. (Columbia)
Greenhut, V. (USA)
Guarino, S (Italy)
Gyenge, C. (Romania)
Hodolič, J. (Serbia)
Ivanov, K. (Russia)
Jung, J. (Korea)
Katalinić, B. (Austria)
Kiss, I. (Romania)
Klobčar, D. (Slovenia)
Kocov, A. (Macedonia)
Koršunov, A (Russia)
Kozak, D. (Croatia)
Kreibich, V. (Czech Republic)
Kudláček, J. (Czech Republic)
Kundrak, J. (Hungary)
Kuric, I. (Slovakia)
Kuzmanović, S. (Serbia)
Lee, J. H. (Korea)
Legutko, S. (Poland)
Li, M. (China)
Majstorović, V. (Serbia)
Makis, V. (Canada)
Mamuzić, I. (Croatia)
Math, M. (Croatia)
Matsuda, H. (Japan)
Milenovic, V. (Serbia)
Ohkura, K. (Japan)
Omran, A (Malaysia)
Pepelnjak, T. (Slovenia)
Plančak, M. (Serbia)
Pop-Iliev, R. (Canada)
Raos, P. (Croatia)
Rucki, M. (Poland)
Sankaranarayanasamy, K. (India)
Senabre, C. (Spain)
Sercer, M. (Croatia)
Serpi, K. (Turkey)
Suchánek, J. (Czech Republic)
Sučić, V. (Croatia)
Szalay, T. (Hungary)
Šimic, M. (Slovenia)
Tingle, J. (Croatia)
Tisza, M. (Hungary)
Tomesâni L. (Italy)
Udiljak, T. (Croatia)
Ungureanu, N. (Romania)
Varga, G. (Hungary)
Valentičič, J. (Slovenia)
Velay X. (Great Britian)
Wilke, M. (Germany)
Yashar, J. (Iran)
Zivkovic, D. (Serbia)
CONTENTS

EVALUATION TO DETERMINE THE ROUGHNESS OF ADDITIVE MANUFACTURED COMPONENTS BASED ON CT DATA
M. Pendzik, D. Hofmann, S. Holtzhausen and R. Stelzer 1

NEMS RESONATOR FOR DETECTION OF CHEMICAL WARFARE AGENTS BASED ON SINGLE LAYER GRAPHENE SHEET
N. Andelić, M. Canadija and Z. Car 5

FRICITION MODELING OF ROBOT MANIPULATOR JOINTS
N. Andelić, I. Lorencin, V. Mrzljak and Z. Car 9

COMPARISON OF EDGE DETECTORS FOR URINARY BLADDER CANCER DIAGNOSTIC
I. Lorencin, B. Barlišić, N. Andelić, J. Spanjo, Z. Car 13

TESTING OF ANTISTATICS COATINGS BASED ON WATERBORNE PAINTS
M. Zoubek, J. Kudláček, V. Kreibich, T. Jirout and Z. Car 17

STEAM RE-HEATING PROCESS INFLUENCE ON ENERGY EFFICIENCY AND LOSSES OF TWO-CYLINDER STEAM TURBINE
V. Mrzljak, H. Taletović, J. Orovči and I. Poljak 21

EXERGY ANALYSIS OF HIGH-PRESSURE FEED WATER HEATING SYSTEM AT THREE POWER PLANT LOADS
V. Mrzljak, J. Orovči, I. Poljak and N. Andelić 27

THE CHANGE IN EXERGY EFFICIENCIES AND LOSSES OF LOW-POWER STEAM TURBINE WITH STEAM EXTRACTIONS AT THREE LOADS
V. Mrzljak, J. Orovči, I. Poljak and I. Lorencin 33

EXPERIMENTAL VERIFICATION OF REMOVAL OF CORROSION PRODUCTS AND OLD PAINT SYSTEMS OF STEEL STRUCTURES
IN PLACES WITH DIFFICULT ACCESSIBILITY
J. Svboda, J. Kudláček, M. Zoubek and P. Ryjáček 39

COMPARATIVE ANALYSIS OF DISCRETE WAVELET TRANSFORM AND SINGULAR SPECTRUM ANALYSIS IN SIGNAL TREND IDENTIFICATION
D. Nedeljković, B. Kokotović and Ž. Jakovljević 47

INTRODUCTION TO BUSINESS INFORMATION SYSTEM
A. Macura, E. Missoni and B. Makovic 51

DESIGN OF A PARAMETRIC KNEE IMPLANT MODEL FOR PATIENT-INDIVIDUALIZED ADAPTATION BASED ON ACTIVE SHAPE MODEL OUTPUT DATA
L. Mika, P. Sembdner, S. Heerwald, C. Hübner, S. Holtzhausen and R. Stelzer 55

ADAPTIVE THRESHOLDING SCHEME FOR THE L1-NORM BASED TIME-FREQUENCY DOMAIN RECONSTRUCTION
I. Volarić and V. Sucić 59

THE USE OF ANYPLEX™ STI-7 IN THE DIAGNOSIS OF DISEASES
M. Trebuňa, M. Gdovinová, Z. Vaczy, P. Frankovsky and J. Rosocha 63

SYSTEMATIC SAMPLING FOR VALIDATING A SOLENOID COMMON-RAIL INJECTOR MODEL
J.L. Perona-Navarro, E. Torres-Jiménez, O. Armas and F. Cruz-Peragón 67

VERIFICATION THE LOGISTICS FLOWS IN THE TECNOMATIX PLANT SIMULATION SOFTWARE
M. Pekarcikova, P. Trebuna and M. Kliment 71

HYDROGEN DIFFUSION INTO STEEL DUE TO TUMBLING AND PICKLING
H. Hrdinová and V. Kreibich 75

ASSEMBLY LINE DESIGN THROUGH SOFTWARE TECNOMATIX MODULE PROCESS DESIGNER
J. Trojan, P. Trebuňa, M. Mizerák and R. Duda 79

INCREASING THE EFFICIENCY OF THE MANUFACTURING PROCESS OF THE AUTOMOTIVE COMPONENT ASSEMBLY LINE BY APPLYING THE HOSHIN METHOD VERIFIED BY SIMULATION
M. Kliment, P. Trebuňa and Š. Kraj 83

PILOT FACTORIES IN THE FRAME OF CENTRE OF EXCELLENCE IN PRODUCTION INFORMATICS AND CONTROL
M. Czampa, T. Szalay, J. Nacsca and M. Nausch 87

MODIFICATION OF WORKSTATION FEATURES OF THE ASSEMBLY LINE IN AUTOMOTIVE VERIFIED BY SIMULATION
M. Kliment, P. Trebuňa and Š. Kraj 91

ABRASSION RESISTANCE OF ORGANIC COATINGS CONTAINING Mg PARTICLES
M. Slovinec, M. Zoubek, J. Kudláček and V Neišlí 95
USABILITY INVESTIGATION OF PORTABLE COORDINATE MEASURING EQUIPMENT
M. Gábriel, M. Czampa and T. Szalay

INFLUENCE OF FIXTURING SETUP ON QUALITY OF EDGE TRIMMED UD-CFRP
Cs. Pereszlai, N. Geier and D. Poór

BULK COATING OF SCREWS BY USING CATAPHORESIS PROCESS
K. Hylák, P. Drašnar, J. Kudláček, M. Pazderová and Z. Matuška

THE USE OF TIME SERIES FORECASTING AND MONTE CARLO SIMULATIONS IN FINANCIAL INDICATOR PREDICTION
J. Fabianova, J. Janekova and P. Michalik

CHARACTERIZATION PROCESS OF AN EXPERIMENTAL ROTARY DRYER: APPLICATIONS TO THE DRYING OF OLIVE STONE
F.J. Gómez-de la Cruz, J.M. Palomar-Carnicero, A. Camacho-Reyes and F. Cruz-Peragón

UV SPECTROSCOPY DACTYLOSCOPIC TRACES RECOGNIZING
P. Drašnar, H. Hrdinová, M. Zoubek, J. Svoboda, P. Chábera, J. Havel and P. Hlavín

A PILOT EXPERIMENTAL RESEARCH ON DRILLING OF CFRP UNDER TENSILE STRESS
D. Poór, N. Geier, C. Pereszlai and N. Forintos

UNCERTAINTY AND HEURISTICS – SUPPORT OF DECISION-MAKING PROCESS
Z. Kremlják

EFFECT OF NICKEL COATED OF CARBON FIBER ON DISTRIBUTION OF CARBON FIBER REINFORCED ALUMINIUM (AlSi7) FOAM COMPOSITE BY POWDER METALLURGY.
F. Damanik and G. Lange

TRIBOLOGICAL PROPERTIES OF MODERN COATINGS ON ALUMINIUM
P. Drašnar, M. Chvojka, J. Kuchař, Z. Hazdra and L. Marusič