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Abstract— The paper presents an approach to crowd 
behaviour recognition in surveillance videos. The approach is 
based on a 4-stage pipelined multi-person tracker adapted to 
microscopic crowd level representation and crowd behaviour 
recognition by the evaluation of fuzzy logic functions. The multi-
person tracker combines a CNN-based detector and an optical 
flow-based tracker. The following tracker features are used: 
optical flow and histogram of optical flow orientation at the 
macroscopic level, and the tracklets and trajectories of a person 
and/or group of people at the microscopic level. The human 
interpretation of video sequences (real and/or video sequences 
obtained by simulators of crowds) is mapped into fuzzy logic 
predicates and fuzzy functions. Fuzzy logic predicates specify 
crowd motion patterns at the microscopic level for a person 
and/or group of people. They are building blocks of fuzzy logic 
functions which describe different scenarios of characteristic 
crowd behaviour.  The preliminary results of three experiments 
for a runaway scenario show that the approach supports 
efficient and robust crowd behaviour recognition in surveillance 
videos. 

Keywords— Multi-person tracker, Crowd, Crowd behaviour 
recognition, Motion patterns, Fuzzy logic 

I. INTRODUCTION  
Video surveillance and automatic anomaly behaviour 

detection and interpretation have an important role in our 
information society in ensuring security and increasing safety 
in public and semi-public places where many people are 
gathered. One of the most active research areas in computer 
vision has been crowd anomaly detection, behaviour 
recognition and analysis [1-3]. A crowd is defined as a large 
number of individuals or mass of people gathered in the same 
physical environment and usually sharing common goals [4]. 
The main processes of crowd analysis are the following: 
crowd detection, crowd motion and tracking, crowd density 
estimation, and crowd behaviour recognition. Generally, the 
main crowd analysis processes may be conducted at different 
levels of crowd representations: i) the macroscopic level, 
where the global features of crowd motion and behaviour are 
used; ii) the microscopic level, where the features of the 
movements and behaviour of a person are the base for crowd 
analysis; and iii) the mesoscopic level which combines 
features from levels i) and ii). The processes are 
interdependent and mutually interwoven and pervade one 
another. For example, crowd behaviour recognition combines 
crowd detection, crowd motion, motion pattern generation, 
tracking and behaviour classification. Crowd behaviour is 
based on different models [2-5], such as social force models 
(SFM), cellular automata, agent-based models, Bayesian 
models, Hidden Markov models (HMM), models based on 
histograms of motion, and gas-kinematics or fluid dynamics 
models. In the paper, we deal with abnormal crowd 
recognition at the microscopic level by using the features of 
the agent-based approach (tracklets of a person or a group of 
people) and features which are usually inherent in the 

macroscopic level (dense optical flow, histogram of optical 
flow orientation). Furthermore, we use an approach which 
combines common-sense knowledge representation and 
fuzzy-logic-based inference to recognize the crowd 
behaviour. 

The main contributions and/or novelties of the paper might 
be considered as follows: i) the design of a multi-person 
tracker that combines a CNN-based detector and an optical 
flow-based tracker. It is adapted to a microscopic level 
representation which combines features characteristic of the 
macroscopic level; ii) common-sense knowledge used for the 
interpretation of motion patterns and crowd behaviour; iii) 
fuzzy predicates for motion pattern detection and fuzzy logic 
functions used for crowd behaviour recognition. 

The paper is organized as follows. Section II gives a short 
overview of relevant research work. Section III describes a 
model of the proposed system for crowd behaviour 
recognition. It deals with a pipelined structure of trajectory 
generation, the detection of crowd motion patterns and 
recognition of crowd behaviour. Section IV describes the 
experimental set-up and presents the preliminary results of 
crowd behaviour recognition. Finally, section V summarizes 
the results and gives directions for future research.     

II. RELATED WORK  
Crowd behaviour recognition is mainly based on crowd 

motion patterns, where the patterns are defined as any 
recognizable spatio-temporal regularity of a moving crowd. 
Depending on the level of crowd representation, motion 
patterns are represented based on: object/entity movement 
(microscopic level); the global movement of the crowd 
(macroscopic level); and a combination of object/entity and 
global movement (mesoscopic level).  

Santoro et al. [6] used the macroscopic approach to crowd 
behavioural analysis of two or more groups of pedestrians. A 
sparse optical flow was computed using detected corner 
features by means of a pyramidal Lucas-Kanade tracker. 
Density-based clustering (DBSCAN) was used to group 
similar motion vectors. A crowd tracker was implemented 
based on the similarity function which combines the distance 
between centres of crowd masses, the differences between 
vectors which represent the average direction of all pixels in 
the cluster, and the difference between the areas of the 
clusters. The algorithm was tested on the PETS2009 database 
for the following scenarios: crowd merging; crowd splitting; 
and crowd collision events. 

Solmaz et al. identified five crowd motion patterns 
(blocking, lane, bottleneck, arch, and fountainhead) by using 
the stability analysis of a fluid-dynamic model (Lagrangian 
particle model) where crowds are treated as collections of 
interacting particles [7].  The proposed method uses low-level 
local motion features obtained by optical flow and high-level 

428

2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)

978-1-7281-5686-6/19/$31.00 ©2019 IEEE
DOI 10.1109/SITIS.2019.00075



information obtained by analysing several regions of interest 
in the scene. 

Ge et al. [8] described a vision-based analysis of small 
groups in pedestrian crowds. They combined a pedestrian 
detector, a particle filter tracker and a multi-object data 
association algorithm to extract long-term trajectories of 
people passing through the scene. Based on the tracklets of 
moving objects and the assignment of trajectories, the linear 
assignment problem was solved using the Hungarian 
algorithm. 

Jodoin et al. [9] proposed a method to extract and recover 
global dominant motion patterns and the main entry/exit areas 
from a surveillance video. The proposed method is 
represented as a 4-stage pipeline: i) the computation of a 
motion histogram for each pixel by means of the Horn-Schunk 
/Lucas-Kanade method; ii) the computation of the orientation 
distribution function (ODF) from motion histograms; iii) 
meta-tracking based on the assignment of every pixel to an 
ODF; iv) clustering meta-data to obtain dominant motion 
patterns and main entry/exit areas. The datasets on which the 
authors tested the proposed approach consisted of varying 
crowd densities such as those found in the UCF database, 
changedetection.net, and their own database. The experiment 
showed that the method is fast and simple to implement and 
works on sparse and extremely crowded scenes. 

Wang et al. [10] presented a method to detect global 
abnormal behaviour in video sequences.  They introduced 
histograms of optical flow orientation (HOFO) as a descriptor 
encoding movement information in a video sequence. The 
method consisted of two main steps: i) the computation of 
histograms of optical flow orientation (HOFO) of the original 
global image and of the foreground image (obtained by 
applying background subtraction); ii) the use of a one-class 
support vector machine (SVM) frame classification (abnormal 
or normal). The algorithm was tested on UMN and PETS 
datasets. 

 Shantaiya et al. [11] presented an improvement of optical 
flow-based multi-object tracking by using the Kalman filter. 
The Kalman filter was used to handle occlusion that happens 
during tracking. The authors claimed that the improved optical 
flow-based multi-object tracker achieved better accuracy and 
robustness in handling the occlusion.  

Colque et al. [12] introduced a novel spatio-temporal 
feature called Histograms of Optical Flow Orientation and 
Magnitude (HOFM) and entropy to detect anomalous events 
in videos. The experiments performed on UCSD and Subway 
data demonstrate that the model can handle different situations 
and is able to recognize anomalous events with success. 

Recently, Yang et al. [13] proposed an approach to an 
online multi-object tracker combining optical flow and 
compressive tracking modelled by multiple Markov decision 
processes (MDPs). The approach was tested on the multi-
object tracking (MOT) benchmark for pedestrian tracking and 
the results showed that the method had a superior performance 
compared to several state-of-the-art online multi-object 
trackers. 

Besides our recent paper [14], there are only a few papers 
or research reports which deal with the knowledge-based 
approach to crowd modelling and classification [15, 16]. In 
[15], multi-agent-based pedestrian models for large-scale 
outdoor events are developed. Each pedestrian is viewed as an 

intelligent knowledge-based agent. Three specific models are 
developed based on the phases formed, including the model 
for crowd arrival, the model for crowd dispersal, and the 
model for crowd evacuation. In [16], the authors propose a 
formal method for knowledge representation and management 
in a crowded area. The presented methodology is based on 
ontology and a set of fuzzy rules, which provide crowd 
classification according to sociological theory. Ontology was 
implemented by Protégé editor which supports the OWL 
language. There are no implementation details or 
experimentally evaluated results. As far as we know, there 
have been no attempts to build a knowledge base and 
inference engine based on the human common-sense 
interpretation of crowd behaviour. 

III. A MODEL OF THE CROWD BEHAVIOUR RECOGNITION 
SYSTEM 

A model of the crowd behaviour recognition system 
consists of two main components (Fig. 1): i) 4-stage pipeline 
multi-person tracker TBD – tracking by detection; and ii) 
knowledge-based crowd behaviour classifier. 

A. 4-stage pipeline multi-person tracker 

The multi-person tracking procedure is summarised in the 
Tracking Algorithm. 

 
Fig. 1. A model of the crowd behaviour recognition system. 

Algorithm: Tracking 
INPUT: Video sequence. 
OUTPUT: Person trajectories. 
FOR each frame perform STEPS 1-5. 
STEP 1: Detect person. For every detected person calculate 
following features: bounding box centre, dense optical flow, HOFO 
from optical flow, dominant motion vector (dx, dy) from HOFO and 
pdf of HOFO. 
STEP 2: Regular tracking. For each active tracker whose bounding 
box (from a frame Fk-1) overlaps with only one detection (in the frame 
Fk), update the Kalman filter and update the tracker with features 
obtained in STEP 1. 
Exceptions: 
STEP 3: Multiple detection overlaps. For each active tracker whose 
bounding box (from a frame Fk-1) overlaps with multiple detections (in 
the frame Fk), use the Hungarian algorithm to solve the assignment 
problem. 
STEP 4: Unassigned detections. For detections (in the frame Fk) that 
do not overlap with any bounding box of the active trackers (from a 
frame Fk-1), initialize a new tracker with features obtained in STEP 1 
and initialize the Kalman filter with the current detection centre 
position. 
STEP 5: Unassigned trackers. For each active tracker whose 
bounding box (from a frame Fk-1) does not overlap with any of the 
detections (in the frame Fk), use the Kalman filter prediction to update 
the position and increment fail counter fc. If fc exceeds the threshold, 
the tracker is blocked. 
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The first stage of the pipelined multi-person tracker 
(Tracking Algorithm, STEP 1) is the CNN-based “off-the-
shelf” YOLOv3 detector [17]. It is implemented in Keras [18] 
and trained on the COCO dataset with 80 classes of labelled 
objects. The YOLOv3 detector returns the following data: 

(x1, y1, x2, y2, C, conf), where x1, y1, and x2, y2 are the top 
left corner and bottom right corner positions of the bounding 
box, respectively, C is one of many tens of object classes, i.e. 
“person“, and conf  < 0, 1]  is the confident level of detection. 
Fig. 2 illustrates the outputs of the YOLOv3 detector. 

For each detected person in the current frame, the 
following features are calculated: bounding box centre, dense 
optical flow in the bounding box, histogram of optical flow 
orientation (HOFO), probability density function of the 
HOFO, and a dominant motion vector. 

In the second pipeline stage, a HOFO [12, 13] is calculated 
using dense optical flow extracted from corresponding 
bounding boxes from the Fk and Fk-1 frames. Dense optical 
flow is obtained based on the method proposed by Farnebäck 
[19]. The procedure for the HOFO [12, 13] is similar to the 
HOG procedure [20]. Its inputs are a matrix that contains 
motion vectors for every pixel in the bounding box and the 
number of bins.  Motion vectors obtained by dense optical 
flow are pixel movements in the x and y direction: v = (dx, dy). 
To obtain a polar histogram, the motion vectors are converted 
into a polar coordinate system  = (magnitude, angle).  For 
every such motion vector, two neighbour bins that are closest 
to the angle are incremented with magnitude using linear 
interpolation. By normalizing the polar histogram, the 
probability density function (pdf) is obtained. Fig. 3 illustrates 
the steps of obtaining a polar histogram. 

 
Fig. 2. Examples of the YOLOv3 detector output: a) There are no false 
positive (FP) or missed detections; b) missed detections; c) and false 
positive detections with missed detections. 

 
Fig. 3. Illustrations of the steps in obtaining a polar histogram: a) 
bounding box as a result of YOLOv3 detection; b) motion vectors of the 
corresponding bounding boxes based on frame Fk-1 and Fk, where 
different colours represent directions of the pixel movements; c) a polar 
histogram of the bounding box (the number of bins is 18 – each bin 
corresponds to 20 degrees).  A bold line going from the origin of the 
unimodal polar histogram to the outer circle marks the orientation of the 
dominant motion vector (frames 8, 11, 12, 13). Note that the polar 
histograms for frames 9 and 10 do not have bold lines (histograms are 
not unimodal) and dominant vectors are not defined. 
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The third stage is devoted to identity assignment. There 
are two main cases: regular tracking and exceptions. For 
regular tracking (Tracking Algorithm, STEP 2), where for 
each active tracker whose bounding box (from a frame Fk-1) 
overlaps with only one detection (in the frame Fk), update the 
Kalman filter [21], update the tracker with the features 
obtained in STEP 1, and assign the identity label from the 
previous frame (Fk-1).   

The prediction of the next position of a person is 
performed by the Kalman filter. The elements of the Kalman 
control matrix are the components (dx, dy) of a dominant 
motion vector in the Cartesian coordinate system obtained 
based on the unimodal HOFO normalized by the number of 
components involved in the dominant bin. If the HOFO for the 
current frame is not unimodal, the last saved dominant motion 
vector from the unimodal HOFO is used. Note that the 
prediction of the next position of a person, based on an output 
of the Kalman filter, is used only when the YOLOv3 detector 
fails. 

There are three tracking exceptions: i) multiple overlaps 
among the bounding box or boxes of the tracked person or 
persons and the detected bounding box(es) (Tracking 
Algorithm, STEP 3); ii) unassigned detections (Tracking 
Algorithm, STEP 4); iii) unassigned tracked person(s) 
(Tracking Algorithm, STEP 5). If there are multiple overlaps 
among bounding boxes (from a frame Fk-1) of the tracked 
person(s) and the detected bounding boxes in the frame Fk, the 
Hungarian algorithm is used.  If the value of the intersection 
over union (IoU) of the overlapping bounding boxes (tracked 
and detected) is below the predetermined threshold, then these 
detections and active trackers are not entries in the Hungarian 
algorithm. The cost function used in the Hungarian algorithm 
consists of the weighted sum of the three components: 
normalized distances of the centres of the bounding boxes, 1.0 
- IoU, and the difference of the HOFO pdfs between tracked 
and detected bounding boxes. Fig. 4 illustrates a tracking 
exception situation. Table 1 gives corresponding entries and 
values of the Hungarian matrix. 

TABLE 1. HUNGARIAN MATRIX FOR TRACKING EXCEPTION 

          Detections 
 

Active trackers 

 
10 

 
13 

 
3 

0.1081347 
(0.048, 0.179, 0.117) 

0.49367195 
(0.578, 0.234, 0.640) 

 
14 

0.54492705 
(0.663, 0.239, 0.692) 

0.12865521 
(0.059, 0.251, 0.098) 

 
Table 1. Hungarian matrix for tracking exception depicted in Fig. 4. Values 
in brackets are corresponding components of the cost function                        
(0.4 · (normalized distances of the centres of the bounding boxes),                       
0.3 · (1.0 – IoU), and 0.3 · (the difference of the HOFO pdfs), respectively). 
Detection 13 will be assigned to tracker 3 and detection 10 to tracker 14, 
which correspond to the minimum values of the entries of the Hungarian 
matrix. Note that the Hungarian matrix is 2 x 2 because the remaining 12 
pairs of detection-tracker have IoU values below the threshold (0.4).   

 

In the case of unassigned trackers (Tracking Algorithm, 
STEP 5), where the bounding box of an active tracker does not 
overlap with any of the detections, use the Kalman filter 
prediction to update the position, and increment a fail counter 
fc. The parameter fc represents the number of consecutive 
frames in which the position of the person is predicted without 
detection. If the fc exceeds the predefined threshold, the 
tracker is blocked, i.e. the person is not visible. 

The fourth stage is trajectory generation. The trajectory for 
each tracked person consists of the set of tracklets (xk, yk, id), 
where xk and yk are coordinates of the bounding box centre, 
and id is the identity number of the tracked person. The 
problem of YOLOv3 false positive detection is preliminarily 
solved in the postprocessing phase: if the trajectory of an 
object is shorter than the predefined threshold, it is neglected. 

B. A knowledge-based crowd behaviour classifier 
 

A knowledge-based crowd behaviour classifier consists 
of the following components:  
i) a common-sense knowledge base, where the human-like 
descriptions of characteristic crowd behaviour are stored. 
This base is used for the definition of both fuzzy predicates 
for crowd motion patterns and fuzzy logic functions for 
crowd behaviour recognition; 
ii) a motion pattern detector module, in which the fuzzy 
predicates for crowd motion patterns at microscopic level are 
evaluated.  The fuzzy predicates are divided into two classes: 
fuzzy predicates related to the motion pattern for a person, 
and fuzzy predicates for a group of people in a crowd. Note 
that the assignment functions for the fuzzy predicates are 
determined based on expert knowledge and/or common-
sense knowledge obtained by observing the real video 
sequences and/or sequences obtained by simulators of crowds 
with characteristic motion patterns [22, 23]. Fig. 5 depicts the 
taxonomy of the fuzzy predicates for motion patterns at the 
microscopic level.  The outputs of the motion pattern detector 
module are the motion pattern classes with the values of the 
corresponding fuzzy predicates. The fuzzy predicates for 
motion patterns for a person and motion patterns for a group 
of people in a crowd are used for building fuzzy functions 
suitable for making inferences about complex crowd 
behaviour patterns. The fuzzy logic functions are application 
specific and their truth values are obtained with the 
composition of the fuzzy predicates and fuzzy logic operators 
[14, 24].  
iii) a crowd behaviour recognition module contains the fuzzy 
logic functions which describe the classes of crowd 
behaviour, and a module for evaluation of the fuzzy logic 
functions. The outputs of the knowledge-based crowd 
behaviour classifier are the values of the fuzzy logic functions 
for every crowd behaviour class at every frame for a video 
sequence. The crowd behaviour class with the maximum 
value of the corresponding fuzzy logic function value is a 
candidate for the final crowd behaviour classification.  In the 
case of binary classification (normal behaviour vs. abnormal 
behaviour), classification into abnormal behaviour is based 

 
Fig 4. An illustration of the tracking exception situation i): a) YOLOv3 
detections in the frame Fk (marked with light green colour); b) the 
bounding boxes of active trackers in the frame Fk-1 (marked with yellow 
and purple colours); c) overlapping of detections in Fk with trackers in 
Fk-1.  
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on a predefined threshold: if the value of the fuzzy logic 
function exceeds the threshold, then an abnormal behaviour 
pattern is detected. 
 

1) Crowd motion pattern detection 
 

To classify crowd motion patterns at the microscopic 
level, which is suitable for low-density crowds where the 
movement of each person or small group of people is 
concerned, we use two types of fuzzy predicates: fuzzy 
predicates for the motion patterns of a person, and fuzzy 
predicates for the motion patterns of a group of people (Fig. 
5). The fuzzy predicates are based on the trajectory of a person 
and a set of trajectories of the tracked people, respectively. 

In general, a fuzzy predicate is defined as a mapping 
(assignment function): O × T × R  [0,1], where O is a set of     
n  1 tracked individual(s), T is a set of k time points, and R is 
a set of n trajectories of individuals.  The assignment functions 
are determined based on human common-sense knowledge 
and an interpretation of the ground truth annotations of a 
training set of video sequences [14]. 

For example, the truth value estimation steps of  the 
procedure for the group dynamic fuzzy predicate 
Dispersing(O, tj, R) is presented in the Dispersing Algorithm.  

The truth value estimation procedure for the fuzzy 
predicate Gathering(O, tj, R) (which is used for bottleneck 
behaviour) is the same as that for the Dispersing(O, tj, R) 
predicate, except that in STEP 3 an appropriate experimentally 
determined function is used. 

 

2) Common-sense knowledge database 
 

In the context of common-sense knowledge, by observing 
specific video sequences [25] and/or multi-agent simulators 
for crowds [22, 23], scenarios of  anomalous crowd 
behaviour, such as runaway, bottleneck, barrier breaking 
scenarios, a person rushing through a group of standing group 
of people (with or without a collision), crowd or large group 
waves and crowd merging can be described. Due to the 
limited space of this paper, we illustrate only two scenarios 
which are characteristic of crowd behaviour: 
 

i. Runaway: 

 A runaway occurs when, at the beginning, several 
individuals that are close to each other (i.e. they form 
a group of people) suddenly start to run away, the 
velocity of each individual increases, the group 
disperses, and the individuals become more and more 
distant. 

ii. Bottleneck: 

 A bottleneck occurs when, at the beginning, several 
individuals are near each other and moving fast in the 
same direction. With the passing of time, the 

 

 
Fig. 6. Assignment function for the fuzzy predicate 

Dispersing(O, tj, R). 

Dispersing Algorithm 
INPUT: n position points for the time point tj-m and n position points for 
the time point tj from the set R: 

 
where n is the number of individuals in a group. The m is constant, and 
it is experimentally determined based on a learning video dataset. It 
defines a time window (m frames in the past, starting from the current 
frame with index  j). 
STEP 1: At the time point tj-m for the set of corresponding n position 
points 

 
the average value of n(n-1)/2 distances (in pixels) between all possible 
point pairs is determined. 
The same procedure is performed at time point tj for corresponding n 
position points . 
STEP 2: The difference of the average value of distances for the time 
point tj and the average value of distances for the time point tj-m is 
calculated. 
STEP 3: The estimated truth value of the fuzzy predicate Dispersing(O, 
tj, R) is obtained by mapping the difference of the average value of 
distances to an interval [0,1] with an experimentally determined 
assignment function (Figure 6.). 

Fig 5. A taxonomy of the fuzzy predicates for motion patterns at the microscopic level 
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individuals become closer and closer to each other, 
and they move slowly or stand still. 

Based on the above common-sense knowledge 
descriptions of the above scenarios, the following fuzzy logic 
functions are defined: 
 
Runaway(tj) = Near_to(O,t(j-w),R)  Fast_group(O,tj,R)  
Dispersing(O,tj,R)  Faraway(O,tj,R), where j > w. 
Parameter w defines a time point in the past (the number of 
frames) which is determined by means of expert knowledge 
and training video sequences. 
 
Bottleneck(tj) = Near_to(O,tj,R)  Gathering(O,tj,R)  
Fast_group(O,t(j-w),R)  [Slow_group(O,tj,R)  
Standstill_group(O,tj,R)], where j > w, and  is a conjunctor 
which corresponds to the minimum value of fuzzy 
predicates. 
 

Note that Dispersing(O,tj,R) and Gathering(O,tj,R) are the 
dynamic fuzzy predicates from the set of fuzzy predicates for 
a group of people, while Near_to(O,t(j-w),R) is from the set of 
distance fuzzy predicates, and  Fast_group(O,tj,R), 
Slow_group(O,tj,R), and Standstill_group(O,tj,R) are from 
the set of velocity fuzzy predicates.The fuzzy predicates 
Near_to(O,t(j-w),R), Fast_group(O,tj,R) and Faraway(O,tj,R), 

as well as corresponding assignment functions, are given in 
[14]. 
By evaluating the fuzzy logic functions, searching for their 
maximum value and comparing them with the predetermined 
threshold value (see Section IV), abnormal behaviour can be 
detected in every frame in a video sequence. 

IV. EXPERIMENTAL SETUP AND PRELIMINARY RESULTS 
The preliminary testing of the proposed system for the 

detection of abnormal crowd behaviour is performed on the 
crowd video dataset UMN [25]. The dataset displays a group 
of people that move at normal walking speed in different 
directions and abnormal behaviour consisting of people 
running away from a scene. In this case, there is a binary 
classification: normal and abnormal behaviour (runaway). If 
the value of the fuzzy logic function Runaway exceeds the 
predefined threshold, then a runaway situation is detected. 

 Three experiments were performed. 

Experiment 1- Ground truth person trajectory annotations 
and the crowd person behaviour recognition module are used 
to evaluate crowd behaviour recognition (i.e. ideal trajectories 
- no errors from the CNN-based detector stage or the 
remaining stages of the tracker). 

Experiment 2 - Ground truth person detection annotations 
in combination with the remaining stages of the tracker and 
the crowd person behaviour recognition module are used (i.e. 

 
Fig. 7. Results of three experiments for Runaway behaviour 
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ideal detections - no errors from the CNN-based detector 
stage, but there are errors from the remaining stages of the 
tracker). The idea of this experiment is to evaluate the 
influence of the remaining stages of the tracker on the result 
of crowd behaviour recognition. 

 Experiment 3 - The 4-stage multi-person tracker and the 
crowd person behaviour recognition module are used to 
evaluate crowd behaviour recognition (i.e. realistic evaluation 
- errors of the CNN-based detector stage and the remaining 
stages of the tracker are present). 

For all the above experiments, the following parameters 
are used: fc = 10, m = 20, w = 10 and the threshold is 0.4. 

The aim of the first experiment is to evaluate the 
assignment functions of the fuzzy predicates and the fuzzy 
logic function for a runaway crowd behaviour pattern, as well 
as to test the threshold value defined by an expert for the 
runaway fuzzy function, i.e. the runaway is recognized for the 
frames where the value of the function exceeds the threshold. 
The above testing scheme is used to evaluate crowd behaviour 
recognition in the context of: i) ground truth trajectories; ii) 
ground truth detections; and iii) the proposed multi-person 
tracker. The results of the three experiments are shown in Fig. 
7. 

The first four rows in Fig. 7 depict the values of the fuzzy 
predicates (Near_to, Faraway, Fast_group, and Dispersing) 
and the fifth row depicts the values of the Runaway fuzzy 
function. Additionally, in the fifth row the threshold value 0.4 
and the frames for which the Runaway fuzzy function has 
values above the threshold are marked. Each row depicts 
corresponding values obtained in all three experiments: a 
dotted line for Experiment 1, a dot-dashed line for Experiment 
2, and a solid line for Experiment 3. 

The first experiment with ground truth trajectories results 
in the most satisfactory outputs and an almost perfect match 
with the ground truth annotations of abnormal (i.e. runaway) 
crowd behaviour (beginning in frame 588 in the UMN dataset; 
Fig 7). The second two experiments show that the output of 
the system (i.e. crowd behaviour recognition) is robust to 
errors of the detector stage and remaining stages in the TBD 
tracker. The results of Experiment 3 show that the beginning 
of Runaway behaviour is detected in frame 575 (Fig. 8) which 
corresponds to the ground truth annotation. 

Significant deviations from ground truth annotations for 
some fuzzy predicates (especially for the Fast_group predicate 
for frame 500 to frame 545) indicate that YOLOv3 detections 
(precision 0.9675 and recall 0.884 for a training video (subset 
of the UMN)) have a negative impact on the tracker which 
further induces variations in the fuzzy predicates and the fuzzy 
function output values. 

V. CONCLUSION 
An approach to motion pattern detection and abnormal 

crowd behaviour recognition in surveillance videos at the 
microscopic level is presented. It is based on an evaluation of 
fuzzy predicates and fuzzy logic functions defined based on 
common-sense knowledge and/or human interpretation of real 
video sequences and (multi-agent) simulators for crowds. 
Through the evaluation of fuzzy logic predicates for the 
motion patterns of a person or a group of people, motion 
patterns are detected and classified according to the proposed 
taxonomy of fuzzy logic predicates. Fuzzy logic functions are 
used for the detection and classification of anomalous 

behaviour of a crowd. The building blocks of the fuzzy logic 
functions are the fuzzy predicates for which the assignment 
functions are determined based on an expert interpretation of 
training video sequences, connected by fuzzy logic operators 
[4]. The proposed approach is evaluated on simulated crowd 
events [4], ground truth annotations of real video sequences, 
and real trajectories obtained by the proposed 4-pipelined 
multi-person tracker. The preliminary experiments show 
promising and encouraging results. 

Research in the near future will be oriented to: i) 
improving the CNN-based detector of the multi-person tracker 
by increasing its precision and recall; ii) extending the 
proposed approach to the multiclass recognition problem; iii) 
exhaustive testing of the proposed approach on video 
sequences of real crowd scenes; iv) developing heuristic 
procedures to determine the regions of interest and to identify 
multiple crowd behaviours in one scene. 
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