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Abstract—The Hough transform is one of the most common
methods for line detection. In this paper we propose a novel ex-
tension of the regular Hough transform. The proposed extension
combines the extension of the accumulator space and the local
gradient orientation resulting in clutter reduction and yielding
more prominent peaks, thus enabling better line identification.
We demonstrate benefits in applications such as visual quality
inspection and rectangle detection.

Index Terms—Hough transform, gradient orientation

I. INTRODUCTION

The Hough Transform (HT) is a commonly used method
for line detection that is successfully applied in a large
range of vision problems, starting from specific applications
in industrial and robotic vision and extending to a general
unconstrained problem of line detection in natural images. The
success of the HT is primarily based on recasting a complex
global line detection problem into a simple task of finding local
peaks (concentrations of votes) in some parameter space.

The HT was proposed by Paul V. C. Hough [1] in 1962
and was introduced to computer vision community by Duda
and Hart [2]. A comprehensive review of the HT was given by
Illingworth and Kittler [3] in 1989. Later research introduced a
randomized Hough transform (RHT) and its variants [4], [5],
[6], [7] that eliminate the need for the quantized parameter
space. Other improvements include better and more robust
peak detection [8], [9] and extraction of line length [10],
[11], [8]. Most of the above mentioned HT variants use only
coordinates of extracted edge points and disregard other data
that is often extracted from the input image during the edge
or ridge detection.

In this paper we propose to improve upon a HT extension
first suggested by O’Gorman and Clowes [12] that uses the
gradient orientation to place a limit on the range of line
orientation θ in the (θ, ρ) parameter space; if the detected
gradient orientation is θ0 then votes are only accumulated
for the predetermined range ∆θ around the θ0, the interval
〈θ0−∆θ, θ0+∆θ〉. We extend this approach by combining the
gradient orientation with the extension of accumulator space
that makes straight line parametrization non-unique, but, com-
bined with the range limit on orientation θ, offers advantages
of further clutter reduction and yields more prominent peaks.

The paper is organized as follows: In Section II a brief
review of HT is given. In Section III a proposed accumulator

array extension is introduced. In Section IV some results are
presented and discussed. We conclude in Section V.

II. THE HOUGH TRANSFORM

Hesse normal form of a straight line is

~r · n̂− ρ = 0, (1)

where ~r = ~ıx + ~y is the location vector of the point (x, y),
n̂ = ~ı cos θ + ~ sin θ is the unit normal vector of the straight
line and ρ ≥ 0 is the distance to the origin. For the HT Eq. (1)
is usually rewritten as

ρ = x cos(θ) + y sin(θ), (2)

which defines a sinusoid in (θ, ρ) parameter space that cor-
responds to a point (x, y) in the input image. For the HT a
sinusoid defined by Eq. (2) is drawn in the parameter space
for every edge point (x, y). Straight lines present in the input
image are given by (θ, ρ) coordinates of the local peaks in the
parameter space.

The parameters θ and ρ are usually limited to either
[−π2 , π2 ]× 〈−∞,+∞〉 or [−π, π]× [0,+∞〉 intervals, i.e. to
ranges that produce unique mapping. For real world images
±∞ limit of parameter ρ is replaced by ρmax defined by the
finite size of the image.

Points (x, y) are selected by an edge detector, most often
by thresholding a gradient of the input image. Therefore, in
addition to point coordinates, the direction and magnitude of
the gradient are also known. Let gx and gy be components
of the gradient in x and y directions. The gradient direction
vector is perpendicular to the local edge so, as shown in [12],
the orientation θ can be estimated as

θ ≈ atan
gy
gx
, (3)

and all sinusoids in (θ, ρ) space may be drawn only for a small
interval of angles centered around the estimate of Eq. (3), thus
reducing the clutter.

III. PROPOSED ACCUMULATOR EXTENSION

We propose to extend the accumulator so θ ∈ [−π, π]
and ρ ∈ [−ρmax, ρmax], where ρmax is determined by the size
of the input image. This extension makes the straight line
parametrization in (θ, ρ) space non-unique: every straight line
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Fig. 1: A straight line y = − 3
4x+ 3 with two unit normals in

opposite directions.
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(53.1◦, 2.4)

(−126.9◦,−2.4)

Fig. 2: HT of a point (1.44, 1.92) on a line y = − 3
4x+ 3.

in the image is represented by two different points in the pro-
posed accumulator range. However, those two representations
have exactly opposite normal directions. For example, consider
the line y = − 3

4x + 3 shown in Fig. 1; two unit normals
are n̂, pointing away from the origin, and −n̂, pointing
toward the origin. The normal n̂ corresponds to the equation
12
5 = 3

5x + 4
5y, while the opposite normal −n̂ corresponds

to the equation − 12
5 = − 3

5x − 4
5y, which defines the same

straight line. The HT of the point (1.44, 1.92) closest to the
origin marked with dot in Fig. 1 is shown in Fig. 2; two dots
in Fig. 2 correspond to two possible directions of the straight
line normal.

However, the parametrization in proposed extended accu-
mulator becomes unique if the notion of line direction is
introduced; let the line direction vector d̂ be defined so n̂ and
d̂ form a right-hand coordinate system. Therefore, instead of
straight lines we are detecting oriented straight lines.

The proposed extension depends on the gradient orientation.
Let gx and gy be components of the gradient at (x, y). The
orientation θ for point at (x, y) can be estimated as

θ ≈ atan2(gy, gx), (4)

so the atan function of Eq. (3) yielding angles in the [−π2 , π2 ]
interval is replaced by atan2 that yields angles in the [−π, π]
interval. The sinusoid in (θ, ρ) space is drawn only for a small
interval of angles centered around the orientation estimate of
Eq. (4), however, due to additional separation of points with
opposing gradients we expect further clutter reduction in the
HT domain.

Examining again the Fig. 2 demonstrates the difference:
the plain HT would increment the accumulator array for all
points on a sinusoid over θ ∈ [−π2 , π2 ] range, the HT using the
gradient direction to limit the angle range would increment the
accumulator on the segment around (53.1◦, 2.4) point, and the

(a) Annotated QC image

(b) ROI

(c) Found lines

Fig. 3: QC example: Positioning of a flat spring in regard to a
bearing structure must be examined. (a) is annotated QC image
showing measures of interest. (b) shows a ROI. (c) shows
found boundary lines delineating a flat spring.

proposed method would increment the accumulator on either
segment around (53.1◦, 2.4) or around (−126, 9◦,−2.4) point,
depending on the gradient orientation.

IV. RESULTS AND DISCUSSION

In this Section we present several examples demonstrating
the advantages of the proposed extension to the HT. For all
input images the coordinate axes are as shown in Fig. 1
with the origin in the center. For all accumulator arrays the
coordinate axes are as shown in Fig. 2 with the origin in
the center. Values of accumulator arrays are mapped through
a square root function, linearly scaled to available dynamic
range and inverted; pure black corresponds to the highest
accumulator value, white is zero, and mid-levels are gray. Such
mapping compresses the dynamic range, reduces the intensities
of peaks, and makes butterfly shapes around peaks clearly
visible. Line distance to origin ρ is measured in pixels and
orientation θ in degrees. Range ∆θ around θ0 was set to 22.5◦.

A. Visual Quality Control

The HT is often applied in industrial vision tasks. We give
two examples in visual quality control (QC) where a thin
structure must be delineated.

The first example is QC of a thin flat spring whose position
against the bearing structure must be inspected. An example
is shown in Fig. 3: the input image is annotated showing
structures of interest. The accumulator arrays for the regular
HT and for the proposed HT are shown in Fig. 4: note the
increased separation of two peaks that correspond to the upper
and lower straight lines that delineate the thin flat spring.
This separation effect is caused by the proposed accumulator
extension and the use of the extracted gradient orientation;
it will reduce clutter in the accumulator when spatially close
features in the input image have different gradient orientations.

The second example demonstrates a more difficult visual
QC task where position and inclination angles of a thin flat
spring must be inspected. The flat spring is about one pixel
thin, which is the main difficulty. The input image and steps of
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θ = 47◦, ρ = −48

θ = 47◦, ρ = −20

(a) Regular

θ = 47◦, ρ = −20

θ = −133◦, ρ = 49

(b) Proposed

Fig. 4: Accumulator arrays for input image 3b. (a) is for
regular HT where −π2 < θ < π

2 . (b) is for proposed HT
where −π < θ < π; note the improved separation of two
marked lines.

(a) Input image (b) Edge map

(c) gx (d) gy

Fig. 5: QC example: Examination of flat spring positioning.
(a) is input image. (b) is edge map normally used HT. (c) and
(d) are partial derivatives used to produce an edge map; two
edges delineating the flat spring have clearly different gy , but
have the same properties in the edge map.

edge extraction are shown in Fig. 5: note the extreme thinness
of the structure.

For regular HT an edge map shown in Fig. 5b is used.
The problem with using only the edge map is that two edges
corresponding to the upper and lower delineating straight line
are close both in the image space and in the parameters space.
Indeed, in the accumulator array shown in Fig. 6a two peaks
are merged together and the separation of two delineating
lines is not possible. Furthermore, the position of the peak
corresponds neither to the upper nor to the lower delineating
line, but is instead determined by the overlap of the butterfly
shapes.

The proposed extension to the HT uses a gradient orien-
tation in addition to the edge map. The gradient orientation
is extracted from the gradient components gx and gy that
are shown in Fig. 5, (c) and (d). Note that two edges of
interest clearly have different properties when gx and gy are
considered. Those differences are lost in the edge map where

θ = 85.0◦, ρ = 24.9 (merged)

(a) Accumulator array for regular HT where −π
2
< θ < π

2

θ = 84.0◦, ρ = 25.9

θ = −96.0◦, ρ = −23.1

(b) Accumulator array for proposed HT where −π < θ < π

Fig. 6: HT accumulator arrays for image 5a. Note merging of
two peaks in (a) and a clear separation in (b).

Fig. 7: Lines delineating the flat spring extracted using the
proposed HT.

we observe only a combination
√
g2x + g2y (or |gx| + |gy| for

time-critical applications). Using the gradient orientation as
proposed enables clear separation of two peaks as shown in
Fig. 6 and extraction of both delineating lines is possible using
the proposed accumulator array. The extracted lines using the
proposed scheme are shown in Fig. 7.

For the two QC examples the gradient was computed
using the Sobel operator, the edge map was computed using
the Canny method of OpenCV [13] with 210 as the upper
threshold, and the resolution of the accumulator was set to
∆ρ = 1 and ∆θ = 0.5◦.

B. Rectangle Detection

Another interesting example is rectangle detection in the HT
domain proposed by Jung and Schramm [14]. Their method
applies the regular HT to a sliding window and examines
constellations of four peaks in the accumulator array. When the
window center is at rectangle center a four-peak two-pair con-
stellation

{
{(θ1, ρ1), (θ2, ρ2)}, {(θ3, ρ3), (θ4, ρ4)}

}
describ-

ing a rectangle satisfies the following properties:

1) peaks in a pair have the same orientation, θ1 = θ2 = α
and θ3 = θ4 = β,

2) orientations α and β are separated by 90◦ degrees,
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(a) Input

(b) ROI 1

(c) ROI 2

Fig. 8: A synthetic example for rectangle detection. Two ROIs
are selected: ROI 1 (b) is centered around lower left rectangle
and is an example of a proper response, and ROI 2 (c) is
centered in the middle between two large rectangles and is an
example of a false response.

3) two peaks of a pair have canceling distance to origin,
ρ1 + ρ2 = 0 and ρ3 + ρ4 = 0,

4) two peaks of a pair have the same height (equal to
lengths of rectangle’s sides a and b), and

5) the vertical distances within each pair are equal to
lengths of rectangle’s sides, |ρ1−ρ2| = a and |ρ3−ρ4| =
b.

In practice equality requirements are relaxed to absolute
differences being less than chosen thresholds. The proposed
HT allows expansion of the rectangle detection scheme by
introducing the orientations of any of the four sides. The
constellation properties change to:

1) peaks in a pair have the opposite orientations, θ1 = θ2+
180◦ = α and θ3 = θ4 + 180◦ = β (mod 180◦),

2) orientations α and β are separated by 90◦ degrees,
3) signs of all four ρ’s are the same,
4) two peaks of a pair have equal distance to origin, ρ1 =

ρ2 and ρ3 = ρ4,
5) two peaks of a pair have the same height (equal to

lengths of rectangle’s sides a and b), and
6) absolute sum of distances ρ within a pair is equal to

lengths of rectangle’s sides, |ρ1+ρ2| = a and |ρ3+ρ4| =
b.

A synthetic example image with two ROIs is shown in
Fig. 8. A typical rectangle constellation for the regular HT
is shown in Fig. 9a. For the proposed HT the constellation
of Fig. 9a is transformed to a constellation shown in Fig. 9b:
four peaks around the origin are unwrapped into a line, the
distance between four peaks along the θ axis is 90◦, and all
ρ’s have the same sign (gradients of all edges have directions
either toward or away from the origin of the sliding window).

The original method [14] detects a false rectangle in ROI
2 (Fig. 8c) as the constellation shown in Fig. 10a matches.
The proposed extension successfully eliminates such false
rectangles as the constellation shown in Fig. 10b does not
have all ρ’s with the same sign (gradients of two edges are
toward and of other two are away from the origin of the sliding

(θ1, ρ1)

(θ2, ρ2)

(θ3, ρ3)

(θ4, ρ4)

(a) Regular

(θ1, ρ1) (θ2, ρ2)

(θ3, ρ3)(θ4, ρ4)

(b) Proposed

Fig. 9: Constellations describing a true rectangle correspond-
ing to the sliding window shown in Fig. 8b.

(θ1, ρ1)

(θ2, ρ2)

(θ3, ρ3)

(θ4, ρ4)

(a) Regular

(θ1, ρ1)(θ2, ρ2)

(θ3, ρ3)(θ4, ρ4)

(b) Proposed

Fig. 10: Constellations describing a false rectangle correspond-
ing to the sliding window shown in Fig. 8c. Note that the false
rectangle will not be detected if proposed HT is used as the
constellation (b) does not match.

window).
For two examples the gradient was computed using the

Sobel operator, the edge map was computed using the Canny
method of OpenCV [13] with 50 as the upper threshold, and
the resolution of the accumulator was set to ∆ρ = 0.5 and
∆θ = 0.5◦.

C. Discussion and Implementation

The proposed extension to the HT is simple and effective.
It can be easily included into advanced Hough schemes such
as RHT.

The characteristic butterfly shape around peaks in the pa-
rameter space remains the same so accurate and robust peak
detection scheme [8] and line segment estimator [10] are
directly applicable and may be used without further modi-
fications.

Note that this approach is different than computing the
regular Hough transform twice, once for bright-to-dark and
once for dark-to-bright edges as it avoids the problem of
the preferred direction, i.e. reversing the preferred direction
transforms any bright-to-dark edge to a dark-to-bright edge
thus making all edges orthogonal to the preferred direction
difficult to detect.

We have implemented the proposed improved HT in C/C++.
The implementation is based on OpenCV [13] and is freely
available under BSD license at http://www.fer.unizg.hr/ipg/
resources/HT.

V. CONCLUSION

We proposed a simple and effective extension to the regular
HT. The proposed extension combines the extension of the
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accumulator array and the local gradient orientation result-
ing in clutter reduction and yielding more prominent peaks,
thus enabling better line identification. We have demonstrated
benefits in applications such as visual quality inspection and
rectangle detection.
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