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Summary  

The paper presents analysis of steam auxiliary exergy flow stream during the change in marine steam 

propulsion system load. The change in auxiliary steam exergy flow from marine steam generators 

during the increase in steam system load is compared with the change in main steam exergy flow. 

Exergy flow stream to each auxiliary device in steam system is analysed and operation dynamics of 

auxiliary devices are explained. The presented analysis provides an insight into operation of each 

observed marine steam system auxiliary device from the lowest to the highest steam system load. 
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1. INTRODUCTION  

Steam power systems today are the mostly land-based and its main function is electricity production, [1] and 

[2]. Marine power systems are mainly based on internal combustion engines with a lot of different variations 

in power and operational principle, [3] and [4]. Marine steam propulsion systems are relatively rare, but due 

to a lot of advantages they are dominant on LNG carriers [5] and [6]. As a land-based steam power system, 

each marine steam propulsion system consists of many components, necessary for safe and reliable 

operation [7] and [8]. 

The marine steam propulsion system consists of two steam flow streams from steam generators - 

main and auxiliary [9]. The main flow stream is used for steam turbines operation [10] and [11], while auxiliary 

steam flow stream is used for proper operation of auxiliary marine equipment [12] and [13]. The auxiliary 

steam flow stream has a lower pressure and temperature in comparison with a main one [14]. For both flow 

streams, it is interesting to analyse its operation dynamics during the change in marine steam system load. 

In this paper an analysis of steam auxiliary exergy flow stream during the change in marine steam 

propulsion system load is presented. Steam auxiliary exergy flow stream and its dynamic is compared with 

the main exergy flow stream. Exergy flow stream to each auxiliary device in steam system was calculated and 

analysed. Operation dynamics of auxiliary devices and share of the current auxiliary exergy flow, from steam 
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generators to each auxiliary device, are explained. This analysis provides an insight into operation of marine 

steam system auxiliary devices from the lowest to the highest steam system load. 

 

2. MAIN AND AUXILIARY EXERGY FLOW STREAMS IN MARINE STEAM PROPULSION 

SYSTEM  

Steam propulsion system in which main and auxiliary exergy flow streams were analysed is mounted on the 

conventional LNG carrier. Main characteristics and specifications of the LNG carrier are presented in Table 1. 

 

Table 1 LNG carrier main characteristics and specifications 

Dead weight tonnage 84812 DWT 

Overall length 288 m 

Max breadth 44 m 

Design draft 9.3 m 

Steam generators 2 x Mitsubishi MB-4E-KS 

Propulsion turbine Mitsubishi MS40-2  (max. power 29420 kW) 

 

Steam flow streams which leave steam generators in marine propulsion system are main and 

auxiliary flow streams. Main steam flow stream represents a steam with maximum pressure and temperature. 

The auxiliary steam flow stream is produced from main flow stream in a way that part of produced main 

steam is sent back to the steam generators. That steam passes through steam drums and transfers heat to 

feed water. Due to heat transfer, steam temperature and pressure decreases. The auxiliary steam flow stream 

is used for the operation of auxiliary steam system devices. Those devices require steam with lower 

temperature and pressure when compared to main steam stream. 

In marine steam propulsion system, auxiliary steam flow is used in the atomizing steam system, 

dump system, deaerator, desuperheater and air heater, Fig. 1. Operation principle of each auxiliary device is: 

- Atomizing steam system: at atomizing steam system represents a small amount of auxiliary steam 

from steam generators that is used for fuel oil atomizing and for cooling of burners when they are 

not in use.  

- Dump line: At low steam system loads, steam generators produce more steam than an entire system 

requires. Steam excess is led directly to the main steam condenser through the steam system dump 

line. 

- Deaerator: Deaerator is a component which uses auxiliary steam from steam generators for feed 

water heating and for gas removal from feed water in order to avoid cavitation. 

- Desuperheater: Desuperheater is an open heater (with direct mixing of auxiliary steam and water). 

Desuperheater in the marine steam system is used to prepare auxiliary steam for additional heating 

purposes. 

- Air heater: Before entrance in each steam generator combustion chamber, air is heated in air heater 

by auxiliary steam. Heating medium is auxiliary steam only, because flue gas temperature is not 

sufficient for air heating purposes. 
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Figure 1 Scheme of marine steam generators with main and auxiliary steam flow streams 

 

3. EXERGY FLOW STREAMS NUMERICAL ANALYSIS  

3.1. Governing equations of exergy analysis 

Mass flow rate balance equation for any flow stream is expressed as [15]: 

��� OUTIN mm ��                     (1) 

The second law of thermodynamics defines exergy analysis [16]. The main exergy balance equation is [17]: 

Dex,ININOUTOUTheat EmmPX ���� �� ������ ��                            (2) 

where the net exergy transfer by heat ( ) at the temperature T is [18]: 

Q
T

T
X �� �� �� )1( 0
heat               (3) 

According to [19], specific exergy is defined as: 

)()( 000 ssThh ������       (4) 

The exergy power of a flow, according to [20] is:  

� �)()( 000ex ssThhmmE �������� ��� �  .                   (5) 

 

3.2. Calculation of main and auxiliary exergy flow streams  

Exergy power of main and auxiliary steam flow stream was calculated by using measured steam pressures, 

temperatures and mass flow rates, according to equation (5). Steam specific enthalpies and specific entropies 

were calculated from measured steam pressures and temperatures by using NIST REFPROP software [21].  

Throughout this paper, exergy power values are presented for both steam generators (cumulative 

exergy power). A steam flow stream which enters to any system device was produced by both steam 

generators. Therefore, only the cumulative flow streams can be relevant in the steam system exergy analysis. 

Auxiliary steam specific enthalpy and specific entropy are not the same as at the steam generator’s 

outlet, when compared to flow streams to each auxiliary device, due to losses through the pipeline. Decrease 

in auxiliary steam pressure and temperature in the pipeline (and consequentially decrease in specific 

enthalpy and specific entropy) is small and in this paper is neglected. Auxiliary steam flow streams to each 
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auxiliary device were calculated with the same specific enthalpy and specific entropy as at the steam 

generator’s outlet, but with corresponding steam mass flow rates. 

Cumulative steam mass flow rate, which exits from both steam generators, is defined as: 

AUXMACU mmm ��� ��                      (6) 

Cumulative steam exergy power from steam generators is: 

AUXex,MAex,CUex, EEE ��� ��                       (7) 

where cumulative main and auxiliary steam exergy power are defined as: 

MAMAMAex, ��� mE ��       (8) 

AUXAUXAUXex, ��� mE ��       (9) 

The share of cumulative main steam exergy power in cumulative exergy power from steam generators is: 

100
CUex,

MAex,
MA ��

E

E
SH

�

�
      (10) 

The share of cumulative auxiliary steam exergy power in cumulative exergy power from steam generators is: 

100
CUex,

AUXex,
AUX ��

E

E
SH

�

�
     (11) 

Cumulative auxiliary steam flow stream is divided on flow streams to each auxiliary device (auxiliary devices 

are atomizing steam system, dump, deaerator, desuperheater and air heater), Fig. 1.  

Mass flow rate balance for cumulative auxiliary steam flow stream is: 

AHDESDEADUASAUX mmmmmm ������ �����                                  (12) 

The change in auxiliary steam pressure and temperature through the pipeline is neglected, so cumulative 

auxiliary steam exergy power divided to each auxiliary device is: 

� � AUXAHDESDEADUASAUXAUXAUXex, �� �������� mmmmmmE �������     (13) 

Steam exergy power to each auxiliary device is then: 

AUXADADex, ��� mE ��                                       (14) 

The share of each auxiliary device exergy power in the entire (cumulative) auxiliary exergy power is: 

100
AUXex,

ADex,
AD ��

E

E
SH

�

�
 .                     (15) 

Exergy analysis depends greatly on the ambient state (pressure and temperature of the ambient) in which 

system operates. The ambient state in the LNG carrier engine room during the measurements was: 

- pressure:  p0 = 0.1 MPa = 1 bar, 

- temperature:  T0 = 25 °C = 298.15 K. 
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4. REQUIRED MEASUREMENT RESULTS OF MAIN AND AUXILIARY STEAM FLOW 

STREAMS  

Steam temperature, pressure and mass flow rate at each steam system load were measured with equipment 

already mounted on the steam system pipeline. The same equipment is used for control and regulation of 

the entire steam system during LNG carrier exploitation. Steam operating parameters are presented in 

relation to propulsion propeller speed. Increase in propulsion propeller speed is directly proportional to 

increase in steam system load and vice versa. 

Table 2 present measurement results of main and auxiliary steam flow streams. Cumulative auxiliary 

steam flow stream is divided on flow streams to each auxiliary device. Losses of steam pressure and 

temperature in auxiliary steam pipeline are small and in this paper are neglected. Therefore, for exergy power 

calculation it was necessary to measure only steam mass flow rate to each device. 

 

Table 2 Measurement results for main and auxiliary steam flow streams 

Propulsion 
propeller 

speed (rpm) 

Main steam flow stream 
Auxiliary steam flow stream-

cumulative 
Atomizing 

steam mass 
flow rate 

(kg/h) 

Dump 
steam 
mass 
flow 
rate 

(kg/h) 

Deaerator 
steam mass 

flow rate 
(kg/h) 

Desuperheater 
steam mass flow 

rate (kg/h) 

Air 
heater 
steam 
mass 
flow 
rate 

(kg/h) 

Steam 
temperature 

(°C) 

Steam 
pressure 

(MPa) 

Steam 
mass 
flow 
rate 

(kg/h) 

Steam 
temperature 

(°C) 

Steam 
pressure 

(MPa) 

Steam 
mass flow 
rate (kg/h) 

25.00 501 6.20 16744 313 6.01 29876 428 15764 5881 3022 4781 

34.33 500 6.20 22696 309 6.08 27710 441 13178 6467 2797 4827 

41.78 500 6.19 29394 304 6.11 17708 416 3696 6049 2687 4860 

53.50 509 6.10 47985 297 6.07 12170 442 0 3639 2792 5297 

56.65 498 5.98 40363 297 5.94 17038 475 0 8392 2796 5375 

61.45 500 5.98 49438 297 5.94 14486 472 0 5367 2685 5962 

62.52 499 5.99 48977 299 5.95 14528 470 0 5282 2903 5873 

63.55 500 5.99 52080 298 5.95 14915 478 0 5657 2677 6103 

65.10 504 6.10 54438 299 6.10 15633 470 0 6318 2587 6258 

66.08 515 6.08 56078 300 6.04 16133 489 0 6541 2690 6413 

67.68 515 6.08 59201 301 6.04 16756 494 0 6983 2797 6482 

68.66 516 6.09 61300 302 6.05 13618 488 0 3840 2685 6605 

69.49 515 6.09 62723 302 6.05 14039 483 0 4077 2792 6687 

70.37 516 6.09 64366 302 6.05 14150 472 0 4078 2688 6912 

71.03 516 6.10 65019 302 6.06 13954 464 0 3994 2687 6809 

73.09 515 6.10 70515 301 6.07 14690 494 0 4484 2584 7128 

74.59 515 6.07 77211 299 6.04 10641 491 0 0 2688 7462 

76.56 515 6.07 82881 299 6.04 10848 468 0 0 2793 7587 

78.41 515 6.09 89907 299 6.06 10744 472 0 0 2687 7585 

79.46 498 5.94 95990 298 5.92 3273 479 0 0 2794 0 

80.44 502 6.00 100540 297 5.94 3384 478 0 0 2906 0 

81.49 500 5.99 102883 290 5.99 483 483 0 0 0 0 

82.88 501 5.99 108601 280 5.99 474 474 0 0 0 0 

83.00 501 5.99 109961 280 5.99 477 477 0 0 0 0 

 

5. MAIN AND AUXILIARY STEAM FLOW STREAMS EXERGY ANALYSIS RESULTS WITH 

THE DISCUSSION  

The mass flow rate difference between main and auxiliary steam flow streams can be seen in Fig. 2. At the 

lowest observed propulsion propeller speeds this difference is negative (25.00 rpm and 34.33 rpm) because 

at the propulsion system start-up, mass flow rate of the auxiliary steam flow stream is higher. Increase in 

propulsion system load resulted with an increase in mass flow rate of main steam stream (from 41.78 rpm to 
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the highest system load). At the highest observed steam system load, the mass flow rate difference between 

main and auxiliary steam flow stream is the highest and amounts 109484 kg/h, Table 2. 

It should be noted that the increase in propulsion system load resulted in a proportional increase of 

main steam mass flow rate (with the exception of just a few operating points at middle load), which means 

that steam system turbines use more and more steam. At high steam system loads, the majority of analysed 

auxiliary devices in this study get steam for its operation from the main turbine subtractions. Following the 

operation principle of this steam propulsion system, it can be concluded that increase in main and the 

decrease in auxiliary steam mass flow rate during the load increase is expected. 

 

Figure 2 Mass flow rate difference between main and auxiliary steam flow stream 

 

Main and auxiliary exergy power of steam flow streams was calculated according to equations (8) 

and (9). Increase in steam system load resulted with increase in main flow stream exergy power, while at the 

same time auxiliary flow stream exergy power decreases, Fig. 3. 

Only at the lowest observed load at 25.00 rpm, exergy power of the auxiliary flow stream is higher 

than exergy power of the main flow stream. From the lowest to the highest steam system load, exergy power 

of main steam flow stream increases from 6418.53 kW up to 42057.03 kW, while exergy power of the auxiliary 

flow stream decreases from 9147.04 kW up to 137.26 kW. At high steam system load exergy power of the 

auxiliary steam flow stream is so small in comparison with the exergy power of the main steam flow stream 

that it can be declared as negligible. 

 

Figure 3 Change in exergy power of main and auxiliary steam flow stream 
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Analysis of auxiliary steam exergy power which was transferred from steam generators to each 

auxiliary device must be presented in two parts, for lower and for higher propulsion propeller speeds, Fig. 4 

and Fig. 5. 

At the lowest propulsion propeller speeds (25.00 rpm and 34.33 rpm) the highest auxiliary steam 

exergy power is sent to the main condenser through dump line (4826.41 kW and 4010.50 kW), Fig. 4. That 

amount of auxiliary steam exergy power is lost because at the lowest loads it is not required in the steam 

system. It can also be seen from Fig. 4 that increase in system load resulted with a decrease in dump exergy 

power and already on 41.78 rpm dump exergy power is not the dominant one. After 41.78 rpm, dump line is 

closed because from that moment on, all produced steam exergy power is used in the steam system.  

After dump line at low propulsion propeller speeds, the most dominant amount of auxiliary steam 

exergy power is sent to deaerator and air heater. Atomizing steam system at low steam system loads takes a 

significantly smaller amount of auxiliary steam exergy power in comparison to other auxiliary components. 

 

Figure 4 Steam exergy power to each auxiliary device - low propulsion propeller speeds 

 

At middle and high propulsion system loads (from 53.50 rpm up to 83.00 rpm) dump line is closed 

and the auxiliary steam exergy power is sent to other auxiliary devices, Fig. 5. The greatest consumers of 

auxiliary steam exergy power are deaerator and air heater, after which follows desuperheater. The atomizing 

steam system uses almost constant auxiliary steam exergy power in the entire area of middle and high steam 

system loads. At the highest observed propulsion system loads atomizing steam system is the only auxiliary 

device which consumes auxiliary steam exergy power. 

Auxiliary steam from steam generators is sent to auxiliary devices until the moment when each 

auxiliary device (with an exception of the atomizing steam system) gets steam for its operation from the 

main steam turbine subtractions. The first device which gets steam for its operation from a main steam 

turbine is deaerator after 73.09 rpm. After deaerator, main steam turbine subtraction brings steam to the air 

heater after 78.41 rpm. The auxiliary device which gets steam from the main turbine the latest is 

desuperheater and this occurrence happens after 80.44 rpm. Only the atomizing steam system gets auxiliary 

steam for its operation from the steam generators the entire time, irrespective of steam system load. 
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Figure 5 Steam exergy power to each auxiliary device - middle and high propulsion propeller speeds 

 

At three different steam system loads (at three different propulsion propeller speeds) the share of each 

auxiliary device in current cumulative auxiliary steam exergy power is presented in Fig. 6, Fig. 7 and Fig. 8. 

At the lowest observed steam system load (25.00 rpm) dump system takes the most significant share 

of current cumulative auxiliary steam exergy power with 53%, Fig. 6. At this propulsion system load, the 

deaerator takes 20% and air heater takes 16% of cumulative auxiliary steam exergy power. The atomizing 

steam system has the lowest share in cumulative auxiliary steam exergy power (only 1%) at the lowest 

observed propulsion propeller speed as measurements were taken on dual burning mode, with minimum 

fuel and maximum gas mode, what results in only small mass variation of that system during all measured 

modes. 

 

 
Figure 6 Share in the cumulative auxiliary exergy power of each auxiliary device - propulsion propeller speed 

of 25.00 rpm 

 

At middle steam system load of 65.10 rpm, Fig. 7, dump line is closed and all steam exergy power 

produced in the steam generators (main and auxiliary) is used in the steam system. At observed system load, 

deaerator and air heater take the highest share in current cumulative auxiliary steam exergy power (40% 

each). In desuperheater goes 17% of cumulative auxiliary steam exergy power, while the atomizing steam 

system takes a share of 3%. When compared with the lower steam system load, it can be concluded that 

share in current cumulative auxiliary steam exergy power of each auxiliary device increases with an increase 

in steam system load. 
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Figure 7 Share in the cumulative auxiliary exergy power of each auxiliary device - propulsion propeller speed 

of 65.10 rpm 

 

At propulsion propeller speed of 78.41 rpm, auxiliary steam flow is sent to just three auxiliary devices 

(air heater, desuperheater and the atomizing steam system). Air heater takes the highest share in current 

cumulative auxiliary steam exergy power with 71%, Fig. 8. Desuperheater takes 25% and atomizing steam 

system takes 4% of current cumulative auxiliary steam exergy power.  

At the highest observed propulsion propeller speeds (from 81.49 rpm to 83.00 rpm) cumulative 

auxiliary steam exergy power is sent only to atomizing steam system, so its share in that steam system 

operation area is 100%. 

 

Figure 8 Share in the cumulative auxiliary exergy power of each auxiliary device - propulsion propeller speed 

of 78.41 rpm 

 

6. CONCLUSION 

This paper presents an analysis of steam auxiliary exergy flow stream during the change in marine steam 

propulsion system load.  

At low propulsion propeller speeds the highest auxiliary steam exergy power is sent to the main 

condenser through dump line. That amount of auxiliary steam exergy power is lost because at the lowest 

loads it is not required in the steam system. After dump system, at low system loads the most dominant 

amount of auxiliary steam exergy power is sent to the deaerator and air heater while the atomizing steam 

system takes a significantly smaller amount of auxiliary steam exergy power in comparison to other 

components. 

At middle and high propulsion system loads, dump line is closed and the greatest consumers of 

auxiliary steam exergy power are deaerator and air heater, after which follows desuperheater. The atomizing 

steam system uses low and almost constant auxiliary steam exergy power in the entire area of middle and 
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high steam system loads due to dual burning mode, with minimum fuel and maximum gas mode. At the 

highest observed system loads atomizing steam system is the only auxiliary device which consumes auxiliary 

steam exergy power. 

Auxiliary steam from steam generators is sent to auxiliary devices until the moment when each 

auxiliary device (with an exception of the atomizing steam system) gets a steam for its operation from the 

main steam turbine subtractions. 

Share in current cumulative auxiliary steam exergy power of each auxiliary device increases with an 

increase in steam system load.  
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Nomenclature 

Abbreviations: 

LNG Liquefied Natural Gas 

 

Latin Symbols: 

E�  stream flow power, kJ/s 

h  specific enthalpy, kJ/kg 

m�  mass flow rate, kg/s or kg/h 

p  pressure, MPa 

P  power, kJ/s 

Q�  heat transfer, kJ/s 

s   specific entropy, kJ/kg•K 

SH  share, % 

T  temperature, °C or K 

heatX�   heat exergy transfer, kJ/s 

 

Greek symbols: 

 �  specific exergy, kJ/kg 

 
Subscripts: 
0 ambient conditions 
AD Auxiliary device 
AH Air heater 
AUX Auxiliary 
CU Cumulative 
D destruction (losses) 
DEA Deaerator 
DES Desuperheater 
DU Dump 
ex exergy 
IN inlet (input) 
MA Main 
OUT outlet (output) 
AS Atomizing steam 
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