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Abstract 

The study presented in this work emerged as a result of a multiyear regional geochemical survey based on low-
density topsoil sampling and the ensuing geochemical atlas of Croatia. This study focuses on the Dinaric part of 
Croatia to expound the underlying mechanisms controlling the mobilities and variations in distribution of potentially 
harmful elements as observed from different environmental angles. Although serious environmental degradation 
of the vulnerable karst soil landscapes was expected to occur chiefly through the accumulation of various heavy 
metals, the most acute threat materialized through the soil acidification (Al-toxicity) affecting the entire Dinaric karst 
area. This picture surfaced from the analysis of all three investigated discriminant function models employing the 
abovementioned environmental criteria selected autonomously with respect to the evaluated soil geochemistry, 
namely, geologic setting, regional placement and land use. These models are presented by not only the characteristic 
discriminant-function diagrams but also a set of appropriate mathematically derived geochemical maps disclosing 
the allocations of potential threats to the karst soil landscapes posed by soil acidity.
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Introduction
As soon as the Geochemical Atlas of Croatia (GAC) 
was published at the end of the last decade [27], it 
became obvious that the search for the regional geo-
chemical background (at least on the territory of a 
single country) is its primary goal. The formation 
of systematic and relational geochemical GIS data-
bases as the secondary goal would open a number of 
new exploratory avenues to be covered in the follow-
ing years. A strong signal suggesting that the in-depth 
analysis of various variables (state factors) involved 
in the process of soil formation and development is 
essential for understanding the soil geochemistry had 

echoed from the first multi-element geochemical map 
of Croatia [28]. This thematic map, based on the pos-
terior classification probabilities, employed the regional 
division (faithfully epitomizing contrasting bedrock 
lithology) as an independent grouping criterion in dis-
criminant function analysis (DFA) of Croatian topsoil 
(interval 0–25  cm) geochemical data. In recent times, 
the probability maps, albeit originally designed for the 
purpose of petroleum prospecting [29], proved very 
useful in urban geochemical studies dealing with soil 
complexity on a local scale [65]. However, on a regional 
scale (GAC), this type of map clearly distinguished the 
Dinaric (DIN) from the Pannonian (PAN) part of the 
Croatian territory on account of the extremely high 
mean classification rate of 94% for the total set of data 
(low-density regional survey with 2521 samples in a 
regular 5 × 5  km grid) whereby samples were a priori 
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classified as pertaining to either the DIN or PAN group 
[28]. Accordingly, the two regions, each presented as a 
single geodynamic unit with its own set of soil-form-
ing factors and local disturbances, have been consid-
ered distinct entities, suggesting separate studies as the 
most effective approach to further geochemical and 
environmental investigations. Out of this dichotomy, 
the Dinaric region (as any karst area) was brought 
into sharp focus owing to its characteristic carbonate 
lithology, which provides the geochemical basis for an 
extremely fragile karst ecosystem whose soil cover is 
frequently exposed to erosion and pollution because 
of improper land use [24]. Unable to cope with specific 
hazards and impacts caused by neglectful human activ-
ity, the vulnerable soil landscapes on the Adriatic coast 
and its neighbouring mountainous area show the symp-
toms of increasing environmental degradation. Most 
of the changes that affected soils arose from growing 
tourism and expansion of urban areas, recent/collapsed 
industrial activity (including mining and quarrying), 
and deforestation caused either by natural (e.g., freez-
ing rains) or anthropogenic (e.g., acid rains) effect 
(see [68]). Necessarily, it became imperative for future 
research activities, especially in this area, to fathom the 
various environmental factors involved in the processes 
described above because notwithstanding the growing 
intensity and scale of their use and abuse, the soils stay 
firmly ingrained at the foundations of human life [39] 
necessitating sustainable environmental management.

All things considered, the main objective of this study is 
to investigate the factors responsible for the characteris-
tic geochemical signature of the modern soils developed 
over the Dinaric karst in the south-western exposures of 
Croatia. To this purpose, the topsoils collected during the 
multi-year geochemical mapping campaign (GAC) are 
examined in light of the various geological and environ-
mental criteria [40–42, 51, 58, 59]. These criteria, as in 
other geochemical studies on similar problems in the area 
[34, 52, 53], are exploited in this study as the most reveal-
ing avenues through which the processes mentioned 
above can be most effectively understood. The criteria are 
autonomous with regard to the soil geochemistry such as 
the geological (lithological) setting, description of land 
use, soil types, or geographical position (with climate 
implications), which provide the most efficient means of 
a priori arrangement of the soil samples into a number 
of coherent and exhaustive statistical groups. In the final 
analysis, DFA is employed as a method of data reduction 
and organization, generating the models based on geo-
chemical partitioning between the established groups. 
As mathematical models by their nature, they generate 
the structural patterns that help describe the behaviour 
of the observed geochemical data in process-form terms 

[64], notably in the form of maps—the spatial structural 
patterns [43].

Materials and methods
Description of the study area
Croatia is a Mediterranean and Central European coun-
try geographically located between 13.5° and 19.5° east-
ern longitudes and 42.5° and 46.5° northern latitudes, 
extending from the vast Pannonian plain across the 
narrow Dinaric mountain range to the Adriatic coast. 
Almost half of its territory (46%) is located in its mari-
time (Adriatic) and mountainous (Dinaric) regions 
(Fig. 1). As a result, the climate is strongly controlled by 
relief, ranging from continental temperate in the moun-
tains (Cfc and Dfc types) to Mediterranean and sub-
Mediterranean (Csa and Cfa types) along the coastline 
and in the adjacent hinterland [74]. Although the Dinar-
ides are the most important mountain range (Dinara Mt., 
1831 m), only 0.11% of the mountain topography is situ-
ated above 1500 m ASL. Nevertheless, the mountain bar-
rier strongly affects the mean annual temperatures and 
precipitation. Temperatures increase from west to east 
while precipitation varies inversely with temperatures: 
mountain areas are characterized by high amounts of 
precipitation between 1100 and 1940  mm, while aver-
age rainfall in the coastal area varies between 855 and 
1253 mm [8]. Acid rains are at the heart of the problem 
in the mountainous zone, particularly in the Velebit Mt. 
area, affecting the growth of the Dinaric beech-fir forest 
communities [6, 37].

Geological setting and soils
The area of the Croatian karst Dinarides is represented by 
a thick succession of carbonate rocks deposited between 
the Late Palaeozoic (Middle Permian) and the Eocene on 
platforms of different ages, types and palaeogeographic 
settings (Fig. 2). The evolution of DIN began on an epeiric 
carbonate platform situated at the northern Gondwana 
margin with significant deposition of mixed carbonate-
siliciclastic sediments during the Permian and mostly 
siliciclastic deposits in the Early Triassic [72]. The Mid-
dle Triassic was marked by the separation of the Adria 
Microplate and sedimentation of carbonate facies with 
locally significant volcanoclastic influences. Late Trias-
sic dolomites and limestones represent typical deposits 
of the large isolated Southern Tethyan mega-platform 
[72] that experienced rift-induced fragmentation result-
ing in a number of long-lasting carbonate platforms dur-
ing the Triassic-Jurassic transition. The largest among 
these platforms was Adriatic-Dinaric Carbonate Platform 
(ADCP) consisting of four tectonostratigraphic units: the 
Dinaric NE unit (Inner Karst), Dinaric SW unit (High 
Karst), Adriatic NE unit (Dalmatian Karst) and Adriatic 
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SW unit (Istrian Karst) ([33] and references therein). The 
disintegration of the ADCP, characterized by ramp-type 
carbonate deposition along the margins and the devel-
opment of flysch basins, started in the Late Cretaceous, 
while the Cretaceous-Palaeogene transition was marked 
by a period of regional emergence involving the entire 
platform. As dynamic tectonics continued into the Palae-
ogene, the platform depositional sequences were mostly 
under control of intense synsedimentary tectonics, some-
times deposited in the ramp-like settings. The final uplift 
of the entire Dinaric area as a result of collision between 
the Adriatic and Dinaric segments reached its culmina-
tion in the Oligocene–Miocene.

Diverse and complex bedrock geology, climate and 
relief result in a wide range of soils developed in the DIN 
landscape. Encompassing the coastal and mountain-
ous areas in the SW part of Croatia with their typical 

carbonate bedrock, the landscape is dominated by vari-
ous types of automorphic soils, in particular polygen-
etic Cambisols (eutric, distric, chromic) developed on 
dolomite and limestone as well as Leptosols, Regosols, 
Melanosols and anthropogenic soils on flysch bedrock 
[7]. In the southern part of the Croatian coastal regions 
are areas under hydromorphic soils—Fluvisols and Gley-
sols—especially in the Neretva River valley and in some 
karst poljes [8, 11].

Field and analytical procedures
Sampling
The locations of the sampling sites and the sampling 
density were defined by the systematic sampling design 
according to the ISO 10381-1 and ISO 10381-2 [30, 
31] protocols whereby each cell represents the area 
of 25  km2 in a regular grid of 5 × 5  km2. This scheme 

Fig. 1 Geographical position of the study area with sampling points (5 × 5 km grid)
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includes 1247 soil sampling sites covering the entire 
DIN part of the country (Fig. 1). Samples were collected 
from the centre of each cell within the tolerance circle 
of 15% around the central cell point. The randomness 
of sampling sites was defined during a pilot geochemi-
cal mapping project related to karst terrains in Croatia, 
which situated the initial sampling point in the heart 
of the Istrian Peninsula [57]. Soil samples were taken 
in the center of the 5 × 5 km cell. Soils were sampled 
with a plastic spade from five shallow pits on each site 
in the depth interval 0 to 25 cm. One composite sample 
was prepared for every sampling location. Detailed soil 
sampling protocols, statistical methodology, and the 
choice of sampling cell size are presented in the papers 
by Pirc et al. [57], Prohić et al. [58, 59], and Miko et al. 
[40, 42] and finalized by the completion of the GAC 
[27], together with the laboratory protocols and a 
detailed field and data handling manual that basically 

followed the geochemical mapping protocols presented 
in the report by Darnley et al. [16].

Inasmuch as numerous environmental geochemi-
cal studies have shown that the optimal grain size frac-
tion for characterization of the trace element contents 
of soils and sediments should not exceed 0.180  mm 
[16, 35, 66], the chemical analysis was carried out on 
fractions < 0.063 mm.

Sample preparation and analysis
The soil samples were dried and homogenized and then 
dissolved in a mixture of concentrated acids HF-HCl-
HNO3-HClO4. Solutions were analysed by mass spec-
trometry using a Perkin Elmer Elan 6000 or 9000 ICP-MS 
[2] for a set of 41 elements: Ag, Al, As, Au, Ba, Be, Bi, Ca, 
Cd, Ce, Co, Cr, Cu, Fe, Hf, K, La, Li, Mg, Mn, Mo, Na, Nb, 
Ni, P, Pb, Rb, S, Sb, Sc, Sn, Sr, Ta, Th, Ti, U, V, W, Y, Zn, 
and Zr. In the process, the recovery of refractory miner-
als such as cassiterite, wolframite, chromite, spinel, beryl, 

Fig. 2 Simplified geological map of the study area
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zircon, tourmaline, magnetite and barite was incomplete 
after the 4-acid digestion. Moreover, due to the evapo-
ration of  HClO4, losses of As and Cr were also possible, 
while silica completely evaporated with HF. Mercury 
analysis was performed using aqua regia extraction by 
flameless atomic adsorption spectrometry (FAAS).

The accuracy was controlled by certified geological 
reference materials, i.e., GXR-2, GXR 5, and SJS-1 soils 
from the USGS (ACME Labs). The accuracy for most ele-
ments analysed in reference soil materials was found in 
the range of ± 10% of the certified values. The precision 
was determined by repeated analyses of both certified 
reference samples and randomly selected soil samples 
(every 20th sample in the batch) with a resulting average 
coefficient of variation of approximately 5%.

Analyses of total organic (TOC) and inorganic (TIC) 
carbon abundances were performed on sieved soil sam-
ples with an elemental Thermo Fisher Scientific Soil Flash 
2000 NC analyser. To determine carbon in organic form, 
carbon measurements were carried out after removal of 
carbonates from the soil. Carbonates were removed by 
adding an aqueous acid solution (1 M HCl) to soil sam-
ples. A subset of samples was checked by XRD diffraction 
to check whether the dissolution of carbonates was com-
plete. The total inorganic carbon was calculated by the 
difference between total carbon (untreated sample) and 
total organic carbon (sample treated with 1 M HCl).

Statistical processing and map generation
The data
The spatial continuous geochemical database of the 
Dinaric region includes 1459 samples of which the 
greater part (1247 samples) was collected in a regular grid 
of 5 × 5  km while the rest was taken from denser grids 
of 2.5 × 2.5  km and 1 × 1  km, which had been designed 
for the purpose of closer inspection into the geochemical 
landscapes of several national parks of Croatia (Brijuni, 
Plitvice Lakes, Risnjak and Mljet) as well as special karst 
features such as karst poljes [59]. The latter database was 
created for special purposes and was not included in the 
present study. The primary 5 × 5 cell database planned 
for statistical analysis was formed in the  ESRI® ArcInfo™ 
10.2.1 GIS software and designed in such a way that each 
particular sample point was connected to the set of its 
description data consisting of coordinates, relief, slope, 
lithology, soil structure, soil texture, environment, poten-
tial pollution, organic matter, remarks, colour description 
(according to Munsell [44]), results of chemical analysis, 
three levels of Corine Land Cover 2012 categories, geo-
graphic region, and soil type. A reduced set of 26 (8 major 
and 18 trace elements) out of the total set of 41 analysed 
elements and soil organic carbon (TOC) was selected for 
further analysis and representation in this work following 

the recommendations of Darnley et al. [16] that elements 
having concentrations lower than detection limits in 
more than 20% of the samples should not be exploited for 
statistical and mapping purposes. Where measured con-
centration values were below the detection limit, half the 
detection limit was used for statistical analysis accord-
ing to the Guidelines for the FOREGS-EuroGeoSurveys’ 
Geochemical Baseline Mapping [16, 19, 62].

Compositional data analysis
The original dataset contains the suite of 28-part geo-
chemical compositions used routinely in similar previ-
ous investigations based on the low-density soil sampling 
during the geochemical mapping of Croatia (e.g., [28, 42, 
51]), namely, Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, 
Mn, Na, Nb, Ni, P, Pb, Sc, Sr, Th, Ti, V, Y, Zn, and Zr but 
also including N and TOC in this case. These variables 
were selected as input data (predictors) for discriminant 
function analysis (DFA) in pursuance of the behaviour of 
potentially toxic elements in the topsoils (soil depth from 
0 to 25 cm) developed on the Croatian karst. Descriptive 
statistics for the whole dataset—min, max, median, Q1 
and Q3 quartiles, median absolute deviation (MAD) and 
geometric mean (g)—are summarized in Table 1 showing, 
however, information that is suitable only for compari-
son purposes since the data displayed represent relative 
rather than absolute values. A notorious truth that soil 
geochemical data represent a typical example of compo-
sitional data (CoDa) should effectively preclude their use 
in the raw form in any statistical analysis [22]. The nature 
of CoDa involves the mathematical peculiarity that all vari-
ables (component parts) in each individual case (analysed 
sample) are always positive and constrained to a constant 
sum defined a priori as 100%,  106 ppm, or 1.0. By virtue of 
the unit-sum constraint, CoDa can be naturally displayed 
only in the restricted sample space (compositional space) 
known as simplex and consisting of D parts or compo-
nents (geochemical variables). A set of D-part composition 
 (SD) occupies a restricted part (from zero to, say, 100%) of 
a D-dimensional real space  (RD), forming a subset of its 
vectors [12, 13, 46]. The principles of the simplex as the 
natural sample space for compositional data are conveyed 
through the following expression [12, 47]:

where κ is a constraint-sum constant; x1, x2, x3,…, xD are 
components of the composition x; and 1, 2, 3,…, D are 
parts of the composition x.

The simplex can “unfold” in the Euclidean vec-
tor space only after the proper transformation of its 
components. Since the treatment of the closed data 

(1)

S
D =

{

(x1, x2, x3, . . . , xD) : xi > 0(i = 1, 2, 3, . . . , D),

D
∑

i=1

xi = }
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seriously interferes with the methods of traditional 
statistics, this transformation is mandatory in order 
to safely apply standard statistical techniques. From a 
number of transformations used in the literature, the 
centred log-ratio transformation (clr) of raw (compo-
sitional) data, originally proposed by Aitchison [3], 
is used in this work. The application of the centred 
log-ratio is held indispensable for CoDa processing 
in multivariate statistical methods such as DFA since 
the clr preserves the original distances between cor-
responding compositions and allows them to be han-
dled in a straightforward way [22, 67]. Simultaneously, 
the singularity problem inherent to a clr-transformed 
covariance matrix can be circumvented allowing DFA 
to operate on its reduced form, that is, not relying on 
the full rank of covariance [17]. Since clr-transformed 
data represent unbounded real vectors in a real space, 
Mahalanobis distances (MD) remain invariant regard-
less of which component may be removed from analysis 

[4]. Conveniently, nonessential clr-transformed vari-
ables may be amalgamated (“other”) and removed from 
further analysis.

Clr-coefficients can be computed from the following 
expression:

where x1, x2, x3,…, xD are components of the composition 
x and g(x) represents their geometric mean.

Discriminant function analysis—the strategy
DFA is a powerful statistical tool for approaching a great 
number of numeric attributes such as, in this example, 
the geochemical compositions of soils developed on the 
karst bedrock.

This technique aims to reduce problems with organiza-
tion, distinction, or comparison of the vast body of data 

(2)

clr(x) =

(

ln
x1

g(x)
, ln

x2

g(x)
, ln

x3

g(x)
, . . . , ln

xD

g(x)

)

Table 1 Descriptive statistics for raw (compositional) geochemical data

Q1, Med; and  Q3 are the sample quartiles (25th, 50th and 75th percentile); MAD is median absolute deviation; g is geometric mean

Element Min Q1 Med Q3 Max MAD g

Al (%) 0.9 6.48 7.45 8.48 14.04 1.010 7.087

As (ppm) 2.2 12.0 16.0 22.0 105.0 5.000 15.133

Ba (ppm) 35.0 253.0 306.0 360.0 840.0 53.000 289.491

Ca (%) 0.08 0.58 0.97 2.07 28.73 0.051 1.224

Cd (ppm) 0.1 0.4 0.9 1.5 15.5 0.6000 0.750

Co (ppm) 2.0 13.0 17.0 20.0 43.0 3.000 15.682

Cr (ppm) 15.0 84.5 107.0 132.0 443.9 23.100 105.720

Cu (ppm) 6.0 23.0 31.1 40.8 429.0 8.700 31.406

Fe (%) 0.43 3.24 3.9 4.57 8.02 0.660 3.714

K (%) 0.18 1.07 1.29 1.53 3.79 0.230 1.247

La (ppm) 4.0 40.0 49.0 57.0 185.0 8.000 46.006

Mg (%) 0.16 0.54 0.7 0.87 10.47 0.16 0.755

Mn (ppm) 96.0 711.0 957.0 1223.0 3839.0 254.0 895.123

Na (%) 0.048 0.276 0.419 0.6 1.78 0.162 0.393

Nb (ppm) 1.0 10.1 13.0 17.0 30.0 3.000 12.794

Ni (ppm) 7.0 50.0 68.0 88.0 289.0 18.200 64.618

P (%) 0.015 0.047 0.061 0.085 0.684 0.017 0.065

Pb (ppm) 10.0 33.0 43.0 54.0 177.0 10.200 41.715

Sc (ppm) 1.0 10.0 12.0 13.0 115.0 2.000 11.045

Sr (ppm) 22.0 72.0 84.0 98.0 588.0 13.000 87.551

Th (ppm) 2.0 12.0 14.4 17.2 29.7 2.600 13.672

Ti (%) 0.05 0.374 0.428 0.473 0.94 0.050 0.403

V (ppm) 9.0 111.0 137.0 167.0 473.0 27.000 134.148

Y (ppm) 4.0 18.00 25.0 32.4 201.0 7.000 23.995

Zn (ppm) 16.0 85.0 104.0 126.0 638.0 21.000 102.567

Zr (ppm) 11.0 55.1 72.3 102.0 551.0 21.400 73.031

N (%) 0.03 0.24 0.34 0.47 2.21 0.110 0.337

TOC (%) 0.53 2.99 4.39 6.13 25.31 0.147 4.342
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to a scale providing clearer insight into the underlying 
geological and environmental controls. In addition, data 
processed in this way can develop a mapping quality that 
explains the relationship among the original variables 
more clearly.

The aims and principles of DFA are described in detail 
elsewhere (e.g., [18, 20, 61]) and have been explained 
repeatedly by the present authors in various geochemi-
cal and environmental studies [23, 26, 28, 34, 49, 50, 52, 
53, 65]. It suffices to say in this paper that DFA is a mul-
tivariate method that is particularly effective in pursuing 
the major sources of between-group differences which, 
in this study, derive their origin from the accumulation 
of heavy metals and possibly harmful elements (PHE) 
in karst soils. To this purpose, a vast body of data (1247 
soil samples) must be previously organized in a man-
ner that provides the most effective relation between 
the soil geochemical signature and various facets of the 
soil immediate environment. The definition of grouping 
criteria is crucial in this respect since geochemical pat-
terns in the sampling media, as a rule, always follow the 
bigger picture on a regional scale—geological, environ-
mental and other systemic constraints prevailing in the 
investigated area (Croatian Dinaric region). Of necessity, 
these principles are autonomous with regards to the ana-
lysed variables (see, e.g., [61]). One of the most obvious 
standards suitable for the group characterization in the 
present case is the underlying geology (lithology). This 
characterization is based on earlier research work [28] 
that has proved profitable, emphasizing the strong geo-
chemical contrast between the soil geochemistry of the 
two regions of Croatia broadly defined as the DIN and 
PAN areas. Consequently, although the bedrock is pre-
dominantly carbonate in both regions, bedrock underly-
ing the soils of the DIN was expected to be lithologically 
sufficiently diversified to affect the geochemical signal. 
Further, earlier investigations [42] strongly suggested 
that geographical division (zoning) may show distinctive 
preferences in the areal distribution of certain elements 
irrespective of the underlying geology. Last but not least, 
the recent investigations concerning the GEMAS Pro-
ject (Geochemical mapping of agricultural and grazing 
land soil) [60] indicated the usefulness of the land cover 

classes, borrowed from the Corine Land Cover (CLC) 
inventory, in the search for environmental impacts on the 
geochemical composition of soils.

Following the suggestions given above, three main 
themes of this work are outlined with respect to the 
presented grouping strategy—GEOLOGY, REGION, 
and CLC. In each particular case, a different number of 
classes is derived depending on the nature of the group-
ing variables, which originate, at least partly, from the 
familiar ‘clorpt’ equation (climate—organisms—relief—
parent material—time) that describes the role of vari-
ables (state factors) in the process of soil formation (e.g., 
[9, 54, 55]). This concept was later extended to include 
ecosystem, soil, vegetation and fauna (e.g., [10]) and 
finally reviewed in a recent work on soil complexity 
and pedogenesis [56]. The groups (Table  2) are formed 
according to the following sources: the GEOLOGY divi-
sion is based on the general lithology of the investigated 
area accepted from the Geological Map of the Republic 
of Croatia (1:300,000; [14]) and contains five groups con-
sisting of siliciclastic rocks (1), Quaternary sediments 
(2), carbonate rocks (3), carbonate clastic rocks (4) and 
flysch (5); the REGION division uses the map of agricul-
tural regions and sub-regions of Croatia [8] modified at 
the DIN-PAN border to accommodate the distribution 
of predominant carbonate lithology and is composed of 
five groups consisting of North, Mid and South Mediter-
ranean (NMED (1), MidMED (2), SMED (3)), mountain-
ous (MOUNT (4)) and sub-mountainous (SubMOUNT 
(5)) regions; and finally, the CLC division exploited the 
most general level of standard CLC classification (Label 
1) from the Corine Land Cover 2012 (CLC2012) ras-
ter data (European Environment Agency (EEA, http://
www.eea.europ a.eu)), combined into 4 groups consist-
ing of artificial surfaces/urban or builtup areas (ARTS 
(1)), agricultural land (AGRS (2)), forests/forest land and 
semi-natural areas (FSNA (3)) and wetlands (WETL (4)) 
(Fig. 3). In all four cases containing 1247 valid objects in 
total (N), the same suite of variables (p = 28) is used.

Table 2 Grouping criteria

N number of cases in each respective group

Group GEOLOGY n REGION n CLC n

G1 Siliciclastic rocks 47 North (NMED) Mediterranean 242 Artificial surfaces (ARTS) 61

G2 Quaternary sediments 98 Middle (midMED) Mediterranean 234 Agricultural surfaces (AGRS) 355

G3 Carbonate rocks 946 South (SMED) Mediterranean 313 Forests and (FSNA) seminatural areas 829

G4 Carbonate clastic rocks 103 Mountainous zone (MOUNT) 346 Wetlands (WTL) 2

G5 Flysch 54 Sub-mountainous zone (subMOUNT) 112

http://www.eea.europa.eu
http://www.eea.europa.eu
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Results and discussion
A concise summary of the main results of the analysis 
is displayed in the joint table (Table  4) comprising the 
three explanatory discriminant models. The overall sig-
nificance of their discrimination is tested beforehand by 
the appropriate multivariate tests (Table 3), revealing the 

vanishingly low associated probabilities at the p < 0.05 
level, which are essential in order to proceed safely with 
computing discriminant functions (DF). In virtue of the 
high separation potential of the computed DFs in all dis-
criminant models, ample parsimony was achieved by 
attaching a plausible geological meaning to the selection 
of functions explaining the highest portion of the total 
variance. As shown in Table 4, most of the total between-
group variance (80% or more) is sufficiently explained in 
all models by the first two DFs. Additionally, a grouping 
principle accountable for a high number of pre-defined 
groups has proved itself quite suitable for DFA analysis as 
the overall classification rate is rather high, amounting to 
a classification efficiency of 80% and greater in the cases 
of the REGION and GEOLOGY criteria, respectively 
(Table 5). It must be noted in this regard that raising the 
level of CLC degrades the classification rates remarkably, 
reducing the values from 70% for the first level (CLC-1) 
with four registered groups to approximately 50% for the 

Fig. 3 CLC map (the most general level of standard CLC classification, Label 1)

Table 3 Multivariate test for  overall significance 
of discrimination

Models

GEOLOGY REGION CLC

No. of groups 5 5 4

Wilks’ lambda 0.404 0.075 0.760

Approximate F ratio 11.037 39.597 4.164

Degrees of freedom [112; 4828] [112; 4828] [84; 3638]

p level p < 0.000 p < 0.000 p < 0.000



Page 9 of 22Hasan et al. Geochem Trans            (2020) 21:1 

second level (CLC-2) containing 11 registered groups, 
and finally to 33% for the third level (22 recorded groups). 
This situation is why the base level (CLC-1) is preferred 
from among the different choices for the purpose of this 
investigation.

Functional models—labelling the discriminant functions
The labelling of DFs is essentially a transfiguration of 
the structural (mathematical) into functional (process) 
models, which in this case are essentially geochemical. 
The technique of labelling discriminant axes is thor-
oughly described elsewhere, including an explanation 
of why scatterplots are used instead of biplots in the 
CoDa analysis (e.g., [23, 52, 65]). Suffice it to say that 
the group centroids (means) are exploited in this work 
as the alternative for the host of individual objects in 
the construction of the scatterplots. This alternative is 
used in order to improve the intelligibility of represen-
tation, which may be marred by a high number of sam-
ple points occupying the reduced discriminant space. 

The group means are also useful later in calculating the 
contribution of each DF to a particular group.

Scatterplots of variable loadings and group centroids 
are constructed for all discriminant models applying 
the first two DFs that explain the greatest portion of 
the between-group variance. The models are compared 
using multiple scatterplots of the DF1 and DF2 pairs of 
discriminant function (orthogonal axes) (Figs. 4, 5 and 
6).

GEOLOGY model
In the GEOLOGY model (generally referring to the 
parent-material state variable, p) the first discriminant 
function DF1 separates on the basis of the carbonate/
siliciclastic lithological contrast of the parent material 
and corresponding affinities of certain elements, prin-
cipally Ca and Sr, identifying the flysch bedrock as the 
main source of geochemical variation in the soil sam-
ples (Fig.  4). DF1 is thus essentially monopolar, empha-
sizing the uniqueness of the flysch group, which plots 

Table 4 Tests of residual roots (discriminant functions) for all three models 3.3

DF Eigen value Eigen (%) Eigen cum Canon. R Wilks’ λ χ2 df p-level

GEOLOGY

 1 0.558 51.94 51.94 0.598 0.404 1113.1 112 0.000

 2 0.334 31.11 83.05 0.500 0.630 568.0 81 0.000

 3 0.119 11.05 94.10 0.326 0.841 213.5 52 0.000

 4 0.063 5.90 100.00 0.244 0.940 75.6 25 0.000

REGION

 1 2.462 58.52 58.52 0.843 0.075 3181.7 112 0.000

 2 0.887 21.08 79.60 0.686 0.260 1654.7 81 0.000

 3 0.509 12.10 91.70 0.581 0.491 874.0 52 0.000

 4 0.349 8.30 100.00 0.509 0.741 368.1 25 0.000

CLC

 1 0.201 68.10 68.10 0.409 0.760 337.7 84 0.000

 2 0.059 20.18 88.28 0.237 0.912 112.8 54 0.000

 3 0.035 11.72 100.00 0.183 0.967 41.8 26 0.026

Table 5 Classification matrix

Group labels (first column) in each division (criterion) in accordance with the Table 2

Observed 
groups

Predicted groups

GEOLOGY REGION CLC

G1 G2 G3 G4 G5 Total % correct G1 G2 G3 G4 G5 Total % correct G1 G2 G3 G4 Total % correct

G1 24 6 16 1 0 47 51.06 211 6 3 19 3 242 87.19 4 15 42 0 61 6.56

G2 7 24 52 5 9 97 24.74 10 183 18 22 1 234 78.21 7 120 226 2 355 33.80

G3 16 12 889 9 20 946 93.97 12 28 263 9 1 313 84.03 8 71 749 1 829 90.35

G4 0 2 79 20 2 103 19.42 11 12 7 288 28 346 83.24 0 0 0 2 2 100.00

G5 0 2 17 1 34 54 62.96 4 0 1 21 86 112 76.79

Total 47 46 1053 36 65 1247 79.47 248 229 292 359 119 1247 82.68 19 206 1017 5 1247 70.17



Page 10 of 22Hasan et al. Geochem Trans            (2020) 21:1 

far from the intersection of the DF1 and DF2 axes. This 
arrangement is essentially caused by the nature of the 
parent material as one of the crucial state factors (vari-
ables) of soil formation. Soils that evolved on flysch 
(mostly Leptosols (rendzinas)) and formed on soft marls 
and weakly consolidated calcareous sandstones are 

typically “immature”, that is, incipient and undeveloped 
as a result of the strong dynamism involving progressive 
and regressive pedogenesis in the process of rapid ero-
sion and mixing of fresh parent material with the already 
formed regolith. This process, recognized on the Istrian 
Peninsula [40, 48, 51, 57, 58, 75] and elsewhere along the 

Fig. 4 Comparison between variables and groups in the GEOLOGY, REGION and CLC discriminant function models (clr-transformed data): 
scatterplots of a variable loadings and b individual objects (samples) in the reduced discriminant space of the first two discriminant functions (DF1–
DF2)
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Adriatic coast [27], results in a “dilution effect” that places 
in clear relief the flysch- and carbonate-derived soils. As 
a rule, undeveloped (flysch-derived) soils do not exhibit 
typical enrichment in trace elements but stable or even 
depleted concentrations instead [38], while elevated con-
tents of carbonate minerals (elevated Ca and Sr) are the 

result of poor drainage and leaching, which, conversely, is 
a norm of “mature” soils evolved over carbonate bedrock. 
Thus the latter, develop in a quite different pedo-envi-
ronment, often end up as a repository for PHE and other 
trace elements whose accumulation may be additionally 

Fig. 5 Comparison between variables and groups in the GEOLOGY, REGION and CLC discriminant function models (clr-transformed data): 
scatterplots of a variable loadings and b individual objects (samples) in the reduced discriminant space of the first two discriminant functions (DF1–
DF2)



Page 12 of 22Hasan et al. Geochem Trans            (2020) 21:1 

enhanced by human-influenced environmental processes 
[51].

Apart from DF1, whose primary discriminatory role is 
the flysch/carbonate bedrock contrast, DF2 adds another 
dimension to the model and explains the most of the 
remaining (residual) variance left after DF1 is removed. 
DF2 is also concerned with the flysch group, which is 

separated from the “siliciclastics” group (siliciclastic-
derived soils) in a clearly displayed bipolar relationship. 
In this case, the flysch group differs from its clastic coun-
terpart by reason of the Ni/K–Al–Ti–(…) inverse rela-
tionship revealing enrichment in Ni (followed by Co, Mn, 
and Cr, that is, potentially harmful elements, PHE) in the 
former and deficiency in the latter. On the other hand, 

Fig. 6 Comparison between variables and groups in the GEOLOGY, REGION and CLC discriminant function models (clr-transformed data): 
scatterplots of a variable loadings and b individual objects (samples) in the reduced discriminant space of the first two discriminant functions (DF1–
DF2)
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the siliciclastics group is enriched in K and Al, most likely 
in the form of clay minerals and rock-forming feldspars, 
which are, conversely, relatively under-represented in the 
flysch-derived soils. The presence of the K–Al assemblage 
indicates in situ formation of soil clay minerals by altera-
tion of aluminosilicate parent minerals which, simulta-
neously with illuviation, may be the dominant process 
of soil formation over the siliciclastic bedrock. Further-
more, the closeness of Fe and Al (Fig.  4) suggests the 
ubiquitous problem with soil acidity associated with soils 
developed on siliciclastic bedrock. Conversely, the PHE 
suite of elements in flysch-derived soils is probably of 
aeolian origin, accumulated relatively recently from the 
Raša port industrial zone and the Plomin thermal power 
plant in Istria [51]. The other three groups are clustered 
close to the DF2 axis, revealing their impartiality with 
regards to the geochemical signature of the overlying 
soils conveyed by this function. Indubitably, the central 
(near the axis intersection) position of the carbonate 
groups in both the DF1 and DF2 cases is induced by their 
excessive weight (84% of all observed or a priori classified 
data, Table  5) that, however, enables the uniqueness of 
the formerly described groups to be perceived in clearer 
relief. “Gravity” of the carbonate group is highlighted by 
the computed classification rates resulting in 94% correct 
assignments. A significant body of data (10.5%) has been 
relocated from other groups based on the mathematically 
predicted (a posteriori) classifications (Quaternary sedi-
ments and carbonate clastic rocks in particular) show-
ing their greater affinity to the carbonate group, that is, 
the geochemical signature characteristics for carbonate-
derived soils.

REGION model
The REGION model approximately adheres to the cli-
mate and relief as the state factors (cl, r) of soil forma-
tion. As in the former case, the first two discriminant 
functions are sufficiently informative in explaining the 
natural processes underlying the data structure (80% 
of the total variance). At first glance, the characteristic 
group pattern emerges showing SMED-MidMED-NMED 
group alignment with mountainous (MOUNT and Sub-
MOUNT) groups apart in the hinterland, all mimicking 
the predominant northwest-southeast Dinaric direction 
of regional mountain ranges, albeit with the SMED and 
NMED groups in inverted geographical positions [cf. 
Fig.  1 (geographical position) and Fig.  5]. This peculiar 
diagonal arrangement needs clarification in both DF1 
(SMED) and DF2 (NMED) domains. DF1 is bipolar and is 
primarily concerned with differences between the moun-
tainous (MOUNT and SubMOUNT) and SMED soils, 
while DF2 shows differences between mountainous and 
NMED soils (Fig. 5). In the first case, elements forming 

the clay minerals such as Al, K and Na together with Ti, 
Fe, Sc and Ba are highlighted, a pattern suggesting the 
dominance of clay component and a possible role of Fe 
and Al oxy/hydroxides in sorption of PHE, especially Zn, 
in MOUNT/SubMOUNT soils (e.g., [45, 63, 71]). This 
interpretation is supported by the suggestive absence 
of characteristic trace elements such as Pb or Cd on the 
part of the latter in contrast to the soils from the south-
ernmost coastal part of the investigated area (SMED). 
Additionally, SMED and MidMED soils are characterized 
by increased Zr and Ca, both indicating the presence of 
detrital heavy minerals such as zircon, external materi-
als (of aeolian origin) [21, 73], and carbonate particles. 
These elements probably appear due to hindered leach-
ing and eluviation on the characteristic carbonate lithol-
ogy of undeveloped soils on flysch [51, 58]. The Ca/Al–Fe 
inverse relationship in DF1 reinforces the image of poten-
tial stress from Al and/or soil acidity in the MOUNT and 
SubMOUNT groups (Fig. 5).

DF2 is also bipolar, and it further clarifies the par-
ticular deployment of the two mountainous groups. 
Groups are separated in this case into the northern and 
central regional divisions (NMED and, less accentu-
ated, MidMED) on account of increased contents of Cr, 
Ni, Co and Mn in the latter. These elements are typical 
PHE and pose great pressure on the natural ecosystem, 
unambiguously deriving their origin from anthropo-
genic sources represented by the numerous industrial 
and power plants and oil refineries in the upper Adriatic 
(Plomin, Rijeka) and metal processing factories in the 
middle Adriatic (Obrovac). The mountainous and sub-
mountainous regions appear in this context as almost 
pristine areas except for Pb, which is also typical for the 
soils of the south Adriatic territory, probably for two rea-
sons: long-range aeolian transport and high precipitation 
in case of the highest mountain areas and traffic in both 
regions. Last but not least, Ca is also among the elements 
associated with the SMED and MidMED groups (Fig. 5), 
emphasizing the NW–SE-trending increase in carbonate 
content in the topsoils.

CLC model
The most general level of the CLC model, referring 
broadly to the ecosystem, vegetation and animal prop-
erties in Jenny’s extended soil functional-factorial 
model ([32], described in [10]), explains almost 89% 
of the total variability by the first two (DF1 and DF2) 
of three discriminant functions altogether (Table  3). 
The first of these is all-important (68%), and albeit 
bipolar, contrasting all first-level land cover classes 
against a single one—forest and semi-natural areas 
(FSNA)—it highlights the latter group which, simi-
larly to the GEOLOGY model, gravitates to the centre 
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of a scatterplot due to its extreme weight (over 66% 
of all data) with befitting 90% of correct a posteriori 
assignments (Fig. 6 and Table 5). Accordingly, all other 
groups are distinguished by their shared geochemical 
signal primarily lacking in those component parts that 
abound in the FSNA group. It comes as no surprise that 
FSNA in the explored model indicates that the forest 
ecosystem is under considerable environmental stress 
caused by acidic deposition and human interventions 
such as forest harvesting and agricultural activity. This 
problem is easily observed in the reciprocal position 
of Ca with respect to both Al and Fe resulting from 
increasing soil acidity (organic acids) (Fig.  6) [15, 25, 
69]. Further, all other vital components also contribute 
to the gloomy picture of the impacted forest ecosystem 
showing deficiencies in clay component and soil ferti-
lizers (K, Na and P) in the FSNA group with regards to 
the ARTS and AGRS groups and especially the WETL 
group (albeit the latter contributes merely two sam-
ples to the model), which are all relatively enriched in 
these elements. The close mutual positions of Al and 
Fe characterizing the FSNA group may well result from 
immobilization of organically bound Al and Fe due to 
precipitation, perhaps through the formation of solid 
Al–Si–OH, and Fe–OH phases in the coniferous for-
est soils [36] that predominate in the NW part of the 
mountainous Dinaric hinterland. Simultaneously, the 
presence of Pb, Cd and Zn, most likely deriving from 
acid rains in the elevated areas (DF2 in Fig.  5), only 
enhances the process of nutrient depletion and the 
accompanying contamination of the forest soils. On the 
whole, the buffering capacity of the forest soils against 
acidification is lower with respect to agricultural or 
otherwise used soils (ARTS) due to liming or other 
acid-neutralizing amendments [5]. To this feature must 
be added the problem of long-recognized chronic nitro-
gen deposition via atmospheric pollution resulting in 
N-saturation in the forest topsoil [1] (see DF1 in Fig. 6). 
Naturally, the relatively increased carbonate compo-
nent together with the K–Na–P suite in other groups 
not only may result in a negative image of FSNA but 
also may emerge through anthropogenic impact (ferti-
lization) that is intense in some areas (including Cu for 
vineyards, as on the Istrian Peninsula) (see Fig. 7c).

As for DF2, it provides additional insight (20%) into 
the group deployment separating ARTS from WETL 
based primarily on the high contrast associating Pb with 
artificial surfaces with regards to the latter. However, 
due to its characteristic geochemical signal, the WETL 
group with its mere two samples is not confounded with 
any other group, let alone ARTS, which on the contrary 
loses almost all of its objects (94%) to other groups, seri-
ously questioning its a priori defined integrity in the 

investigated area. As seen from Table 5, exactly the FSNA 
soils accepted the majority of ARTS samples. The AGRS 
group with only 34% of correct assignments is also almost 
imperceptible as a standalone group losing the majority 
of its samples to FSNA. Thus, precisely the latter group 
profoundly characterizes the geochemical signature of 
the dominant land cover type in the study area, greatly 
altering the original CLC map (cf. Figs. 6 and 7c).

Functional models—soil geochemical maps
The key feature of DFA modelling is that it produces 
numeric values (discriminant scores) suitable for spa-
tial display of parameters accounting for discrimination 
of investigated groups. Hence, such modelling indirectly 
expounds both dissemination of the group samples and 
internal cohesive strengths of groups on the terrain. 
Concerning the latter, the models also provide estimates 
announcing how closely the group samples hold together 
by virtue of the probability that any case (sample) holds 
on to a particular group (via posterior classification prob-
abilities) and thus ultimately highlighting the processes 
(explained by the predictor variables) that account for a 
particular spatial pattern in the investigated area. Geo-
chemical maps generated in this way may be very helpful, 
for example, in physical planning because they promptly 
indicate the quarters of adverse impacts on the environ-
ment produced by human activity. Karst terrains are 
especially vulnerable in this case, and forest ecosystems 
with the increasing problems of acidification, soil ero-
sion, disruption of the water cycle and possible loss of 
biodiversity are particularly so. Statistically speaking, 
their profits heavily rely both on success rates calculated 
in the overall classification design and on the power of 
discrimination functions to distinguish among groups 
with the highest accuracy possible. Accordingly, two 
types of geochemical maps are constructed in this work 
based on two different families of statistical indices gen-
erated by DFA, namely, the maps of posterior (post hoc) 
probabilities (regarding the specific group selected on the 
basis of its specific relevance) and the maps of discrimi-
nant scores (with respect to a particular DF). Both cate-
gories have already proved useful in various geochemical 
and environmental investigations [28, 65].

The map generation
The maps are generated using the ArcGIS™ 10.2.1 exten-
sion Spatial Analyst with the Universal Krigging method. 
For the purpose of map generation, the discriminant scores 
are divided into eight percentile classes: 5th, 10th, 25th 
(lower quartile), 50th (median), 75th (upper quartile), 90th 
and 95th percentiles because the application of the same 
percentiles for all data allows comparison of the respective 
spatial distribution maps. Maps of posterior probabilities 
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Fig. 7 Discriminant score maps of a GEOLOGY, b, REGION and c CLC models representing areal distribution of the first (DF1) discriminant function. 
Increasing influence of the respective geochemical signatures displayed in warm colours (yellow–red)
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are divided into seven probability classes: < 0.10, 0.10–0.25, 
0.25–0.50, 0.50–0.75, 0.75–0.90, 0.90–0.99 and > 0.99. In 
the case of posterior probability maps, percentiles are pro-
vided by the spreadsheet containing posterior probabilities 
generated during the computational process. The classes 
displayed on the geochemical maps range in colour from 
blue hues for the lowest via green, yellow, and orange to red 
for the highest values.

In the former case, classification efficacy serves as a 
powerful indicator by which the stability of the previously 
defined groups can be screened, weighing mathemati-
cally predicted against original (observed) classifications 
(Table 5).

Discriminant function vs. posterior probability maps—
mapping the soil processes and validation of grouping 
criteria (classification rates)
Inspection of the plots showing the most informative dis-
criminant functions (DF1 and DF2) allows cross-compar-
ison between the models—an approach elucidating the 
dominant processes in control of the geochemical signature 
in the soils of the investigated area (Figs. 4, 5 and 6). Thus, it 
is readily apparent that the combination of certain elements 
such as Al, Fe, K, Na, Zn, Pb, and Ti signalling the presence 

of organically bound metals, clays and some potentially 
harmful elements (PHE) is regularly affiliated with particu-
lar groups in all models. This arrangement bonds siliciclas-
tic rocks (GEOLOGY), mountainous zones (REGION), 
and forest and semi-natural areas (mostly woodlands, 
CLC) into the sphere of influence controlled by the pro-
cesses that endanger the karst region at large, especially 
the forested hinterlands behind the coastal mountain areas. 
The range of the discriminant scores is displayed on the 
respective discriminant score maps, which can be unam-
biguously interpreted on the single process basis (after 
a selected DF). On the other hand, posterior probability 
maps are understood differently since their orientation is 
towards validation of the group integrity. Accordingly, they 
are designed on a single group basis, highlighting the par-
ticular group as reflecting the sum of all relevant processes 
(represented by respective DFs) that affect its cohesion in 
the investigated area, albeit each with a different contribu-
tion. The involvement of individual DFs in each individual 
group can be easily calculated from the relative position of 
the group centroid represented by its discriminant scores 
(group mean) on all computed discriminant functions. 
Note that in the case of only two discriminant functions 
(reduced discriminant space represented by DF1-DF2 axes 

Fig. 7 continued
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on 2D scatterplots, Figs. 4, 5 and 6), this influence is speci-
fied by the distance (vector length) of the group (G) from 
the origin (DF1/DF2 intersection) in a simple Pythagorean 
relation. In a multi-function case, the length of the respec-
tive group vector is extended accordingly in n-dimensional 
discriminant space and can be displayed by the following 
equation:

where DF1, DF2, …, DFn denote the coordinates (discri-
minant scores, i.e., point projections onto the axes) of a 
particular group centroid (G). The allowance of each DF 
for a group is then computed as DF(n) = DFn2/G2.

In the case of the GEOLOGY model, DF1 is focused 
on soil maturity, the property that strongly delineates 
the zones of flysch development within the karst envi-
ronment (Central Istria and the North Dalmatian hin-
terland in particular, blue hues on Fig.  7a), which are 
characterized by soils largely containing properties 
inherited from the parent rocks and thus being rich 
in carbonate material (Ca and Sr). Warm hues display 
the transition towards carbonate rocks (groups 3 and 
4) (Fig.  7a) via siliciclastic rocks (1) and Quaternary 
sediments (2) (Fig.  4), as indicated by the decrease in 
carbonates and increase in elements of poor mobil-
ity under all environmental conditions such as Th, Nb 
and La due to the high stability of the hosting miner-
als (oxides and silicates). This pattern, characteristic for 
“mature” soils evolved on carbonate bedrock (especially 
in coastal mountainous ranges), has been recognized 
in earlier investigations and is highly perceptible on 
mono-element geochemical maps produced as a result 
of the geochemical mapping of Croatia [27]. However, 
from the group perspective, the GEOLOGY model may 
yield additional information exposed in a post hoc map 
constructed for a single group. This procedure is advan-
tageous in a sense that it may bring to the fore the most 
prominent process underlying all models irrespective 
of the proposed grouping criteria, not necessarily rep-
resented by the first function (DF1). If the latter be the 
case, the differences between the maps might prove 
insignificant from the standpoint of the post hoc clas-
sification of carbonate rocks (3) (cf. Figs. 7a and 8b). On 

(3)

G =

∣

∣
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∣

∣

∣
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√

DF12 + DF22 + · · · + DFn2

the other hand, all models exhibit characteristic cross-
pollination with regards to the Al–Fe–Zn–Ti cluster 
that is characteristic of certain groups—siliciclastic 
rocks (1) in the GEOLOGY model, mountain (4) and 
sub-mountain (5) regions in the REGION model and 
forest and semi-natural areas (3) in the CLC model. In 
GEOLOGY, the “correct” classification rates (p > 0.5) 
are almost exactly limited to outcrops of siliciclastic 
rocks (1) appearing in the interior parts of Croatian 
karst (warm hues on Fig. 8a). The DF2 signalling acute 
soil acidity is prominent in this group, with an over 82% 
contribution among the model DFs (see the scatterplot 
of group means, Fig. 4). The influence of DF1 (maturity) 
in the flysch group (5) is exactly the same (DF2 is only 
16%), the case already recognized from the map of dis-
criminant factor scores (Fig. 7a).

The REGION model exhibits sharp delineation between 
the groups with regard to the changing influence of ele-
ments loading on DF1 in the NW–SE direction. There is 
a characteristic “neutral” geochemical signal character-
izing the NMED and MidMED groups (Istria and North 
Dalmatia with their interiors) set within the interquar-
tile range (25th–75th percentiles) (Fig. 7b). In “regional” 
terms, this is the area where the Na–K–Al–Ti–Sc–Ba–
(Fe) vs. Zr–Cd element clusters are well-balanced, leav-
ing the MOUNT and SubMOUNT areas on one side and 
SMED on the other as “outliers”. Accordingly, the former 
groups seem most endangered by the effects of soil acid-
ity (Al toxicity) while the latter, for its own part, suffers 
increased anthropogenic inputs of Cd and Cu as well as 
Zr as a mark of residual soil evolved on karst bedrock. 
While copper is most likely directly related to viticul-
ture developed in the southernmost part of the Croatian 
coastal area (Adriatic), cadmium in the SMED topsoil 
may partly originate from the former metal industry and 
former agricultural use of poor-quality fertilizers (Ner-
etva valley). From the group standpoint (Fig.  9a), the 
correct assignment of samples to the MOUNT (4) and 
SubMOUNT (5) groups taken together (80%, Table  5) 
corroborates the close relationship between the dis-
tribution of mountain soils and the extent of acidifica-
tion previously described. This process, represented by 
DF1 in the REGION model, participates with 67% in 
the MOUNT group and 56% in the SubMOUNT group. 
However, it also reveals that parts of the north Dalma-
tian area (MidMED) and north Adriatic islands (NMED) 

Fig. 8 Maps of posterior probabilities of GEOLOGY model representing areal distribution of posterior (post hoc) probabilities computed for: 
a siliciclastic rocks (group 1) and b carbonate rocks (group 3). Increasing influence of soil geochemical signatures developed on siliciclastic (a) 
and carbonate rocks (b) displayed by the 75–100 percentile range (orange-red); increasing influence of other rock types (combined posterior 
probabilities of groups 2, 4 and 5) displayed by the 0–25 percentile range (green–blue). Zone of the mixing influences (yellow) displayed by the 
25–75 percentile range

(See figure on next page.)
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Fig. 9 Maps of posterior probabilities of REGION (a) and CLC (b) models representing areal distribution of posterior (post hoc) probabilities 
computed for combined MOUNT + subMOUNT groups (groups 4 and 5) in the former, and FSNA (group 3) in the latter. Influences of respective soil 
geochemical signatures expressed through the posterior probabilities same as in the Fig. 8
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may experience the same problem as interior mountain 
areas (warm hues on Fig. 9a) being post hoc reclassified 
as SubMOUNT/MOUNT soils according to their geo-
chemical signature. The sharp WSW-ENE line dividing 
these groups from “non-mountain” groups (MidMED 
and SMED) to the southeast in all probability represents 
the line dividing depositional environments on the east 
Adriatic coastal area during Pleistocene and Holocene, 
namely, the northern (Po River) and southern (South 
Adriatic) provenances ([70] and references therein). The 
northernmost part of the map is also excluded from the 
scheme, challenging the pre-established idea of some 
interior mountains such as Medvednica and Žumberak 
Mts. as parts of the integral Croatian karst territory 
(Dinaric) and relocating them (from the REGION-model 
perspective) into the Pannonian instead [28].

The CLC model most of all directly combines the overt 
Al–Fe soil toxicity with contamination by PHE (Zn, Pb 
and Cd in particular), seriously affecting the FSNA (3) on 
carbonate bedrock (Fig. 6). Thus, damage occurs to FSNA 
as an ecosystem, which is most evident on the coastal 
mountains of the north Adriatic zone (Fig.  7c, warm 
hues). Coastal ranges represent the first front of wet (acid 
rains) and dry (aerosols and gases) deposition caused by 
the atmospheric emissions from burning fossil fuels in the 
onshore power plants. The second front is less affected, 
while some flat areas on the coast (Istria and North Dal-
matia) and in the transition zone towards the Pannonian 
area seem almost unaffected. From the grouping perspec-
tive, the FSNA (3) is the most seriously stricken by this 
process. As a group occupying the major part of the inves-
tigated area (60%), it is also the group with the greatest 
number of correct assignments (90%, Table  5) and with 
practically full participation of DF1 in its development 
and areal distribution. The predominance of other groups 
carrying different geochemical signals is focused on bor-
dering areas such as Istria and northern and southern 
Dalmatia, as well as the farther north (Fig. 9b), a trait that 
is well-matched with the distribution of DF1 displayed on 
the CLC map of discriminant scores (Fig. 7c).

Concluding remarks
In this work, a comprehensive investigation of the geo-
chemical composition of topsoils developed in the Dinaric 
part of Croatia (DIN) was performed, with the purpose of 
elucidating the underlying mechanisms controlling the 
mobility and variations in PHE distribution perceived from 
various environmental perspectives, notably, the geologic 
setting, regional placement and diverse land use. The lat-
ter were employed in discriminant function analysis in 
place of grouping criteria for the analysed objects (sam-
pled soils), independent as regards the soil geochemis-
try and approximately corresponding to the state factors 

in the familiar ‘clorpt’ equation for soil evolution. Three 
distinctive discriminant models emerged from the analy-
sis disclosing the complex relationships among observed 
geochemical data, each with its own set of discriminant 
functions, namely, GEOLOGY, REGION and CLC. Albeit 
a number of multi-element soil geochemical signatures 
typical for investigated environmental domains were iso-
lated, a particular geochemical signal was highlighted 
in all models, namely, the Fe–Al association related to 
siliciclastic bedrock, mountain areas (both MOUNT and 
SubMOUNT groups), and forest and semi-natural areas 
(FSNA). This result underlined the environmental chal-
lenges posed by soil acidification in the entire Dinaric 
karst area, though not necessarily by mobilizing the larg-
est part of the variance in all models: acidification was the 
primary issue (DF1) in the models of REGION and CLC 
but only the secondary issue (DF2) in the case of GEOL-
OGY, where DF1 recognized Al–Fe clustering (along with 
the clay component) in soils derived from all lithologies 
rather as a mirror image (deficiency) of the carbonate (Ca 
and Sr) component that is, on the contrary, accumulated 
in flysch-derived soils. The main theme of the REGION 
model was discrimination between the soils from the 
NW part (MOUNT, SubMOUNT and NMED) and those 
from the SE part of the Croatian karst area (MidMED and 
SMED) based on the Ca/Al–Fe opposition as an indica-
tor of Al and acidity stress in the former. The same image 
emerged in the CLC model, separating the “unexploited” 
areas (FSNA) affected by the same concerns from the 
other land-use types (AGRS, ARTS and WETL).

Two types of soil geochemical maps were constructed 
in the work, explicit discriminant function and posterior 
probability maps, in order to map the dominant (single) 
geochemical process (represented by DF1 in each model) 
and to check the integrity of a particular á priori defined 
group in the investigated area (map as a multi-function 
model). With remarkable accuracy, the first type fol-
lows the original grouping criteria, highlighting the areas 
where the performance of the mapped function (process) 
is the highest or the lowest. This distinction is particu-
larly manifested in the case of the REGION DF1 model 
map, where the geographical division (as a grouping cri-
terion) and the spatial distribution of DF1 match almost 
perfectly. Additionally, the GEOLOGY DF1 model map 
distinctly delineates the flysch outcrops, especially in 
Istria, while the CLC map draws attention to the heav-
ily forested areas (FSNA) occupying the high mountains 
towards the coast hinterland (Velebit Mt. and Gorski 
Kotar area). The second type of map strongly depends on 
the correct post hoc group assignments, which is why in 
accordance with the group sizes, some “scavenging” may 
appear towards the smaller groups such as in the cases 
of the MOUNT + SubMOUNT posterior probability 
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map where soils developed in the north Adriatic islands 
assume the characteristics of mountainous soils. On 
the other hand, the siliciclastic rock posterior probabil-
ity map is an outstanding example of a highly cohesive 
group strictly under geological constraints (geologic bed-
rock) and controlled by the process defined by DF2 in the 
GEOLOGY model.
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