
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Robert Vaser

ALGORITHMS FOR DE NOVO
ASSEMBLY OF LARGE GENOMES

DOCTORAL THESIS

Zagreb, 2019

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Robert Vaser

ALGORITHMS FOR DE NOVO
ASSEMBLY OF LARGE GENOMES

DOCTORAL THESIS

Supervisor:
Professor Mile Šikić, PhD

Zagreb, 2019

FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Robert Vaser

ALGORITMI ZA DE NOVO
SASTAVLJANJE VELIKIH GENOMA

DOKTORSKI RAD

Mentor:
Prof. dr. sc. Mile Šikić

Zagreb, 2019.

The dissertation was made at the University of Zagreb Faculty of Electrical Engineering

and Computing, Department of Electronic Systems and Information Processing.

Supervisor: Professor Mile Šikić, PhD

The dissertation has: 83 pages

The dissertation number:

About the Supervisor

Mile Šikić was born in Zagreb in 1972. He is a professor at the University of Zagreb Faculty

of Electrical Engineering and Computing. He obtained his Bachelor, Master and PhD degrees

at the same faculty in 1996, 2002 and 2008, respectively. His PhD thesis was titled “Com-

putational method for prediction of protein-protein interaction sites”. He started working at

Faculty of Electrical Engineering and Computing as research associative in 1997. He worked

as teaching assistant between 2005 and 2009, as assistant professor between 2009 and 2015,

and as associate professor until 2018 when he became a professor. During the period between

2011 and 2012, he joined the Bioinformatics Institute in Singapore, where he was appointed as

adjunct scientist in 2013. Currently he is spending his sabbatical year at the Genome Institute of

Singapore. He has been working as a consultant and project manager in the fields of computer

and mobile networks. His current scientific work is focused on development of new algorithms

in the fields of bioinformatics and complex networks, in which his publications have more than

1400 citations and an h-index of 16.

O mentoru

Mile Šikić rod̄en je u Zagrebu 1972. godine. Redoviti je profesor na Fakultetu elektrotehnike

i računarstva Sveučilišta u Zagrebu, na kojem je 1996., 2002. i 2008. godine stekao titule

prvostupnika, magistra odnosno doktora znanosti. Njegov doktorski rad nosio je naslov "Raču-

nalna metoda za predvid̄anje mjesta proteinskih interakcija". Započeo je rad na Fakultetu elek-

trotehnike i računarstva 1997. godine kao znanstveni suradnik. Izmed̄u 2005. i 2009. godine

radio je kao asistent, izmed̄u 2009. i 2015. godine kao docent te kao izvanredni profesor od

2015. sve dok nije postao redoviti profesor 2018. godine. Period izmed̄u 2011. i 2012. go-

dine radio je u Singapuru na institutu Bioinformatics Insitute, gdje je postavljen kao pridruženi

znanstvenik od 2013. godine. Trenutno radi na Genome Institute of Singapore, uvažavajući slo-

bodnu godinu na fakultetu. Radio je kao konzultant i voditelj projekata u području računalnih i

mobilnih mreža. Milino trenutno područje istraživanja usmjereno je na razvoj novih algoritama

u polju bioinformatike i kompleksnih mreža, područja u kojima njegove publikacije imaju više

od 1400 citata i h-index koji iznosi 16.

Acknowledgment

The past four years that I have spent on my PhD had its highs and lows, but thanks to the support

and love of my wife Marina, everything seemed as a stroll in the park. I will always cherish you

as you have me, thank you love!

I would like to thank my family who enabled me to be where I am today, to my mother

Lidija and father Stjepan, my sister Sandra, and my grandparents Sonja, Slavica, Karel and

Stjepan.

Many thanks to my supervisor Mile Šikić who has guided me from my undergraduate years.

Thank you for your guidance, wisdom and patience, but also for being a very good friend.

Thanks to Ivan Sović for all the discussions we shared about various bioinformatics algo-

rithms and for the assistance in implementing the consensus module Racon. Thanks to Stjepan

Begušić for introducing me to nifty visualization tools which led to the graph drawing idea im-

plemented in the assembler Raven. Thanks to Krešimir Križanović for all the help with various

faculty obligations.

In the end, I would like to thank my colleagues and friends. Especially, Stjepan Begušić,

Josip Marić, Vanessa Keranović, Andro Merćep, Lovro Vrček and Josip Žubrinić, for all the

hangouts and dank memes that made things funnier and easier. Thanks also to Ivan Blažon,

Marko Car, Tomislav Križan and Dino Lukman for all the ridiculous times while playing board

and computer games.

Abstract

The inability of DNA sequencing technologies to interpret entire molecules led to the devel-

opment of methods that connect the obtained short fragments back together in a puzzle-like

process. They are called assemblers and their design is guided with the notion that similar frag-

ments originate from the same region in the genome. That is often annulled due to sequencing

errors and repetitive nature of the genome. Short fragments of first two generations of sequenc-

ing are incapable of spanning moderately long repetitive regions and thus hinder a complete

assembly. The advent of new sequencing approaches, namely Pacific Biosciences and Oxford

Nanopore Technologies, pushed the limit on the fragment lengths at a cost of higher error rates,

but still facilitated the assembly problem considerably. First assembly attempts used various

types of error correction approaches prior the assembly with existing tools at that time. Al-

though, several long read based assemblers have been proposed in the past years, they demand

significant amounts of computational resources. The focus of this research is development of

memory efficient and scalable algorithms for de novo assembly of large genomes using third

generation of sequencing data without error correction of input sequences. In the scope of the

thesis we implemented three novel tools for genome assembly: a memory friendly layout mod-

ule called Rala, which builds the assembly graph from preprocessed sequences and resolves

junctions in graph with the help of force directed placement; a fast and accurate consensus

module called Racon based on vectorized partial order alignment; and the complete de novo

assembler called Raven, which competes with state-of-the-art assemblers both in quality and

resource management.

Keywords: de novo, assembly, long reads, PacBio, Oxford Nanopore, pile-o-gram, partial

order alignment, force directed layout, vectorization

Algoritmi za de novo sastavljanje velikih genoma

Glavni nedostatak metoda za sekvenciranje jest duljina dobivenih očitanja koja je znatno kraća

od DNA molekula. Očitanja se zbog toga često promatraju kao dijelovi velike slagalice koje je

potrebno med̄usobno spojiti kako bi se rekonstruirala originalna slika, što je u ovom slučaju niz

nukleotida. Da bi se očitanja preklapala, nužan je veliki broj identičnih DNA molekula nasum-

ično fragmentirati te svaki dio zasebno sekvencirati. Rekonstrukcija sekvencirane DNA spajan-

jem očitanja zadatak je alata koje nazivamo asembleri. Oni su dizajnirani s pretpostavkom da

slična očitanja potječu iz istog dijela genoma, ali ta pretpostavka je često narušena zbog grešaka

u podacima te ponavljajućih regija u genomu. Problem sastavljanja formalno se definira po-

moću usmjerenih grafova, za koje postoje egzaktna rješenja, ali ih je teško pronaći postojećim

računalnim resursima. Umjesto toga upotrebljavaju se metode pojednostavljenja, kako bi se

graf linearizirao i pronašli što duži dijelovi sekvenciranog genoma. Postoje dva različita pris-

tupa sastavljanju, jedan baziran na paradigmi preklapanje-razmještaj-konsenzus koja opisuje

odnose izmed̄u očitanja, te drugi koji gradi de Bruijn graf od kratkih podnizova dobivenih iz

svih očitanja. U prvom pristupu najprije se traže približna sufiks-prefiks preklapanja izmed̄u

svih parova očitanja koja su potrebna za izgradnju nekog oblika grafa preklapanja. Nedvosmis-

leni dijelovi pojednostavljenog grafa proglase se dijelovima sekvenciranog genoma u kojima se

ispravljaju pogreške nastale prilikom sekvenciranja pomoću gomile preklapanja cijelog skupa

očitanja. Ovaj pristup razvijen je za podatke dobivene Sangerovim sekvenciranjem i teoret-

ski je prikladan za bilo kakve podatke. Pojava druge generacije sekvenciranja s puno većim

prinosom očitanja koja su bila nesto kraća, dovela je do dizajna de Bruijn metode zbog dugog

izvod̄enja faze preklapanja. Pristup de Bruijn grafova zaobilazi kvadratnu složenost faze prekla-

panja režući očitanja na preklapajuće kratke podnizove koji postaju bridovi navedenog grafa.

Ovakva formulacija problema zamjenjuje pronalazak Hamiltonovog puta u grafu preklapanja s

pronalasakom Eulerovog puta u de Bruijn grafu.

Značajni napredak u sekvenciranju genoma doprinos je tvrtki Pacific Biosciences i Oxford

Nanopore Technologies, čije tehnologije predstavljaju treću generaciju sekvenciranja. One su

omogućile višestruko povećanje duljine očitanja, ali uz cijenu osjetno veće pogreske i manje

propusnosti. Usprkos tome, obje tehnologije pripomogle su u smanjenju fragmentiranosti sas-

tavljenih genoma koji su bili sekvencirani prijašnjim generacijama te su pokrenule razvoj ve-

likog broja novih algoritama. U početku je bio fokus na ispravljanju pogrešaka u podacima

prije sastavljanja s već postojećim alatima, a kasnije je istraživanje promijenilo smjer prema

algoritmima koji direktno mogu baratati s toliko greškovitim podacima. Posljedica je velik od-

abir metoda za sastavljanje genoma, od kojih mnoge zahtjevaju značajnu količinu računalnih

resursa. To je pogotovo vidljivo kod većih eukariotskih organizama. Stoga je ovo istraživanje

fokusirano na dizajnu i implementaciji novih algoritama za sastavljanje genoma obazirući se na

računalni trošak. Naglasak je na visokoj točnosti i maloj fragmentiranosti rekonstruiranih DNA

molekula, umjerenim memorijskim zahtjevima te paralelnoj efikasnosti paradigme preklapanje-

razmještaj-konsenzus, oslanjajući se na dugačka i greškovita očitanja treće generacije sekven-

ciranja. Doprinos ove disertacije sastoji se od:

• memorijski učinkovitog algoritma za fazu razmještaja paradigme preklapanje-razmještaj-

konsenzus koji postiže malen broj fragmenata pri sastavljanju velikih genoma,

• brzog algoritma za fazu konsenzusa paradigme preklapanje-razmještaj-konsenzus koji os-

igurava visoku točnost sastavljanja velikih genoma, te

• sustava za de novo sastavljanje velikih genoma iz podataka dobivenih tehnologijama treće

generacije sekvenciranja.

Poglavlje 1 ("Uvod") disertacije daje pregled tehnologija za sekvenciranje genoma zajedno

s njihovim prednostima i nedostacima. Objašnjava motivaciju za provedeno istraživanje, iznosi

cilj istraživanja te prikazuje ispunjeni doprinos koji se sastoji od tri dijela.

Poglavlje 2 ("Teorijska podloga") ukratko predstavlja teorijsku pozadinu za de novo sas-

tavljanje genoma. Prezentirani su koncepti i odred̄eni alati za sastavljanje koji su obilježili

područje. Krenuvši od prvih alata koji su na razne načine ispravljali pogreške u očitanjima prije

sastavljanja, sve do alata koji koriste sažetu reprezentaciju očitanja za brzu izgradnju neke vrste

usmjerenog grafa.

Poglavlje 3 ("Algoritmi za fazu razmještaja paradigme preklapanje-razmještaj-konsenzus")

ove disertacije opisuje fazu razmještaja koja je bazirana na grafu sastavljanja s pripadajućim

metodama za pojednostavljenje. Graf sastavljanja je modifikacija grafa nizova korištenog u pr-

vom preklapanje-razmještaj-konsenzus asembleru te se gradi iz skupa očitanja koja nisu med̄u-

sobno sadržana u cijelosti. Svako očitanje i pripadajući preokrenuti komplement postaju vrhovi

grafa sastavljanja, dok su med̄usobna prefiks-sufiks preklapanja bridovi. Skup preklapanja do-

biven je najbržom poznatom knjižicom za greškovite podatke treće generacije sekvenciranja.

Graf sastavljanja pojednostavljuje se izbacivanjem tranzitivnih bridova, kratkih ogranaka i mje-

hurića. Tranzitivni bridovi traže se kod svih med̄usobno povezanih trojki vrhova te se izbacuju

svi odjednom zbog mogućnosti gubitka tranzitivnosti. Kratki ogranci u grafu lako se pron-

ad̄u pretraživanjem u dubinu od svih vrhova koji nemaju prefiks preklapanja te se izbace ako

nisu predugački. Složenije strukture koje tvore više puteva izmed̄u dvaju vrhova (mjehurići)

pronalaze se pretraživanjem u širinu. Svaki mjehurić koji se sastoji od dva puta provjerava se

ako sadrži otprilike jednak niz nakon čega se traže bridovi u jednom od puteva, koji ako bi

bili odstranjeni nebi narušavali povezanost ostatka grafa. Nakon iterativnog pojednostavljenja,

nedvosmisleni putevi grafa sastavljanja transformiraju se u nizove koji naposljetku obuhvaćaju

cijele kromosome ili žavrsavaju na ponavljajućim regijama.

Pogreške sekvenciranja i ponavljajuće regije genoma proizvode lažne bridove u grafu prekla-

panja koja često onemogućuju potpunu rekonstrukciju sekvenciranog genoma. Kako bi se za-

obišao ovaj problem, implementirane su dodatne metode prije konstrukcije grafa sastavjanja te

nakon pojednostavljenja. Predobrada podataka koristi gomile preklapanja, jednodimenzionalne

signale dobivene naslagivanjem svih preklapanja nekog očitanja te sumiranjem njihovog broja

nad svakim nukleotidom. Oblik signala pomaže u anotaciji očitanja zbog naglih promjena u

amplitudi, koje su karakteristične za pojedinu klasu. Kimerna očitanja sastavljena su od više

dijelova, čiji raspored nije prisutan u genomu te njihove gomile imaju prekide u amplitudi, dok

očitanja koja preklapaju ponavljajuće regije u genomu imaju povišenu amplitudu u tom dijelu

gomile. Proces anotacije koristi gradijente i median kako bi identificario navedene oblike te

odrezao problematične dijelove kimernih očitanja i odstranio prefiks-sufiks preklapanja, koja

se u cijelosti nalaze u ponavljajućoj regiji. Obrada grafa sastavljanja nakon pojednostavljenja

koristi udaljenosti bridova u dvodimenzionalnom prikazu grafa dobivenim simulacijom djelo-

vanja sila. Algoritam nastoji nacrtati dobro povezane vrhove blizu, što produljuje bridove koji

slabo povezuju udaljenje dijelove grafa. Zbog toga se u pojednostavljeni graf vraćaju tranz-

itivni bridovi, kako bi se pojačale privlačne sile te se dobio željeni oblik grafa. Bridovi koji

povezuju vrhove s više sufiks preklapanja su izbačeni iz skupa bridova ako su puno duži od

ostalih pripadajućih bridova. Kako ovaj algoritam ima kvadratnu složenost, graf sastavljanja

se smanjuje zamjenom nedvosmislenih puteva jednim vrhom, ali izostavljaju se vrhovi koji su

blizu čvorišta. Dodatno se koristi i loglinearna Barnes-Hut aproksimacija koja točno opisuje

sile izmed̄u susjednih vrhova, a aproksimira sile izmed̄u udaljenih vrhova.

Poglavlje 4 ("Algoritmi za fazu konsenzusa paradigme preklapanje-razmještaj-konsenzus")

predstavlja fazu konsenzusa koja se temelji na poravnanju parcijalnog ured̄aja proširenog vek-

torizacijom i rezanjem nizova, kako bi se ostvarila linearna složenost izvod̄enja s obzirom na

veličinu sekvenciranog genoma. Poravnanje parcijalnog ured̄aja je metoda koja se koristi za

višestruko poravnanje nizova, kako bi se iz gomile poravnanja ispravile pogreške nastale pri-

likom sekvenciranja. Višestruko poravnanje spremljeno je kao usmjeren aciklički graf, koji je

moguće poravnati s nizom pomoću proširenog algoritma poravnaja dvaju nizova. Graf par-

cijalnog ured̄aja sprema znakove kao vrhove, koji su med̄usobno povezani bridovima ako su

uzastopni u bilo kojem nizu koji je dodan u graf. Težine bridova označuju broj nizova koji

sadrži par znakova, ali mogu se ukomponirati i vrijednosti kvalitete dobivene sekvenciranjem.

Poravnanje je prošireno s obzirom na mogućnost višestrukih prethodnika svakog vrha u grafu te

se njihove vrijednosti moraju uzeti u obzir kod procedure dinamičkog programiranja. Kada su

svi željeni nizovi iterativno poravnati i dodani u graf parcijalnog ured̄aja, finali konsenzusni niz

dobije se pronalaskom najtežeg puta u grafu. Ovakav način višestrukog poravnanja odbacuje

sklonost nizova da se slažu s referentnim, pojava koja je prisutna u ostalim progresivnim meto-

dama kod kojih se nizovi poravnavaju s reprezentativnim nizom trenutnog višestrukog porav-

nanja. Kako je kvadratna složenost memorije i izvod̄enja algoritma za poravnanje neupotrebiva

za dulja očitanja treće generacije, svaki fragment dobiven iz faze razmještaja, narezan je na

kratke nepreklapajuće prozore. Sva očitanja prvo se poravnaju na cijele fragmente kako bi se

distribuirala na pripadajuće prozore. Dodatno, korištenjem SIMD instrukcija vektoriziran je

algoritam poravnanja parcijalnog ured̄aja i to za tri različita tipa poravnanja i tri modela proc-

jepa. Zbog novouvedenih zavisnosti u poravnanju parcijalnog ured̄aja, najjednostavniji način

za paralelizaciju je postaviti vektore paralelno s očitanjem, ali su vodoravne zavisnosti riješene

algoritmom prefix-max. Kako su podaci treće generacije sekvencirana vrlo greškoviti, faza

konsenzusa dodatno miče očitanja koja imaju loše poravnanje na fragmente faze razmještaja te

dijelove očitanja s lošom prosjećnom kvalitetom.

U poglavlju 5 ("Integracija i evaluacija") opisana je integracija spomenutih algoritama u

samostojeći alat za de novo sastavljanje genoma te evaluacija rada s najefikasnijim poznatim

metodama namijenjenih za treću generaciju sekvenciranja. Svaki alat koji je proizašao iz ove

disertacije, implementiran je u programskom jeziku C++ i javno je dostupan na servisu GitHub

pod MIT licencom. Algoritmi za fazu razmještaja implementirani su u samostojeći alat nazvan

Rala. Vektorizacija poravnanja parcijalnog ured̄aja samostojeća je knjižica zvana Spoa, koja

se koristi kao jezgreni dio modula za fazu konsenzusa zvanog Racon. Alati Rala i Racon s

C++ implementacijom postojećeg algoritma za fazu preklapanja integrirani su u samostojeći

de novo asembler zvan Raven. Alat Raven kao ulaz prima skup greškovitih očitanja treće gen-

eracije sekvenciranja te vraća rekonstruirani genom visoke točnosti. Kronološki gledano, prvo

su razvijeni alati Spoa i Racon koji su objavljeni u časopisu s visokim faktorom odjeka, potvrd̄u-

jući tezu da točne rekonstrukcije sekvenciranih genoma su moguće bez prethodnog ispravljanja

grešaka u očitanjima. Nakon toga istraživane su različite heuristike za fazu razmještaja koje su

povezane zajedno skriptnim jezikom u program radnog imena Ra te prezentirane na konferen-

ciji. Naposljetku, alat Raven je izrad̄en s ciljem da se zaobid̄e spremanje podataka na tvrdi disk

izmed̄u faza sastavljanja genoma te da se smanji memorijsko zauzeće cijelog postupka pomoću

blokovskog načina rada.

Evaluacija alata Raven provedena je na desetak skupova podataka koji su javno dostupni,

obuhvačajući obje tehnologije sekvenciranja treće generacije te raspon organizama od malih

prokariotskih do većih eukariotskih. Četiri najefikasnije poznate metode za de novo sastavljanje

genoma uključene su u evaluaciju s alatom Raven. Ocjenjivala se točnost sastavljanja u odnosu

na referentni genom, NG50 vrijednost, broj dobivenih fragmenata po kromosomu, broj krivo

sastavljenih fragmenata, vrijeme izvod̄enja te memorijsko zauzeće. Asembler Raven rangiran

je treći u pogledu vremena izvod̄enja te drugi za potrebnu memoriju. Rekonstrukcije alata

Raven dosljedno imaju najmanji broj fragmenata, ali vrijednosti NG50 su nešto manje. Točnost

i broj krivo sastavljenih fragmenata usporedivi su za sve asemblere kroz sve korištene skupove

podataka. Detaljniji pogled u vrijeme izvod̄enja alata Raven upućuje da je faza preklapanja

najkritičniji dio kod većih eukariotskih genoma što otvara prostor za unaprijed̄enje.

Prezentirani algoritmi integrirani u samostojeći alat Raven uspješno su potvrdili hipotezu

da je moguće ostvariti kvalitetne rekonstrukcije velikih genoma u malom broju fragmenata, i to

bez prethodnog ispravljanja grešaka u podacima te pritom koristiti razumne količine računal-

nih resursa. Algoritmi su objavljeni u znanstvenom časopisu i prezentirani na med̄unarodnoj

konferenciji. Alati Spoa, Racon, Rala, Ra i Raven dostupni su na sljedećim poveznicama:

https://github.com/rvaser/spoa, https://github.com/lbcb-sci/racon, https://

github.com/rvaser/rala, https://github.com/lbcb-sci/ra i https://github.com/

lbcb-sci/raven.

Ključne riječi: de novo, sastavljanje, dugačka očitanja, PacBio, Oxford Nanopore, gomila

preklapanja, razmještaj simulacijom djelovanja sila, poravnanje parcijalnog ured̄aja, vektor-

izacija

https://github.com/rvaser/spoa
https://github.com/lbcb-sci/racon
https://github.com/rvaser/rala
https://github.com/rvaser/rala
https://github.com/lbcb-sci/ra
https://github.com/lbcb-sci/raven
https://github.com/lbcb-sci/raven

Contents

1. Introduction . 1

1.1. Research objectives . 2

1.2. Organization of the thesis . 3

2. Background . 4

2.1. Approaches to de novo genome assembly . 5

3. Algorithms for layout phase of the OLC paradigm 11

3.1. Assembly graph . 11

3.1.1. Simplification methods . 12

3.1.2. Discussion . 19

3.2. Preprocessing . 19

3.2.1. Sequence annotation . 21

3.2.2. Discussion . 22

3.3. Postprocessing . 26

3.3.1. Force-directed placement . 27

3.3.2. Approximation techniques . 32

3.3.3. Discussion . 37

4. Algorithms for consensus phase of the OLC paradigm 40

4.1. Partial order alignment . 40

4.1.1. Vectorization . 46

4.1.2. Discussion . 48

4.2. Unitig polishing . 48

4.2.1. Discussion . 49

5. Integration and evaluation . 51

5.1. Implementation . 51

5.2. Datasets . 54

5.3. Evaluation methods . 56

5.4. Results . 57

5.5. Discussion . 61

6. Conclusion . 63

6.1. Contribution of the thesis . 63

6.2. Future research . 65

Bibliography . 66

Biography . 81

Životopis . 83

Chapter 1

Introduction

Determining the order of nucleotides of a deoxyribonucleic acid (DNA) is called sequencing,

a method that dates back from the mid 1970s. First experimental procedures, proposed by

Maxam and Gilbert [1], and Sanger et al. [2], were based on gel electrophoresis in which

the fragments of a sample were separated by length and visualized by autoradiography. This

enabled the interpretation of few hundred nucleotides from the beginning of the sample, forming

short sequences called reads. In order to reconstruct the much longer DNA molecule that is

being sequenced, obtained reads need to be stitched together (assembled) what is usually done

without a reference (de novo). Refinements to the electrophoretic procedures together with the

chain-termination method by Sanger et al. marked the first generation of sequencing, which

lasted for a couple of decades yielding highly accurate reads up to two thousand nucleotides.

Sequencing cost, long sequencing times and intensive labor led to the development of high-

throughput sequencing technologies of the second generation, which enabled a broader range

of applications, such as gene expression analysis and discovery of genomic variation [3]. Reads

produced by Illumina, Roche and Life Technologies were shorter than the previous generation,

ranging from 100 to 450 nucleotides, but kept the level of error around 2% [4]. Due to the

inability of short reads to fully span repetitive genomic regions, unambiguosly reconstructing

even small microbial genomes is near impossible [5]. To circumvent that, special protocols

were developed called paired-end and mate-pair sequencing, which sequence DNA fragments

from both sides. This yields a pair of reads with the same length, but the approximate distance

between them is known and used as a valuable asset in genome assembly.

The most recent advance in sequencing was pushed by Pacific Biosciences and Oxford

Nanopore Technologies, which increased the read lengths manifold at a cost of higher error

rates and lower throughput. Together they constitute the third generation of sequencing which

facilitated significant progress in contiguity of genome assemblies and removed the need for

DNA amplification before sequencing. Pacific Biosciences sequencing captures the DNA dur-

ing replication by using flourescent-labeled nucleotides that emit distinct spectrums. The ob-

1

Introduction

tained light pulses are translated to long reads with average length of 10kb and error rates

between 11− 15% [6]. The polymerase can continue replication on the other DNA strand

crossing over hairpin adapters to increase the overall accuracy, but is limited with its lifespan

and thus longer reads usually have higher error rates. On the other hand, sequencers devised by

Oxford Nanopore Technologies measure the disruption of an ion current that flows through a

protein nanopore, which is incorporated into an electrically resistant membrane. Nucleotides of

DNA molecules that pass through the pore will disrupt the current both in form and magnitude,

yielding a signal that can as well be translated. The accuracy ranged between 65−88% at the

beginning with average lenghts around 8kb [7], but newer pores and basecallers increased that

significantly. Both third generation sequencing giants are continuously improving their meth-

ods and throughput, which will mitigate the assembly problem even further. Novel protocol

of Pacific Biosciences enables the generation of highly accurate reads with average length of

13.5kb and accuracy of 99.8% [8], while the recent ultra-long protocol of Oxford Nanopore

Technologies yielded reads with average lenght around 100kb, with a whopping maximum of

882kb [9].

Dawn of long read sequencing started an avalanche of new algorithms aimed to deal with

high error rates. Some researchers tried to adapt existing assembly pipelines by employing

error correction prior assembly, while others developed algorithms sensitive enough to directly

operate on erroneous reads. The result is a vast amount of de novo genome assemblers available

to choose from. A lot of them demand significant amounts of computational resources, which

is most apparent on large eukaryotic genomes. Therefore, in this thesis we present a novel

approach to de novo genome assembly with the focus on low computational cost.

1.1 Research objectives

This research is aimed at development of novel algorithms for de novo assembly of large

genomes. The emphasis is on assembly accuracy and contiguity, moderate memory require-

ments and parallel efficiency of the overlap-layout-consensus paradigm, all relying on long

error-prone reads of third generation sequencing technologies. Contribution of this thesis in-

cludes the following:

• Memory efficient algorithm for layout phase of the overlap-layout-consensus paradigm

achieving a low number of fragments in large genome assemblies.

• Fast algorithm for consensus phase of the overlap-layout-consensus paradigm ensuring

high accuracy of large genome assemblies.

• System for de novo assembly of large genomes from data produced by third generation

of sequencing.

2

Introduction

1.2 Organization of the thesis

Chapter 2 kicks off with a brief overview of algorithms used for de novo genome assembly and

presents the state-of-the-art assemblers.

Chapter 3 describes simplification methods for the assembly graph, utilizing information

from pairwise overlaps for preprocessing and vertex distances in graph drawings for postpro-

cessing.

Chapter 4 presents an optimized approach to multiple sequence alignment with the help of

partial order graphs.

Chapter 5 displays the complete overlap-layout-consensus based assembler, which incor-

porates algorithms described in chapters 3 and 4. The assembler is thoroughly evaluated and

compared to the state-of-the-art.

Chapter 6 brings the conclusion of the thesis with a short view on future possibilities.

3

Chapter 2

Background

The shortcoming of sequencing methods is that the read length is considerably smaller than

the sequenced DNA molecule. Reads are often considered as pieces of a hefty jigsaw puzzle,

and need to be interlocked in order to reconstruct the original picture, which is in this case a

sequence of nucleotides. For reads to overlap, a large amount of identical DNA molecules are

randomly fragmented and then sequenced, forming a process called shotgun sequencing [10].

Combining reads back together is done with software called assemblers. The main assumption

upon which they are build is that similar reads originate from the same genomic region [5],

but this is often invalidated due to erroneous data and repetitive nature of the genome. The

assembly problem is formally defined through directed graphs for which exact solutions are

computationally difficult to find. Instead, various simplification methods are applied before

unambiguous paths of the graph are declared as contiguous portions of the sequenced genome.

There are two distinct approaches to assembly, one is based on the overlap-layout-consensus

paradigm (OLC) describing the relationship between reads, while the other builds a de Bruijn

graph from short substrings of the read set. Designed for the first generation of sequencing,

the modular OLC paradigm builds an overlap graph from approximate overlaps between each

pair of reads [11]. Vertices of the overlap graph encapsulate sequences while the suffix-prefix

overlaps between them define the weight and orientation of edges. After applying several graph

simplification methods, appropriate paths of the graph are extracted and the sequencing errors

are amended with multiple sequence alignment of all reads. The huge increase of sequenc-

ing yield in form of short and accurate reads present in second generation of sequencing was

problematic for the quadratic complexity of the overlap phase. This led to development of an

algorithm which omits the need for pairwise overlaps. Reads are sliced into overlapping sub-

strings of length k, called k-mers, and transformed into edges of a de Bruijn graph. Distinct

k−1 long prefixes and suffixes of all k-mers become vertices of the graph. The optimal value

for k depends on factors such as sequencing depth and the error rate. The assembly problem

of finding a Hamiltonian path in overlap graphs is replaced with finding a Eulerian path in de

4

Background

Bruijn graphs [12], for which a linear algorithm is known [13]. The possibility of multiple such

paths hinders the discovery of the correct assembly path, so similar simplification methods are

applied as well.

Although the OLC paradigm is more suited for longer reads with arbitrary accuracy, some

researchers were successful in generalization of de Bruijn graphs, making them more resilient

to error-ridden data. Since the appearance of long read technologies, a wide range of options

have been proposed for de novo genome assembly, majority of which are presented in the next

section.

2.1 Approaches to de novo genome assembly

Initial sequencing attempts of Pacific Bioscinces and Oxford Nanopore Technologies had low

accuracy, ranging between 82− 85% [14] and 58− 75% [15], respectively. Researches were

sceptical of their usage as existing assembly pipelines could tolerate error rates up to 10%.

Koren et al. introduced a correction algorithm for erroneous Pacific Biosciences reads utilizing

high-quality short reads [14]. They were able to increase the contiguity of microbial genome

assemblies manifold, using off-the-shelf assembler Celera [16], and proved the power of long

reads to resolve repetitive genomic regions. The resulting pipeline, called PBcR, trims and

error-corrects individual long reads by computing a multiple sequence alignment of short reads

that are mapped to them. Long reads are split if there is a gap in the short read tiling, while

setting a threshold for the number of alignments per short read effectively resolves repeats by

placing each of them in its highest identity repeat copy. Consensus sequences are infered from

the multiple sequence alignment using the AMOS consensus module [17].

The need to sequence the sample with two different sequencing technologies led the re-

search explore assembly approaches that rely solely on the long reads of the third generation

of sequencing. Chin et al. were able to produce complete high-quality microbial genomes

using data only produced by Pacific Biosciences, in a hierarchical genome-assembly process

(HGAP) [18]. Only the longest reads summing to a sequencing depth of 20 are error corrected

with all other long reads, eliminating the necessity of second generation of sequencing. Us-

ing the BLASR mapper [19], long reads are mapped to each other controlling the maximal

amount of alignment per read. Using a novel consensus tool PBDAG-Con, pairwise alignments

are transformed into a directed acyclic graph from which the consensus sequence is inferred by

finding the maximum scoring path of the graph, which is similar to partial order graph approach

[20][21]. The accuracy of long reads increases to 99% [18], which is more than suitable for the

Celera assembler. The final assembly is polished with a new consensus algorithm called Quiver

reaching accuracy of 99.995%. Quiver searches for the maximum-likelihood consensus utiliz-

ing the full information from raw pulses obtained with sequencing. The reads are mapped to

5

Background

the assembly to create an approximate consensus using partial order alignment on tiling win-

dows. Single base substitutions, insertions and deletions are tested to see if they improve the

likelihood of the consensus given the raw data, until no improvements can be made.

The hybrid assembly approach was later proven by Goodwin et al. for data obtained with

Oxford Nanopore Technologies [15], which had even higher error rates than Pacific Biosciences.

They introduced a tool called Nanocorr which follows the concept of PBcR, that is error cor-

rection of error-prone long reads with high-fidelity short reads and using them as input for the

Celera assembler. For alignment of short reads they used BLAST [22], the most commonly

used tool for comparison of biological sequences. Obtained alignments are used to select the

optimal set of short sequences that span a long read, and a consensus sequences is constructed

with PBDAG-con resulting in long reads with accuracy beyond 97% [15]. All such reads are

size selected and assembled with the Celera assembler yielding 10-fold increase in contiguity

compared to short read assemblies.

Following the success of HGAP, Loman et al. were able to reconstruct a complete bacte-

rial genome by exclusively using data from Oxford Nanopore Technologies, which meanwhile

increased the accuracy to 78− 85% with newer nanopore chemistry [23]. They presented two

novel tools, Nanocorrect and Nanopolish [23]. Nanocorrect employs multiple error correction

round by first finding pairwise overlaps with DALIGNER [24], trimming and stacking reads on

top of each other based on the alignments, and using the original partial order alignment imple-

mentaion [20]. The peak read accuracy of 97.7% is found after two iterations, as more rounds

would reduce the number of reads without significant contributions to accuracy. Polished long

reads are assembled with the Celera assembler, as all approaches so far. As the elctric signal

generated with sequencing has more information than basecaleld reads, Nanopolish utilizes this

information to further increase the accuracy of the final assembly. Modifications in form of

substitutions, insetions and deletions are introduced to the assembly and evaluted using hidden

Markov models. The final assembly of the bacterial genome had accuracy of 99.5% [23].

Due to long running times of proposed assembly algorithms for third generation of sequenc-

ing, Berlin et al. introduce a new algorithm for overlapping noisy long reads called the MinHash

Alignment Process (MHAP), and apply it on larger eukaryotic organisms [25]. Sensitive pair-

wise alignment between all reads is the most time consuming step of assemblers such as PBcR

and HGAP, taking a day to assemble microbial genomes [25]. This is facilitated with a di-

mensionalty reduction approach in MHAP. Replacing large sequences with a small set of short

substrings enables a much faster similarity search. All k-mers of a read are converted to integers

using a predefined number of randomized hash functions. The minimal value of each such hash

function constitutes the sketch of the read and is used to calculated the Jaccard similarity. Using

16-mers and two MinHash filters to find similar sequences, the quadratic time complexity of the

overlap step is decreased manifold [25]. The longest reads constituting 40x sequencing depth

6

Background

are error corrected using PBDAG-con, and only the longest of them summing to 25x sequencing

depth are assembled with the Celera assembler. The final assembly is polished with Quiver. All

novelties introduced were integrated into the existing PBcR assembler.

Most assemblers fuse haplotypes together loosing allelic and structural variations, which

led Chin et al. to devise a diploid aware assembler called Falcon [26]. Following the design

of HGAP, all raw reads are aligned to each other with DALIGNER and errors are corrected

with Falcon-sense, a directed acyclic graph based consensus tool which preserves information

from heterozygous sites. The consensus sequences are inferred with a dynamic programming

algorithm similar to [21]. Afterwards, the corrected sequences go through a contaiment re-

moval procedure before builing a string graph [27]. All bubble-like structures in the graph are

inspected and alternative paths in them are set aside. Aligning raw reads to the stored primary

and associative paths with BLASR enables the division into two haplotypes. The string graph is

simplified by removing overlaps between reads of different haplotypes and each unambiguous

path is polished with Quiver.

Koren et al. developed Canu [28], a much faster version of the PBcR pipeline which made

it the successor of the Celera assembler. Canu as PBcR uses MHAP to compare sketches of

entire reads, but the k-mers chosen for generation of sketches are adjusted by weighting them in

regards to their frequency in the read and inverse frequency in the whole dataset. This helps de-

crease run time by filtering frequent k-mers out of sketches. They extend the best overlap graph

approach [29] and named it Bogart, which is used to filter out repeat-induced overlaps. Usually,

the best overlaps are chosen from a pool of longest overlaps having error greater than a fixed

threshold, but Canu automatically estimates that threshold from the overlap error distribution.

Due to high error rates of third generation of sequences, Canu as well employs error correction

prior assembly with Falcon-sense, and the final assembly is polished with PBDAG-con.

Great impact on the field happened with the release of Minimap and Miniasm, tools which

enabled genome assembly with erroneous third generation sequencing data without any error

correction applied prior assembly [30]. Being orders of magnitude faster than the state-of-

the-art, Minimap and Miniasm achieve comparable results regarding assembly contiguity, but

the lack of a consensus module leaves the assembly accuracy equal to the accuracy of raw

reads and is unusable for many downstream analyses. Influenced by sketches used in MHAP,

Minimap chooses minimizers as the sequence representation, which are the smallest k-mers

in a window of several consecutive ones. Minimizers of multiple sequences are stored in a

hash table, from which k-mer matches are found and chained by finding the longest increasing

subsequence of matches. Such approximate overlaps are then used to build an assembly graph,

which is a modification of the overlap graph. Several graph cleaning methods are applied before

the contiguous stretches of vertices are declared as the final assembly. Miniasm coupled with

Minimap was evaluated on moderate size genomes, but is not well optimized for large repeat-

7

Background

rich genomes [30].

The idea to omit error correction of reads was also independently explored by Sović et al.

with a modified version of Graphmap [31]. Not long after, we developed a fast consensus

module which coupled with miniasm enables accurate genomic reconstruction while being an

order of magnitude faster than the state-of-the-art [32]. It uses raw reads to polish raw contigs,

employing a SIMD* accelerated partial order alignment on small non-overlapping windows.

Details about the algorithm are presented later in the thesis.

Another raw read based assembler, called HINGE, was developed by Kamath et al. with

the aim to build a maximally resolved assembly graph [33]. A variant of the greedy algorithm

coupled with methods to identify repeat regions is used to resolve unbridged repeats whenever

possible. With information obtained from DALIGNER’s pairwise overlaps, Hinge builds a

pile-o-gram per read in order to detect peculiar regions. Sharp gradients in pile-o-grams help to

annotate beginnings and ends of repeat regions. Annotations are spread to other reads with the

contagion algorithm, which propagates the bridging information to reads beginning or ending in

a repeat. After repeat annotation, two hinges are placed per unbridged repeat region onto reads

that span the most into it. Pile-o-grams are also used to resolve chimeric reads by detecting

an abrupt change of the read sets overlapping them. After preprocessing, a greedy algorithm

is used to construct the initial assembly graph by picking the longest prefix and longest suffix

match for each read, but allowing multiple matches for reads with hinges. Based on the graph

layout, some unbridged repeat patterns can be resolved if there is only one possible traversal.

The consensus sequence is computed with a variant of Falcon’s consensus module.

Researchers also explored the use of de Bruijn graphs in assembly of long error-ridden reads.

Lin et al. build A-Bruijn graphs, a generalization of the de Bruijn graphs. Instead of using all

k-mers, a containtment-free set of solid sequences is used to construct the graph instead [34].

They are selected by observing k-mer frequencies and those that appear at least t times with

cummulative sum exceeding the estiminated genome length are picked. The A-Bruijn graph

is transformed into an assembly graph by removing bubbles and tips, and the genomic path is

found with the help of the path extension paradigm used in short read assemblers. Paths ending

at junctions are extended if reads traversing an out edge provide enough confidence to do so.

Errors in the draft assembly are corrected by aligning all reads using BLASR and combining

pairwise alignments into a series of small multiple alignments which are corrected separately

by constructing A-Bruijn graphs again. This approach was refined in the Flye assembler by

Kolmogorov et al. [35]. Fyle constructs arbitrary paths in an unknown assembly graph, ran-

domly walking through the graph and choosing a random read in each junction. Obtained paths

are called disjointigs and are concatenated in an arbitrary fashion. The concatenation is aligned

*SIMD is an abbreviation for single instruction multiple data, a paradigm which describes central processing
units that perform the same operation on multiple values concurrently.

8

Background

to itself to identify repetitive regions which are represented by high scoring local alignments.

From this representation a repeat graph is constructed. All reads are mapped to the repeat graph

and bridged repeats are resolved naturally. For unbridged repeats, Flye identifies small differ-

ences in nearly exact repeats, groups reads to each copy and then constructs separate consensus

sequences.

In a similar fashion, Fuzzy de Bruijn graphs were introduced by Ruan and Li in their Wtdbg2

assembler [36]. It is much faster than the state-of-the-art assemblers Canu, Falcon and Flye,

while producing assemblies of similar quality. The authors build a hash table of prefiltered k-

mers and use it to find sequences that share them. Sequences are binned into 256bp blocks and

pairwise aligned by penalizing gaps and bins that do not share k-mers. A subset of all distinct

k-bins, k consecutive bins of any read, are used to create the vertex set of the Fuzzy de Bruijn

graph, as opposed to de Bruijn graphs in which k-mers are used. Multiple paths between vertices

are merged and their number is kept in edges, while long range information is kept by storing

bin identifiers in vertices. The resulting Fuzzy de Bruijn graph is simplified with pruning of

dead ends and bubble popping, and a consensus based on partial order graphs is applied across

edges.

The appearance of high-fidelity reads produced by Pacific Biosciences newest sequencing

protocol led Chin and Khalak to investigate faster approaches for the most time consuming part

of the overlap-layout-consensus paradigm, the overlap step. They implemented a hierarchical

approach using minimizers in their assembler called Peregrine [37]. Iteratively reducing the set

of minimizers found from sequences with 1% of error, enabled the reduction of the similarity

search space by an order of magnitude [37]. They called the whole approach SHIMMER, which

is short for sparse hierarchical minimizers. Found pairwise overlaps are afterwards given to a

Falcon module which creates the string graph and constructs contigs. The same approach is used

to map sequences to the assembly for the consensus phase which is done with Falcon-sense. The

Peregrine assembler was tested on various human datasets achieving the same results as Falcon

but at a fraction of execution time [37]. They have yet to explore the use of sparse minimizers

on more erroneous data.

The most recent assembler aimed for large genomes sequenced with Oxford Nanopore Tech-

nologies is called Shasta [38], which outperforms Flye and Wtdbg2 while producing similar as-

sembly results. Shasta stores all reads in homopolymer-compressed form to decrease the noise

of errors and represents them as the sequences of predetermined, fixed subset of short k-mers,

which are chosen at random. Afterwards, they are aligned to each other in their marker forms

using banded alignment, discarding most frequent marker k-mers. To decrease the number of

alignments, a modified MinHash is used to find similar sequences in marker form, by using

m consecutive markers. They create the marker graph by joining equal markers in overlap-

ping reads, while undirected edges are the repercussion of marker alignments. Approximate

9

Background

transitive reduction, pruning of short branches and removal of bubbles are applied to simplify

the graph. The draft assembly is polished with MarginPolish, a tool that builds partial order

graphs based on pairwise alignment statistics obtained with hidden Markov models. It itera-

tively refines the assembly and outputs the graph summary to HELEN, which is a recurrent

neural network based polished, to further increase the accuracy.

In this thesis we present a new assembler called Raven, which extends the Minimap-Miniasm

pipeline with a standalone consensus module Racon, employs ideas from the HINGE assembler

for sequences preprocessing prior assembly graph construction, and applies a novel postpro-

cessing method for graph untangling. The result is an order of magnitude faster assembler than

older state-of-the-art assemblers Canu and Falcon. Most recent advances in genome assem-

bly have led to much faster algorithms thanks to shorter representations of reads in the overlap

phase. Therefore, we evaluated Raven with the recent assemblers Flye, Wtdbg2 and Shasta.

10

Chapter 3

Algorithms for layout phase of the OLC
paradigm

Given the set of nucleotide bases Σ= {A,C,G,T}, a set of DNA sequences is defined as S = {s :

s = c1c2...cn,ci ∈ Σ}. Assemblers that follow the OLC paradigm initially find pairwise overlaps

of S and use them for construction of a directed weighted graph G = (V,E), called the overlap

graph [11]. Suffix-prefix overlaps become edges in the overlap graph, while vertices represent

sequences of S. Depending on the vertex representation we distinguish two types of overlap

graphs, the string graph [27] and the assembly graph [30]. In string graphs vertices are either the

sequence begining or the sequence end [27], while vertices of assembly graphs represent whole

sequences and their Watson-Crick complements* [30]. Nevertheless, all overlap graphs follow

the same path both in construction and simplification. Due to its simplicity and resemblance to

the double helix, we chose the assembly graph for our implementation, following the concepts

of Miniasm [30] and introducing few modifications.

3.1 Assembly graph

Overlap graphs without multi-edges that are both containment-free and Watson-Creek complete

are also called assembly graphs [30]. The former property imposes that not a single vertex is

contained in any other vertex, or formally ∀v ∈ V , @w ∈ V \ v,v ⊆ w. This can be achieved di-

rectly from pairwise overlaps by discovering which of the sequences completely overlap others.

The latter property dictates that both vertices and edges have complementary pairs in the graph

[30], formally ∀v ∈ V,v ∈ V and ∀v→ w ∈ E,w→ v ∈ E. Length of an edge v→ w, in which

suffix of v equals the prefix of w, is defined as the size of v’s prefix that is not in the overlap

[30]. An example assembly graph is shown in Figure 3.1.

*For a given sequence s ∈ S, its Watson-Crick complement is defined as s = c1c2...cn = cncn−1...c1, where
A = T , C = G, G =C, and T = A.

11

Algorithms for layout phase of the OLC paradigm

Figure 3.1: Example of an assembly graph constructed from an arbitrary set of sequences S with cardi-
nality |S|= 13. Vertices are denoted with vi and linked with dashed lines to their Watson-Crick comple-
ments vi. Edges are denoted with ei, j, while their complenetary pairs with e j,i. The graph was manually
drawn and annotated in Cytoscape [39]. Due to clarity, edge labels are absent in subsequent figures.

Given a set of approximate pairwise overlaps, we separate internal and contained overlaps

from suffix-prefix overlaps following Algorithm 5 described in [30]. To be more resilient to

erroneous data we do not carry out any overlap filtering beforehand. The maximal overhang

constraint is removed but we decrease the overhang to overlap length ratio. Overlaps classified

as internal are set aside for later use (see Section 3.2.1), contained sequences and their overlaps

are removed, and all suffix-prefix overlaps are used as building blocks of the assembly graph.

Ideally we would reconstruct the sequenced genome by finding a Hamiltonian path in the

graph [40], a path that visits each vertex only once. In computer science this problem is char-

acterized as NP-complete and cannot be solved in feasible time [41]. Therefore, a series of

simplification methods are used instead to find unambiguous paths in the graph, called contigs,

that cover contiguous regions in the sample [42]. Usually the final assembly consists of high-

confidence contigs called unitigs, which either span whole chromosomes or end at repetitive

genomic regions [16].

3.1.1 Simplification methods

The assembly graph undergoes several modifications of which transitive reduction is utilized

first. Given a triplet of vertices (vi,v j,vk), edge vi→ vk is transitive if there exist edges vi→ v j

and v j → vk. We can safely remove it as there exists a path over v j that connects vi and vk.

Although, removing transitive edges one at a time is not advisable as some of them may imply

others (Figure 3.2). A linear time algorithm (O(|E|)) for transitive reduction has been proposed

by [27], but we examine all possible candidates and determine if the path lengths are comparable

(maximal difference of 12%), as depicted in Algorithm 1.

Next in order are dead ends of the assembly graph, branches of contigs that cease abruptly

either due to sequencing errors or low sequencing coverage (Figure 3.3). They can be located by

launching a depth first search from vertices with deg−(v) = 0. The search stops when we reach

12

Algorithms for layout phase of the OLC paradigm

Figure 3.2: Part of an assembly graph containing transitive edges. For any path of three vertices vi→
v j→ vk, a transitive edge connects the first and last vertex of that path, vi→ v j. It can be removed without
any loss of information, but removing any of them separately might hinder the detection of others. In
this example, edge v5→ v1 is not transitive without edge v4→ v1, as well as v4→ v1 without v3→ v1.
The subgraph was manually drawn and annotated in Cytoscape [39].

Algorithm 1 Transitive reduction of an assembly graph

Input: Assembly graph G = (V,E).
Output: None. (Procedure updates the given graph.)

1: procedure ASSEMBLYGRAPHTRANSITIVEREDUCTION(V,E)
2: for all v ∈V do
3: for all v→ w ∈ E do
4: wmark← 1
5: for all v→ w ∈ E do
6: for all w→ x ∈ E do
7: if xmark and |v→ w|+ |w→ x| ∈ |v→ x|± ε then
8: (v→ x)mark = 1
9: for all v→ w ∈ E do

10: wmark← 0
11: for all v→ w ∈ E do
12: if (v→ w)mark then
13: E← E \{v→ w}

a junction vertex, which has multiple outgoing edges or multiple incoming edges. The dead end

is pruned only if the junction vertex has deg−(v) > 1, meaning there should be another path

leading up to it. In addition, we ignore paths longer than 5 vertices. Pseudocode is available in

Algorithm 2 and is run iteratively until no changes occur in the graph.

More complex structures located in assembly graphs are called bubbles, an arangement of

multiple paths connecting two vertices. In haploid organisms they occur due to sequencing

errors, while in diploid and polyploid as a result of genomic variation. It is desireable to resolve

bubbles (pop them) by retaining only one path. We search for vertices with two different paths

using breadth first search as in Algorithm 3, similar to [43]. Afterwards, we check whether

both paths span the same sequence. We deem it necessary in order to distinguish bubbles which

incurred due to false overlaps. Minimizers are collected from both path sequences as in minimap

[30], and the lists are sorted and merged to identify the longest overlap as in Daligner [24]. If

13

Algorithms for layout phase of the OLC paradigm

Figure 3.3: Part of an assembly graph containing a dead end (path v3→ v6→ v7). Removing such paths
should not lead to loss of information. The subgraph was manually drawn and annotated in Cytoscape
[39].

Algorithm 2 Pruning of dead ends in an assembly graph

Input: Assembly graph G = (V,E).
Output: None. (Procedure updates the given graph.)

1: procedure ASSEMBLYGRAPHPRUNING(V,E)
2: for all v ∈V,deg−(v) = 0 do
3: n← 0
4: v′← v
5: while v′→ w ∈ E do
6: v′← w
7: if deg+(v′)> 1 or deg−(v′)> 1 then
8: break . Reached a junction
9: n← n+1

10: if deg−(v′)> 1 and n < 6 then
11: while v 6= v′ and v→ w ∈ E do
12: E← E \{v→ w}
13: v← w

the percentage of matching bases is at least 50% we take a step further and identify which path

to remove. More precisely, we look for edges which if removed will not break any other path of

the graph. Figure 3.4 depicts five such scenarios. The path of the bubble with fewer vertices is

examined first, and if such edges do not exist, the other path is considered instead. Pseudocode

for bubble resolution is shown in Algorithm 4. The whole algorithm is evoked until the graph

remains unchanged, because removal of some bubbles can facilitate removal of others.

Eventually, we exhausted all simplification methods and want to find unitigs, unambiguous

paths which contain vertices with deg−(v) = deg+(v) = 1. This is easily achievable by picking

any such vertex and expanding it in both directions until we reached the end, made a circle or

encountered a vertex without the defined property. Afterwards, the unitig path is collapsed into

a single vertex which represents a compound sequence of all contained vertices. The sequence

is a concatenation of vertex prefixes which length is encoded in the edges. Algorithm 5 depicts

this process.

14

Algorithms for layout phase of the OLC paradigm

(a) (b)

(c) (d)

(e)

Figure 3.4: Different path formations in bubble-like structures of the assembly graph. We assume that
the path v5 → v4 → v3 → v2 → v1 is the one we want to keep. The path over vertices v8, v6 and v7 is
searched for edges that will not discontinue other paths of the graph if removed. Subfigure (a) depicts
the simplest scenario in which the whole path can be removed. When they are several vertices with
indegree deg−(v)≥ 2 and outdegree deg+(v) = 1, everything before the first such vertex can be removed
as in subfigure (b). Similar rule applies to the case in subfigure (c) where they are several vertices with
deg+(v) ≥ 2 and deg−(v) = 1. Everything after the last such vertex is safely removable. When there is
a combination of those vertex types, edges between the last vertex with deg+(v)≥ 2 and the first vertex
with deg−(v) ≥ 2 can be safely removed, as seen in (d). This only applies when vertices do not have
multiple edges of the other type, that is if there is vertex with deg−(v)≥ 2 and deg+ ≥ 2 in the path then
no edges are removed as they would break other paths in the graph (subfigure (e)). All subfigures were
manually drawn and annotated in Cytoscape [39].

15

Algorithms for layout phase of the OLC paradigm

Algorithm 3 Detection and resolution of bubble-like structures in an assembly graph

Input: Assembly graph G = (V,E).
Output: None. (Procedure updates the given graph.)

1: procedure ASSEMBLYGRAPHBUBBLEPOPPING(V,E)
2: for all v ∈V,deg+(v)≥ 2 do
3: for all v′ ∈V do . Initialize breadth first search
4: v′distance← 0
5: v′predecessor← null

6: B← null
7: Q← new Queue(v)
8: while |Q| 6= 0 do
9: v′← POP_FRONT(Q)

10: for all v′→ w ∈ E do
11: if w = v then
12: continue . Found a cycle
13: if v′distance + |v′→ w|> 500000 then
14: continue . Out of reach
15: if wpredecessor ∈V then
16: B← (v′,w) . Found sink
17: break
18: wdistance← v′distance + |v′→ w|
19: wpredecessor = v′

20: PUSH_BACK(Q,w)
21: if B = null then
22: continue
23: (v′,v′′)← B . Backtrack to find paths
24: P′← new Array(v′→ v′′)
25: while v′predecessor 6= null do
26: APPEND(P′,v′predecessor→ v′)
27: v′← v′predecessor

28: P′′← new Array
29: while v′′predecessor 6= null do
30: APPEND(P′′,v′′predecessor→ v′′)
31: v′′← v′′predecessor

32: if |P′∩P′′|> 2 then . An inner bubble is not resolved
33: continue
34: GRAPHPOPBUBBLE(P′,E) or GRAPHPOPBUBBLE(P′′,E) . Algorithm 4

16

Algorithms for layout phase of the OLC paradigm

Algorithm 4 Resolution of a single bubble as described in Figure 3.4
Input: Candidate path P of an arbitrary bubble and the edge set E of assembly graph G.
Output: True if edges are removed, false otherwise.

1: procedure ASSEMBLYGRAPHPOPBUBBLE(P,E)
2: i←−1
3: for k← 0 to |P|−1 do . Find first vertex i with multiple incoming edges
4: (v→ w)← P[k]
5: if deg−(w)> 1 then
6: i← k+1
7: break
8: j←−1
9: for k← 0 to |P|−1 do . Find last vertex j with multiple outgoing edges

10: (v→ w)← P[k]
11: if deg−(w)> 1 and deg+(w)> 1 then
12: return false
13: if deg+(w)> 1 then
14: j← k+1
15: if i = j =−1 then . Remove whole path
16: for all v→ w ∈ P do
17: E← E \{v→ w}
18: else if i =−1 then . Remove edges after j
19: for all v→ w ∈ P[j, |P|] do
20: E← E \{v→ w}
21: else if j =−1 then . Remove edges before i
22: for all v→ w ∈ P[0, i] do
23: E← E \{v→ w}
24: else if j < i then . Remove edges between j and i
25: for all v→ w ∈ P[j, i] do
26: E← E \{v→ w}
27: else
28: return false
29: return true

17

Algorithms for layout phase of the OLC paradigm

Algorithm 5 Unitig creation in an assembly graph

Input: Assembly graph G = (V,E).
Output: None. (Procedure updates the given graph.)

1: procedure ASSEMBLYGRAPHUNITIGS(V,E)
2: for all v ∈V,deg+(v) = deg−(v) = 1 do
3: v′← v
4: while w→ v′ ∈ E and deg+(w)≤ 2 and deg−(w)≤ 2 do
5: v′← w
6: if v′ = v then
7: break
8: v′′← v
9: while v′′→ w ∈ E and deg+(w)≤ 2 and deg−(w)≤ 2 do

10: v′′← w
11: if v′′ = v then
12: break
13: u← new Vertex
14: if v′ 6= v′′ then . Reconnect edges if unitig is not circular
15: if w→ v′ ∈ E then
16: E← (E \{w→ v′})∪{w→ u}
17: if v′′→ w ∈ E then
18: E← (E \{v′′→ w})∪{u→ w}
19: while v′ 6= v′′ and v′→ w ∈ E do . Join sequences
20: usequence← usequence +(v′sequence)[0, |v′→ w|]
21: E← E \{v′→ w}
22: v′← w
23: if deg+(v′′) = 0 then
24: usequence← usequence + v′′sequence

25: V ←V ∪{u}

18

Algorithms for layout phase of the OLC paradigm

3.1.2 Discussion

Described methods for assembly graphs are used by almost all OLC based assemblers in some

form. Sequencing errors and false approximate overlaps spawn edges in the graph that are

not present in the sample, and above simplification methods have a hard time dealing with

them. Therefore, additional heuristic methods are used. For example, Miniasm removes short

overlaps from junction vertices if there is a much longer overlap present [30]. We employed

the same technique at first but later switched to a more robust method based on graph drawings

(see Section 3.3). On the other hand, HINGE utilizes the information from the set of pairwise

overlaps to annotate problematic regions in sequences, and incorporates that in the best overlap

graph [33]. We implemented a similar approach prior the construction of a full assembly graph.

3.2 Preprocessing

Leftover tangles in simplified assembly graphs are mostly the repercussions of sequencing arte-

facts and repetitive genomic regions. The former are called chimeric sequences. This are se-

quences consisting of multiple parts which are arranged in a way that is absent in the genome.

They occur either by accidental fragment joining during sample preparation or due to misread

sequence adapters. The latter cause of tangles implies overlaps between sequences that have

repetitive regions on either of their ends. A repetitive region is said to be bridged if it is com-

pletely contained in a sequence. If not properly handled, sequences with unbridged repeats can

spawn false overlaps which are not present in the sample.

An elegant way to detect chimeric and repetitive regions is with the help of pile-o-grams,

which are extensively used in the HINGE assembler [33]. Pile-o-gram of a sequence is created

by stacking all of its pairwise overlaps on top of each other (Figure 3.5a) and summing up the

number of overlaps covering each base. This will yield an one dimensional signal (Figure 3.5b)

which is suitable to infer usefull information from the whole dataset. Sequences that uniquely

and fully map to the sequenced genome (Figure 3.5c) have almost uniform coverage across their

pile-o-gram, while other have detectable fluctuations. This enables annotation of problematic

regions which HINGE finds with gradients [33]. It truncates chimeric sequnces to the longest

non-chimeric part, while repeat annotations are used to find sequences that overlap unbridged

repeats to allow some of them multiple overlaps in an otherwise best overlap graph [33]. Our

implementation uses coverage medians alongside gradients to annotate sequences. We deal with

chimeric sequences the same way, but use repeat annotations to remove a portion of overlaps

before graph construction. Section 3.2.1 describes that in detail.

19

Algorithms for layout phase of the OLC paradigm

0 2500 5000 7500 10000 12500 15000 17500 20000

0

20

40

60

80

100

120

140

base

ov
er

la
p

(a)

0 2500 5000 7500 10000 12500 15000 17500 20000
0

20

40

60

80

100

120 pile-o-gram
median

base
co

ve
ra

ge

(b)

(c)

Figure 3.5: Sequence pile-o-gram construction from a set of pairwise overlaps. Overlaps are stacked
into a pile (subfigure (a)) and summed up over each base in the sequence (subfigure (b)). If we align the
sequence to the reference genome, we can see that it is fully aligned to only one location (subfigure (c)),
which results in an almost uniform pile-o-gram. Such sequences are the basis for high quality assemblies.
The whole figure is tied to sequence 474ddffb-0b2b-4a92-8f06-8568265ca639 obtained from the dataset
ERR1147227. Subfigures (a) and (b) were drawn in Python with Matplotlib [44], while subfigure (c)
was exported from Gepard [45].

20

Algorithms for layout phase of the OLC paradigm

Algorithm 6 Slope detection in a pile-o-gram
Input: Pile-o-gram P and coverage ratio r.
Output: Vector of found downward and upward slopes.

1: procedure PILEOGRAMSLOPEDETECTION(P,r)
2: w← 52
3: L← new Queue
4: R← new Queue
5: S← new Array
6: for i← 0 to k do
7: PUSH_BACK(R,(P[i], i)) . Initialize right window
8: for i← 0 to |P| do
9: while |L| 6= 0 and (FRONT(L))[1]≤ i−1−w do

10: POP_FRONT(L) . Remove bases out of reach
11: while i > 0 and |L| 6= 0 and (BACK(L))[0]≤ P[i−1] do
12: POP_BACK(L) . Remove all smaller values
13: PUSH_BACK(L,(P[i−1], i−1))
14: if r ·P[i]< (FRONT(L))[0] then
15: APPEND(S,(i,0)) . Record downward slope
16: while |R| 6= 0 and (FRONT(R))[1]≤ i do
17: POP_FRONT(R) . Remove bases left to current position
18: while i < |P|−w and |R| 6= 0 and (BACK(R))[0]≤ P[i+w] do
19: POP_BACK(R) . Remove all smaller values
20: PUSH_BACK(R,(P[i+w], i+w))
21: if r ·P[i]< (FRONT(R))[0] then
22: APPEND(S,(i,1)) . Record upward slope
23: return S

3.2.1 Sequence annotation

Pile-o-grams are represented with a vector of unsigned integers with size that equals the length

of corresponding sequences. To reduce the impact on random-access memory without changing

the structure of pile-o-grams, we downsample them to contain every 16-th base. Such pile-o-

grams are first used to remove adapters and low coverage regions from sequences, similar to

Miniasm which does that directly from overlaps [30]. Each of them is scanned through to

identify the longest region covered by at least four overlaps. Everything outside that region is

trimmed away. Afterwards, we search pile-o-grams again to identify coverage slopes, abrupt

increases or decreases in coverage. We keep a sliding window, of fixed length w, left and right

from the current position of the scanning procedure. The maximum value of each window is

compared to the current value, and the slope is recorded if the coverage ratio is large enough.

The minimal ratio depends on the type of fluctuation we are searching for, for chimeric se-

quences it equals to 1.84 and for repetitive regions to 1.42 (both values empirically determined).

Pseudocode for slope detection is in Algorithm 6.

21

Algorithms for layout phase of the OLC paradigm

Collected slopes are grouped into more complex shapes such as rifts and ridges, and each

group is further investigated. We declare rifts between a downward slope and an upward slope,

while the opposite constitutes ridges. To decrease the number of false annotations, we utilize

the information about approximate sequencing depth by calculating pile-o-gram medians†. This

will also help to properly treat different sequencing depths and molecule copy numbers (e.g.

plasmids). Sequences are grouped with suffix-prefix overlaps into connected components, and

component medians are used to to determine the relevance of each rift and ridge.

A rift is declared chimeric if it contains a base with coverage bellow the component median

divided by 1.84 (value empirically determined). Annotated pile-o-gram of a chimeric sequence

is presented in Figure 3.6. When all chimeric rifts are annotated, sequences are shrunk to their

longest non-chimeric region. Overlaps that are declared internal are examined again if any of

them became a suffix-prefix overlap due to changes in chimeric sequences.

On the contrary, all bases inside a ridge are examined if their coverage is greater than the

component median multiplied with 1.42 (value empirically determined). If at least 90% of bases

conforms to this constraint, the ridge is declared as a repetitive genomic region, as depicted in

Figure 3.7. Later we look for suffix-prefix overlaps that do not bridge annotated ridges at

either sequence end (Figure 3.8a). They are removed from the overlap set if there exists at

least one overlap bridging the ridge in question (Figure 3.8b). Removing overlaps without this

constraint might fragment the assembly graph, if a repetitive genomic region is not bridged by

any sequence.

3.2.2 Discussion

Even though pile-o-grams help clearing up false paths in the assembly graphs, the presented

method might generate misleading annotations. For instance, sequences with low coverage re-

gions might be wrongfully declared chimeric (Figure 3.9). The problem arises if contained

sequences are removed before chimeric sequences are resolved. Leaving only the longest

non-chimeric part of a sequence can lead to fragmented assemblies, if other sequences were

contained in the parts that were trimmed away. This is especially troublesome for ultra-long

sequences that are declared chimeric. Therefore, containment removal is aided with rift annota-

tions. If a sequence has a chimeric rift in its pile-o-gram, it can not contain any other sequence

at this point. We resolve chimeric sequences after containment removal in order to simplify

retrieval of connected components.

†Methods based on coverage medians are also applied in the Unicycler assembler [46].

22

Algorithms for layout phase of the OLC paradigm

0 2500 5000 7500 10000 12500 15000 17500

0

25

50

75

100

125

150

175

base

ov
er

la
p

(a)

0 2500 5000 7500 10000 12500 15000 17500
0

20

40

60

80

100

120

140 pile-o-gram
annotation
median

base

co
ve

ra
ge

(b)

(c)

Figure 3.6: Pile-o-gram of a chimeric sequence. Not a single overlap covers the neighbourhood of the
base at position 6900, which is an indication of a chimeric sequence (subfigure (a)). The resulting pile-
o-gram has a rift around that position, which is detectable without difficulties (subfigure (b)). When the
sequence is aligned to the reference genome, the alignment is split into two parts that are dislocated on
the reference (subfigure (c)), verifying the assumption about the chimeric nature of the sequence. The fig-
ure is tied to sequence 6e5d1642abdc-436ba597-4f68941ca163 obtained from the dataset ERR1147227.
Subfigures (a) and (b) were drawn in Python with Matplotlib [44], while subfigure (c) was exported from
Gepard [45].

23

Algorithms for layout phase of the OLC paradigm

0 2000 4000 6000 8000 10000 12000 14000

0

100

200

300

400

500

base

ov
er

la
p

(a)

0 2000 4000 6000 8000 10000 12000 14000
0

20

40

60

80

100

120

140
filtered pile-o-gram
pile-o-gram
annotation
median

base

co
ve

ra
ge

(b)

(c)

Figure 3.7: Pile-o-gram of a sequence containing a repetitive region. A large amount of overlaps located
at the end of the sequence is a good indicator for a reptitive genomic region (subfigure (a)). When the
overlaps are transformed into a pile-o-gram, the sequence end has a large ridge over the median (subfigure
(b)). If k-mer filtering is employed on the whole dataset, the ridge is lost in the pile-o-gram due to lack
of repetitive k-mers (pastel orange line in subfigure (b)). Aligning the sequence to the reference genome
gives one primary alignment and several small ones at various positions in the genome (subfigure (c)),
confirming that the end of sequence is part of a repetitive region. The whole figure is tied to sequence
6c1f5fec-a9c6-434f-879c-f40bd4dccbb6 obtained from the dataset ERR1147227. Subfigures (a) and (b)
were drawn in Python with Matplotlib [44], while subfigure (c) was exported from Gepard [45].

0 5000 10000 15000 20000 25000 30000
0

20

40

60

80

100

120

140
overlapping pile-o-gram
pile-o-gram
median

base

co
ve

ra
ge

(a)

0 5000 10000 15000 20000 25000
0

20

40

60

80

100

120

140
overlapping pile-o-gram
pile-o-gram
median

base

co
ve

ra
ge

(b)

Figure 3.8: Overlaps between pile-o-grams that contain reptitive regions. Subfigure (a) shows a false
overlap over the repetitive region, which we are trying to remove prior the construction of an assembly
graph. The removal is prohibited if there are no overlaps that bridge through the repeat in question. Ex-
ample of such overlap is shown in subfigure (b). Pile-o-gram drawn in blue is tied to sequence 6c1f5fec-
a9c6-434f-879c-f40bd4dccbb6, while the red and green pile-o-grams are tied to 6a7957d9-47e3-4b27-
bc1c-b38f8e349884 and 8db143ed-9007-4661-8174-634f94fb6a3b, respectively. All sequences were ob-
tained from the dataset ERR1147227. Both subfigures were drawn in Python with Matplotlib [44].

24

Algorithms for layout phase of the OLC paradigm

0 2000 4000 6000 8000 10000 12000 14000 16000

0

20

40

60

80

100

120

140

base

ov
er

la
p

(a)

0 2500 5000 7500 10000 12500 15000 17500
0

20

40

60

80

100

120

140 pile-o-gram
annotation
median

base

co
ve

ra
ge

(b)

(c)

Figure 3.9: Pile-o-gram of a incorrectly declared chimeric sequence. Region between 8750 and 11000
has small coverage probably due to low quality (subfigure (b)). It is declared chimeric even though
there are a couple overlaps covering it (subfigure (a)). The alignment confirms that the sequence is in
fact non-chimeric. It aligns to the reference genome completely and uniquely, although the low quality
region is not part of the alignment (subfigure (c)). The whole figure is tied to sequence 2e29dd15-c213-
4f79-ac67-fb7e550443c1 obtained from the dataset ERR1147227. Subfigures (a) and (b) were drawn in
Python with Matplotlib [44], while subfigure (c) was exported from Gepard [45].

25

Algorithms for layout phase of the OLC paradigm

A different obstacle is tied to repetitive regions. Our implementation relies on Minimap [30]

for approximate sequence matching due to its low running times. Minimap filters out the most

frequent k-mers as a trade-off between sensitivity and execution speed. Ignored k-mers mostly

originate from repetitive genomic regions which obstructs the detection and annotation of ridges

in pile-o-grams. An example can be seen in Figure 3.7b. Decreasing the k-mer filter on the set

of all sequences S is unfeasible for larger genomes. The issue is bypassed by recalculating

pile-o-grams after containment removal and chimeric resolution. All contained sequences are

overlapped with the surviving sequences anew, a scenario in which decreasing the k-mer filter

is affordable. This way even higher copy number molecules will have distinguishable ridges in

their pile-o-grams.

Some tangles in the assembly graph are undetectable due to high error rates and the above

approaches being heuristic. For that reason we implement a postprocessing algorithm based on

graph drawings on top of everything mentioned so far.

3.3 Postprocessing

Even though the presented state of the assembler is able to handle a lot of graph layouts, re-

moving edges based on overlap length could eventually yield misassemblies. The problem is in

the locality of the approach. The culprit vertex which spawns a false path might be anywhere

along that path, and comparing the overlap lengths from the junction to the first vertex in each

path might be misleading. Therefore, we wanted to explore an approach that is more robust in

identifying paths that connect distant parts of the assembly graph, and thus the genome.

The idea to draw the assembly graph in a two-dimensional Euclidean plane and use the

encoded information about vertex distances came by accident. During the development of our

de novo assembler, we used various tools for visualization which helped to check whether the

implemented methods were doing what they are supposed to. We extensively used Cytoscape

[39] to draw the assembly graph, and that was usually done at the end of the layout phase to

locate problematic vertices that cause fragmentation. Once we drew the assembly graph right

after construction, we noticed that some of the edges were quite elongated (a sample graph

is shown in Figure 3.10). After closer examination, the elongated edges were either tied to

undetected chimeric sequences or they represented unresolved overlaps of repetitive genomic

regions. This was enough incentive to delve deeper into the force-directed placement algorithm

[47], which is one of the underlying algorithms used in Cytoscape.

26

Algorithms for layout phase of the OLC paradigm

Figure 3.10: Magnified view of an assembly graph which shows three extended edges connecting remote
parts of the graph. The assembly graph was constructed from the bacterial dataset ERR1046594 and
was drawn with Cytoscape [39] (using the prefuse force-directed layout option) prior to applying any
simplification methods.

3.3.1 Force-directed placement

Designed for drawing undirected graphs with straight edges, the force-directed placement al-

gorithm tends to draw vertices closely together if they are connected with an edge, but not too

close [47]. The authors compare the graph to a system of particles that attract and repulse each

other, in which the goal is to find a static equilibrium. First, each vertex is asigned a random

position on the canvas. Afterwards, in an iterative fashion, the algorithm updates vertex posi-

tions by applying forces between them. Given an optimal distance k, which equals to the square

root of the canvas surface divided by the number of vertices |V |, the attractive force is defined

as fattractive(d) = d2

k , while the repulsive forces is defined as frepulsive(d) = −k2

d . They cancel

each other out when the distance d between two vertices reaches the optimal value k [47]. The

total displacement of a vertex is bounded by the value t (which is decreased in every iteration)

and is ignored if the vertex would leave the given canvas frame. The attractive forces are only

calculated between vertices that are connected with an edge (O(|E|)), while the repulsive forces

are calculated for each pair of vertices in the graph (O(|V |2)). Due to the quadratic time com-

plexity of one iteration limiting the number of iterations is a must for larger graphs, but good

drawings can be achievied with at most 100 iterations [47].

For assembly graphs we merge each vertex pair and each edge pair into a single vertex and

edge, respectively, as they counterparts are redundant in the drawing. Same holds for the edge

directions which are disregarded. We create the drawing at the end of the layout phase where the

27

Algorithms for layout phase of the OLC paradigm

Figure 3.11: Condensed assembly graph displaying uniform edge lengths when using the force-directed
placement algorithm [47]. Edges of interest, those tied to vertices with outdegree greater than two,
are coloured in red and are really hard to distinguish. The assembly graph was constructed from the
same bacterial dataset ERR1046594, but was drawn in Python with Matplotlib [44] after employing
simplification methods.

average vertex degree is around two. This will result in almost equal distances between vertices

which is not desirable (Figure 3.11). Consequently, we reintroduce removed transitive edges

to increase the attractive forces in valid paths of the graph. The notion behind this approach is

that paths existing because of chimeric sequences are quite rare and no transitive edges should

support them. The same is valid for repeat induced edges, only if the majority of them have

been removed as described in Section 3.2. Assembly graph from Figure 3.11 with transitive

edges is shown in Figure 3.12, in which we can locate false paths clearly.

The pseudocode for assembly graph drawings can be seen in Algorithm 7. It is embarrass-

ingly parallelizable by assigning each thread to calculate the displacement of one vertex (lines

10-18). There are a couple of modifications to the algorithm presented in [47]. We draw each

28

Algorithms for layout phase of the OLC paradigm

Figure 3.12: Condensed assembly graph with reintroduced transitive edges exhibits proper stretching
of false paths drawn with the force-directed placement algorithm [47]. Transitive edges are represented
with green dotted lines, while edges of interest, those tied to junction vertices, are coloured in red and
are now easier to detect. The assembly graph was constructed from the bacterial dataset ERR1046594
and was drawn in Python with Matplotlib [44].

29

Algorithms for layout phase of the OLC paradigm

Algorithm 7 Force-directed placement of an assembly graph

Input: An assembly graph G = (V,E).
Output: None. (Procedure stores vertex distances to corresponding edges.)

1: procedure ASSEMBLYGRAPHDRAWING(V,E)
2: C← CONNECTEDCOMPONENTS(V,E) . [48]
3: for all (V ′,E ′) ∈C do
4: k← 1√

|V ′|
5: t← 0.1
6: dt← 0.001
7: for all v ∈V ′ do
8: (vx,vy)← (U(0,1),U(0,1)) . Random point on the canvas

9: for i← 0 to 100 do
10: for all v ∈V ′ do
11: v f orce← (0,0)
12: for all w ∈V ′ \ v do . Repulsive forces
13: ∆← (vx−wx, vy−wy)

14: v f orce← v f orce +
k2

|∆| ·
∆

|∆|

15: for all v→ w ∈ E ′ do . Attractive forces
16: ∆← (vx−wx, vy−wy)

17: v f orce← v f orce− |∆|
2

k ·
∆

|∆|

18: v f orce← t · v f orce
|v f orce|

19: for all v ∈V ′ do
20: (vx,vy)← (vx +(v f orce)x,vy +(v f orce)y)

21: t← t−dt
22: for all v→ w ∈ E ′ do
23: (v→ w)distance← |(vx−wx, vy−wy)|

connected component separately with the aim to decrease the number of vertices in each draw-

ing. We drop the constraints on the initial frame size and let the drawing expand as much as

needed, otherwise the vertices are pushed to the frame itself and the graph loses the sought

shape, as depicted in Figure 3.13. Finally, the whole algorithm is run several times to overcome

bad initial layouts.

The obtained drawing is used to determine the length of each edge by calculating the Eu-

clidean distance between connected vertex representatives in the drawing. Those distances are

used to resolve junctions in the graph, that is if a vertex has multiple outgoing edges and if the

length of one of them is at least twice longer than any other outgoing edge of that vertex, it is

removed from the edge set E.

30

Algorithms for layout phase of the OLC paradigm

Figure 3.13: Condensed assembly graph drawn with the force-directed placement algorithm [47] inside
a fixed canvas frame. The vertices are pushed to the frame itself and the graph loses the desired shape,
although some of the false paths are still elongated. The assembly graph was constructed from the
bacterial dataset ERR1046594 and was drawn in Python with Matplotlib [44].

31

Algorithms for layout phase of the OLC paradigm

3.3.2 Approximation techniques

Quadratic time complexity of the force-directed placement algorithm hinders its use on larger

genomes, in which the number of vertices can range up to a few hundred thousand, thus we

shifted to approximation techniques. Points of interest in the graph are junctions, vertices with

outdegree greater than two. In order to decrease the execution time we shrink the unambiguous

paths of the graph by replacing the vertices they consist of with a single unitig vertex. As

we want to preserve the neighbourhood of all junctions to be able to determine false edges,

vertices that are at most ε away from any junction (shortest path between them is less than ε)

are removed from consideration while creating unitigs. We use a modified version of Algorithm

5 which shifts the first (v′) and last (v′′) vertex of a unitig inwards by ε (before line 13). Unitigs

consisting of less than 2ε +1 vertices are not collapsed. The value for ε was empirically set to

42. Figure 3.14 is an example which shows that replacing groups of unessential vertices with

unitigs does not change the desired drawing structure.

Despite the fact that shrinking gives a decent performance boost, some assembly graphs are

just too complex. Authors of the force-directed placement algorithm proposed a grid version in

which the repulsive forces are ignored outside a circle with radius 2k centered in each vertex

[47]. If the vertices are uniformly distributed the complexity should drop to O(|V |) [47]. Ne-

glecting repulsive forces distorts the assembly graph (Figure 3.15) and the important edges are

not stretched enough. For that reason, we switched to Barnes-Hut approximation which was

devised for the gravitational N-body problem [49]. The idea is to accurately describe forces

between closely arranged vertices and aproximate the forces between distant ones. Distant ver-

tices are treated as a single point located in their center-of-mass which emits a repulsive force

multiplied with their cumulative mass. The algorithm recursively splits the two-dimensional

space into four equal quadrants until every vertex solely occupies a subquadrant (Figure 3.16).

Data structure suitable for such division is a quadtree, a tree in which each node has up to

four child nodes [50]. Quadtrees will enable a recursive method for calculation of repulsive

forces starting from the whole canvas (root of the quadtree) down to each vertex (leaves of the

quadtree). The method will terminate at a given node if the represented subquadrant width is

less than the distance between the vertex and the center-of-mass of the subquadrant. This will

reduce the running time from O(|V |2) to O(|V |log|V |) and the calculated forces will differ 1%

at average [49]. We modify Algorithm 7 by creating a quadtree in each iteration (before line

10). Each v ∈V is added to the quadtree with Algorithm 8 and afterwards the quadtree is final-

ized with Algorithm 9. Additionally, repulsive force calculation is replaced with Algorithm 10

(lines 12-14 of Algorithm 7).

32

Algorithms for layout phase of the OLC paradigm

Figure 3.14: Condensed assembly graph drawn with the force-directed placement algorithm [47] after
unitig creation. Replacing unambiguous paths of the graph with a single vertex, which is at least 42
vertices away from any junction, retains the sought drawing structure. This will boost the performance
of the algorithm as the number of vertices decreased from 2430 to 1099. The assembly graph was
constructed from the bacterial dataset ERR1046594 and was drawn in Python with Matplotlib [44].

33

Algorithms for layout phase of the OLC paradigm

Figure 3.15: Condensed assembly graph drawn with the grid version of the force-directed placement
algorithm [47]. Ignoring repulsive force outside a circle of radius 2k renders the drawing unusable for
detection of false paths. The assembly graph was constructed from the bacterial dataset ERR1046594
and was drawn in Python with Matplotlib [44].

34

Algorithms for layout phase of the OLC paradigm

Figure 3.16: Condensed assembly graph drawn with Barnes-Hut approximation [49] of the the force-
directed placement algorithm [47]. The canvas is recursively split into four quadrants until each vertex is
a single occupant of a subquadrant. Repulsive forces are calculated depending on the distance between a
given vertex and centers-of-mass of all quadrants, which enables quasilinear execution time. For exam-
ple, for the vertex marked with a rhombus the number of repulsive forces calculated (denoted with red
dashed lines) decreased from 1098 to only 20. The assembly graph was constructed from the bacterial
dataset ERR1046594 and was drawn in Python with Matplotlib [44]. Edges of the assembly graph are
not drawn for clarity.

35

Algorithms for layout phase of the OLC paradigm

Algorithm 8 Adding an element to the quadtree
Input: Qaudtree node q and vertex v. Quadtree nodes are tuples consisting of five values
(core,width,center,mass,subtrees), where core is the cell center, widht half the cell width,
center the cell center-of-mass, mass the total mass of all occupants in the cell, and subtrees
a tuple of four children nodes.
Output: True if vertex v is stored, otherwise false.

1: procedure QUADTREEADD(q, p)
2: if vx /∈ (qcore)x±qwidth or vy /∈ (qcore)y±qwidth then
3: return false . Vertex is out of quadrant bounds
4: qmass← qmass +1
5: if qmass = 1 then
6: qcenter← (vx,vy)
7: return true
8: if qsubtrees = /0 then . Split the current cell
9: qsubtrees← (

(((qcore)x +
qwidth

2 ,(qcore)y +
qwidth

2), qwidth
2 ,(0,0),0,()),

(((qcore)x− qwidth
2 ,(qcore)y +

qwidth
2), qwidth

2 ,(0,0),0,()),
(((qcore)x− qwidth

2 ,(qcore)y− qwidth
2), qwidth

2 ,(0,0),0,()),
(((qcore)x +

qwidth
2 ,(qcore)y− qwidth

2), qwidth
2 ,(0,0),0,())

)
10: for all q′ ∈ qsubtrees do . Move current occupant to a subquadrant
11: if QUADTREEADD(q′,qcenter) then
12: break
13: for all q′ ∈ qsubtrees do
14: if QUADTREEADD(q′, p) then
15: break
16: return true

Algorithm 9 Finalize quadtree by calculating centers-of-mass
Input: Quadtree node q.
Output: None. (Procedure calculates centers-of-mass of all nodes in the quadree.)

1: procedure QUADTREECENTER(q)
2: if qsubtrees = /0 then
3: return
4: qcenter← (0,0)
5: for all q′ ∈ qsubtrees do
6: qcenter← qcenter +q′mass ·q′center

7: qcenter← qcenter
qmass

36

Algorithms for layout phase of the OLC paradigm

Algorithm 10 Quadtree repulsive force
Input: Quadtree node q, vertex v and optimal distance k.
Output: None. (Procedure updates the force of given vertex.)

1: procedure QUADTREEFORCE(q, v, k)
2: ∆← (vx− (qcenter)x,vy− (qcenter)y)
3: if |∆|> 2 ·qwidth then
4: v f orce← v f orce +qmass · k2

|∆| ·
∆

|∆|
5: else
6: for all q′ ∈ qsubtrees do QUADTREEFORCE(q′,v)

3.3.3 Discussion

Reducing the number of vertices coupled with Barnes-Hut approximation enables large graph

drawings in quasilinear time. Although they look like a yarn ball to the observer (Figure 3.18),

some of elongated edges can be recognized on the graph boundaries. Using graph drawings to

remove false paths greatly increases the contiguity even on larger genomes, as we will see in

later chapters.

We also tried applying this algorithm without any sequence preprocessing. If there are only

vertices representing chimeric sequences present in the graph, the algorithm properly enlarges

corresponding edges as there is abysmal chance that several of them connect identical parts of

the graph. On the other hand, the algorithm struggles to handle cases in which there are a lot of

repeat induced paths connecting the same graph region (Figure 3.18). Because of that, we use

the graph drawings as the last simplification method of the layout phase.

37

Algorithms for layout phase of the OLC paradigm

Figure 3.17: Condensed assembly graph of a larger genome drawn with the force-directed placement
algorithm [47]. Although the false edges are hard to see, they are present and elongated enough to be
removed. The assembly graph was constructed from the eukaryotic dataset SRR6702603 and was drawn
in Python with Matplotlib [44].

38

Algorithms for layout phase of the OLC paradigm

Figure 3.18: Condensed assembly graph with repeat induced edges drawn with the force-directed place-
ment algorithm [47]. Increased number of such edges hinders their proper elongation in the drawing,
although some of them are still resolvable. The assembly graph was constructed from the bacterial
dataset ERR1046594 and was drawn in Python with Matplotlib [44].

39

Chapter 4

Algorithms for consensus phase of the
OLC paradigm

Unitigs extracted from a layout of third generation sequencing data are unusable for many down-

stream analysis due to unamended sequencing errors. To identify the right order of nucleotides

amidst the noise, assemblers employ methods based on multiple sequence alignment on top of

the set of unitigs. The most prosperous one is partial order alignment [20] which defines the

problem through directed acyclic graphs. It extends pairwise alignment algorithms like [51]

and [52] to alignment between a sequence and a graph. This prevents possible information loss

present in progressive approaches that employ pairwise alignment between pairs of multiple

sequence alignment representatives [20]. The consensus sequence is obtainable by finding the

heaviest path in finalized partial order graphs, algorithm proposed by the same authors [21].

Because of linear time complexity of the partial order alignment with regards to the number

of sequences aligned [20], we picked this algorithm as a building block to iteratively increase

the accuracy of unitigs in our implementation. Reflecting on how the immense application of

pairwise alignment algorithms in bioinformatics has led to many optimizations using SIMD

technologies [53][54][55], it seemed natural to explore the same for partial order alignment.

4.1 Partial order alignment

Partial order graphs G = (V,E) are directed acyclic graphs constructed from a set of sequences

S. Vertices represent characters c ∈ Σ that are connected with edges if they are consecutive in

any of the sequences s ∈ S. Edge weights represent the number of sequences passing through

and can be combined with base quelities obtained with sequencing [20]. Sequences are itera-

tively aligned and added to a growing graph [20]. Initially, an arbitrary sequence is added to

an empty graph. Insertion of each succeeding sequence is guided by the partial order align-

ment [20]. All matching bases in the alignment are fused into existing vertices of the graph. In

40

Algorithms for consensus phase of the OLC paradigm

(a)

(b)

(c)

Figure 4.1: Construction of a partial order graph from a set of two arbitrary sequences. Vertices are
denoted with vi, while edges with ei, j. Dashed lines link characters that were aligned together but are
mismatched. In subfigure (a) one sequence of the set is transformed into a linear graph wihtout branches.
The other is aligned and afterwards included in the graph. Alignment is shown in subfigure (b) where
vertical lines between ci and vi denote matches for which nothing has to be done during sequence inclu-
sion. Subfigure (c) shows the resulting partial order graph. It has two new vertices due to mismatches
(c3,v3) and (c6,v7), which are linked together with dashed lines. The graph has also three new edges
e2,8, e6,9 and e8,5. Edge e8,5 was added due to a deletion between characters c3 and c4. All graphs were
manually drawn and annotated in Cytoscape [39].

contrast, mismatches spawn new vertices which are linked to the vertices they are aligned to, if

such do not already exist. Links between aligned vertices are not edges e ∈ E, but information

stored in vertices. Deletions spawn new edges, while insertions add both vertices and edges to

the graph. Figure 4.1 depicts this approach, while Algorithm 11 gives the pseudocode.

Pairwise alignment between two sequences s and t, with lengths n and m, is solvable with

dynamic programing in O(nm) time [56]. Alignments can be viewed as a set of character

modifications used to obtain one sequence from the other. Modifications include matches, mis-

matches, insertions and deletions. Given a similarity matrix M and a gap cost g, the algorithm

computes a (n+ 1)× (m+ 1) matrix H following Equation 4.1. The optimal alignment is ex-

tracted from matrix H with a backtracking procedure that takes at most O(n+m). Starting from

the bottom right cell, the procedure determines from which of the three neighbouring cells did

the current value originate, and stops when it reaches the top left cell. Modifications in regards

41

Algorithms for consensus phase of the OLC paradigm

to the stop and start cells, coupled with penalty removal in first row and column of matrix H

enable local [52] or semi-global version of the pairwise alignment algorithm.

Hi, j =

0 i = 0∧ j = 0

j ·g i = 0

i ·g j = 0

max

Hi, j−1 +g

Hi−1, j +g

Hi−1, j−1 +Mt[i−1],s[j−1]

else

(4.1)

Quadratic time complexity for alignment holds for linear gap modeling, which are consid-

ered inadequate for analyzing biological sequences. Ideally we would use a convex function

like the logarithm, but satisfatcory results in less time can be achieved with affine gaps pro-

posed by [57]. Matrices F and E model the affine function, which consists of a gap opening

penalty o and gap extension penalty e, and the time complexity increases to O(3nm). Matrix

recursions are updated according to Equations 4.2, 4.3 and 4.4.

Ei, j =

−∞ i = 0∨ j = 0

max

Ei, j−1 + e

Hi, j−1 +o
else

(4.2)

Fi, j =

−∞ i = 0∨ j = 0

max

Fi−1, j + e

Hi−1, j +o
else

(4.3)

Hi, j =

0 i = 0∧ j = 0

o+(j−1) · e i = 0

o+(i−1) · e j = 0

max

Ei, j

Fi, j

Hi−1, j−1 +Mt[i−1],s[j−1]

else

(4.4)

Partial order alignment extends pairwise alignment by incorporating multiple vertex pre-

decessors which are present in partial order graphs. As a prerequisite, the graph has to be

topologically sorted using algorithm like [58]. Each vertex must be situated in the alignment

matrix H strictly after all of its predecessors in the graph. The running time slightly increases

42

Algorithms for consensus phase of the OLC paradigm

to O((2p̃+ 1)|V |m), where p̃ is the average number of predecessors in the partial order graph

[20]. Updated alignment recursions for matrices H and F are shown in Equations 4.5 and 4.6.

Recursion for matrix E remains the same as no dependencies arise in the sequence. Starting

point of the backtracking procedure is changed to the highest scoring cell which has a vertex

counterpart without outgoing edges. To determine the best move from a cell, the current val-

ues has to be compared against all vertex predecessors. Modifications of local and semi-global

alignment algorithms are similar.

Fvrow, j =

−∞ v = null∨ j = 0
H0, j +o deg−(v) = 0

max
w→v∈E

Fwrow, j + e

Hwrow, j +o
else

else
(4.5)

Hvrow, j =

0 i = 0∧ j = 0

o+(j−1) · e v = null
o deg−(v) = 0

max
w→v∈E

{
Hwrow, j + e else

j = 0

max

Evrow j

Fvrow, j

Mvbase,s[j−1]+

H0, j−1 deg−(v) = 0

max
w→v∈E

Hwrow, j−1 else

else

(4.6)

Once all sequences are added to the partial order graph, the consensus sequence can be

obtained from a topologically sorted graph. For each vertex v ∈ V in topological order, we

choose the ingoing edge w→ v ∈ E with the largest weight and update the score of vertex v

accordingly [21]. Vertex w is then declared as the best predecessor of v. Once all scores are

calculated, the final consensus is generated by tracing back from highest scoring vertex r. In

case the algorithm picks an internal vertex (deg+(r) 6= 0), an additional method called branch

completion is applied [21]. Scores of all vertices except r are set to a negative value. The

traversal continues from vertex r with the constraint that only vertices with non negative scores

can be chosen as predecessors. Pseudodoce for consensus generation is shown in Algorithm 12.

43

Algorithms for consensus phase of the OLC paradigm

Algorithm 11 Adding a sequence to partial order graph as defined in the alignment

Input: Partial order graph G = (V,E), sequence s and its base qualities q, and alignment
a between the graph and the sequence. Alignment is a list of pairs (i, j) describing the
relationship between vertices v ∈V and characters c ∈ s.
Output: None. (Procedure updates the given graph.)

1: procedure PARTIALORDERGRAPHADDSEQUENCE(V,E,s,q,a)
2: if |q|= 0 then . Use multiplicity if qualities are absent
3: q← new Array(1, |s|)
4: if |a|= 0 then . Graph is empty or sequence is unalignable
5: v← null
6: for j← 0 to |s| do
7: w← new Vertex(s[j])
8: V ←V ∪{w}
9: if v 6= null then

10: E← E ∪{v→ w}
11: (v→ w)weight ← q[j−1]+q[j]

12: v← w
13: return
14: v← null
15: for all (i, j) ∈ A do
16: w← null
17: if i =−1 then . Gap in the partial order graph
18: w← new Vertex(s[j])
19: V ←V ∪{w}
20: else if j =−1 then . Gap in the sequence
21: continue
22: else . Vertex vrow = i and character c j are aligned
23: w′← w′′ ∈V,w′′row = i
24: if w′base = s[j] then
25: w← w′

26: else
27: for all w′′ ∈ w′aligned do . Check aligned vertices for a match
28: if w′′base = s[j] then
29: w← w′′

30: if w = null then
31: w← new Vertex(s[j])
32: waligned ←{w′}∪w′aligned
33: for all w′ ∈ waligned do . Record new aligned links
34: w′aligned ← w′aligned ∪{w}
35: V ←V ∪{w}
36: if v 6= null then
37: if v→ w ∈ E then . Update weight if edge is present
38: (v→ w)weight ← (v→ w)weight +q[j−1]+q[j]
39: else
40: E← E ∪{v→ w}
41: (v→ w)weight ← q[j−1]+q[j]

42: v← w

44

Algorithms for consensus phase of the OLC paradigm

Algorithm 12 Consensus calling from partial order graphs

Input: Partial order graph G = (V,E).
Output: Consensus of the multiple sequence alignment encoded in the given graph.

1: procedure PARTIALORDERGRAPHCONSENSUS(V,E)
2: V ← TOPOLOGICALSORT(V,E) . [58]
3: for all v ∈V do
4: vscore← 0
5: vpredecessor← null
6: r← null
7: for all v ∈V,deg−(v)> 1 do . Heaviest bundle algorithm [21]
8: for all w→ v ∈ E do
9: if vpredecessor = null or

(vpredecessor→ v)weight < (w→ v)weight or
(vpredecessor→ v)weight = (w→ v)weight and (vpredecessor)score < wscore then

10: vpredecessor← w

11: vscore← (vpredecessor)score +(vpredecessor→ v)weight
12: if r = null or rscore < vscore then
13: r← v
14: if deg+(r) = 0 then
15: goto 25
16: for all v ∈V \{r} do . Branch completion algorithm [21]
17: vscore =−1
18: for all v ∈V,deg−(v)> 1,vrow > rrow do
19: vpredecessor← null
20: for all w→ v ∈ E do
21: if wscore =−1 then
22: continue
23: if vpredecessor = null or

(vpredecessor→ v)weight < (w→ v)weight or
(vpredecessor→ v)weight = (w→ v)weight and (vpredecessor)score < wscore then

24: vpredecessor← w

25: c← new String
26: while r 6= null do
27: APPEND(c,rbase)
28: r← rpredecessor

29: return REVERSED(c)

45

Algorithms for consensus phase of the OLC paradigm

4.1.1 Vectorization

Quadratic time complexity of partial order alignment along with large sequencing yields led us

to investigate possible optimization techniques. Additional dependencies in the alignment made

the intra-set parallelization of Smith-Waterman alignment by [54] seem like the most transpar-

ent approach to start with. The authors place SIMD vectors parallel to the query sequence

which is situated on the y-axis. This enables parallel computation of the matrices horizontally,

while vertical dependencies in columns are handled with shift operations. They also introduced

sequence profiles, |Σ| ×m matrices containing precalculated similarity scores [54]. Our im-

plementation of partial order alignment places the SIMD vectors parallel to the sequence as

well, but the sequence is situated on the x-axis for clarity. Vertical and diagonal dependen-

cies are resolved using SIMD operations, while the horizontal dependency is processed lin-

early. Vectorization of the algorithm decreases the time complexity from O((2 p̃+ 1)|V |m) to

O((2 p̃
k +1)|V |m), where k is the number of variables that fit in a SIMD vector. We later modified

the horizontal computation with prefix-max algorithm, further decreasing the time complexity

to O((2 p̃
k + logk

k)|V |m). Concerning memory, we store all three matrices E, F and H entirely

into memory, yielding O(3|V |m) complexity. They are needed to access predecessor rows dur-

ing alignment and are used in the backtracking procedure. As elements of SIMD vectors can

not be accessed directly, we load a small portion of them to unaligned arrays during backtrack.

The total amount is defined with predecessor quantity of cells that are contained in the found

alignment.

We vectorized global, local and semi-global partial order alignment, all with either linear,

affine or convex (piecewise affine described in [59]) gap models. Supported are Intel SSE4.1

and AVX2 instruction sets. The former embeds 128-bit registers while the latter 256-bit. With

sequencing data we deal either with short (16 bits) or long (32 bits) integer precision, depend-

ing on sequence length and alignment scoring parameters. The number of variables per SIMD

vector k is therefore either 4 or 8 for SSE4.1, and 8 or 16 for AVX2. Pseudocode for vectorized

global partial order alignment with affine gaps and eight 16-bit variables per SIMD vector is

shown in Algorithm 13. Backtrack procedure is unchanged and not in the focus of this opti-

mization, and is therefore not included in the pseudocode. Other alignment modes, gap models,

variable precision and instruction sets can be easily inferred from this pseudocode. Unfortu-

nately, this does not hold for shift operations in AVX2 instruction set, where registers contain

two 128-bit lanes. Shifting the whole 256-bit register does not transfer elements between lanes,

but can be simulated with element shuffling. This increases the latency compared to normal

shift operations and thus the AVX2 alignment version is only marginally faster than the SSE4.1

version.

46

Algorithms for consensus phase of the OLC paradigm

Algorithm 13 Partial order alignment using SIMD instructions

Input: Partial order graph G = (V,E), sequence s, and alignment parameters m for match,
n for mismatch, o for gap opening and e for gap extension.
Output: List of pairs (i, j) defining the alignment between the given graph and sequence.

1: procedure PARTIALORDERALIGNMENT(V,E,s,m,n,o,e)
2: V ← TOPOLOGICALSORT(V,E) . [58]
3: b←−∞+210

4: o← o− e
5: Q← [o,o,o,o,o,o,o,o]
6: R← [[e,e,e,e,e,e,e,e], [2e,2e,2e,2e,2e,2e,2e,2e], [4e,4e,4e,4e,4e,4e,4e,4e]]
7: P← SEQUENCEPROFILE(VΣ,s,m,n) . [54]
8: H← new Array([b,b,b,b,b,b,b,b],(|V |+1) · |s|/8)
9: c← new Array(b, |V |+1)

10: F ← new Array([b,b,b,b,b,b,b,b],(|V |+1) · |s|/8)
11: E← new Array([b,b,b,b,b,b,b,b],(|V |+1) · |s|/8)
12: M← [[b,0,0,0,0,0,0,0], [b,b,0,0,0,0,0,0], [b,b,b,b,0,0,0,0]]
13: l← b
14: i←−1
15: c[0]← 0 . Initialize first column
16: for all v ∈V do
17: if deg−(v) = 0 then
18: c[vrow]← o
19: for all w→ v ∈ E do
20: c[vrow]←max(c[vrow],c[wrow]+ e)
21: T ← [0,0,0,0,0,0,0,0] . Initialize first row
22: for j← 0 to |s|/8 do
23: T ← ((H[0][j] LSHIFT 1) OR (T RSHIFT 7))+Q+R[0]
24: T ← MAX(T,M[0] OR ((T +R[0]) LSHIFT 1))) . Prefix-max
25: T ← MAX(T,M[1] OR ((T +R[1]) LSHIFT 2)))
26: T ← MAX(T,M[2] OR ((T +R[2]) LSHIFT 4)))
27: H[0][j]← T
28: T ← T −Q
29: z← new Vertex . Temporary vertex for first row
30: for all v ∈V do . Calculate alignment
31: if deg−(v) = 0 then
32: E← E ∪{z→ v} . Temporary edge
33: for all w→ v ∈ E do . Vertical and diagonal update
34: T ← [c[wrow],0,0,0,0,0,0,0]
35: for j← 0 to |s|/8 do
36: T2← (H[wrow][j] LSHIFT 1) OR T
37: F [vrow][j]← MAX(F [vrow][j],H[wrow][j]+Q+R[0],F [wrow][j]+R[0])
38: H[vrow][j]← MAX(H[vrow][j],F [vrow][j],T2 +P[vbase][j])
39: T ← (H[wrow][j] RSHIFT 7)
40: if z→ w ∈ E then
41: E← E \{z→ v}

47

Algorithms for consensus phase of the OLC paradigm

42: T ← [0,0,0,0,0,0,0,c[vrow]]
43: for j← 0 to |s|/8 do . Horizontal update with prefix-max
44: E[vrow][j]← ((H[vrow][j] LSHIFT 1) OR (T RSHIFT 7))+Q+R[0]
45: E[vrow][j]← MAX(E[vrow][j],M[0], OR ((E[vrow][j]+R[0]) LSHIFT 1))
46: E[vrow][j]← MAX(E[vrow][j],M[1], OR ((E[vrow][j]+R[1]) LSHIFT 2))
47: E[vrow][j]← MAX(E[vrow][j],M[2], OR ((E[vrow][j]+R[2]) LSHIFT 4))
48: H[vrow][j]← MAX(H[vrow][j],E[vrow][j])
49: T ← MAX(H[vrow][j],E[vrow][j]−Q)
50: if deg+(v) = 0 then . Find best cell for backtrack
51: h← LOAD(H[vrow][|s|/8−1])
52: if l < h[|s| mod 8] then
53: l← h[|s| mod 8]
54: i← vrow

55: a← TRACEBACK(H,c,F,E,P, i, |s|−1)
56: return a

4.1.2 Discussion

Calculating multiple sequence alignment from a set of sequences S and set of unitigs U is com-

menced by constructing a partial order graph from a single unitig u ∈ U , which serves as a

backbone. All sequences s ∈ S which overlap that unitig are iteratively added to the graph with

partial order alignment. The same is done for other unitigs of the assembly. Given that se-

quences have average length around ten thousand nucleotides and that unitigs can have lengths

up to a few million bases, reaching intractable cases is unavoidable because of quadratic time

and memory complexities. To cope with this we tryied using subgraph alignments. Having ap-

proximate overlaps between a sequence and the bacbkone, we would extract a subgraph defined

by the overlap begin and end positions and align the sequence to it. This approach saves time if

the sequence is much smaller than the backbone, but some sequences are still too large for it to

manage. Therefore, we chose to slice sequences and unitigs into smaller chunks and combine

the multiple sequence alignments together, as described in Section 4.2. Another option worth

exploring might be banded alginment [60], which is left for future analysis.

4.2 Unitig polishing

Rapid and accurate consensus generation from multiple alignment of long sequences was achieved

by dividing the problem into consecutive nonoverlapping windows of predefined length. This

was inspired by other polishing tools such as Nanopolish [23] and Quiver [18], which depend

on raw signal data or error profiles of specific sequencing technologies. Our implementation

on the other hand is sequencing platform independent, and only uses base qualities if present.

Using fixed length windows allows linear scaling to larger genomes, if the coverage is constant.

Given the trade-off between accuracy and execution time, we empirically chose 500 bases

48

Algorithms for consensus phase of the OLC paradigm

long windows. This way the alignment score will not overflow short integer precision and

we can fit at least eight variables into SIMD vectors (Section 4.1.1). Slicing both sequences

and unitigs is guided with approximate overlaps generated with any state-of-the-art overlapper

[59][25][31]. Exact sequence positions to ends of each unitig window are extracted from align-

ments found by Edlib, a fast edit-distance based aligned which uses bit-vectors [61]. For each

window, a partial order graph is constructed from the corresponding unitig substring, giving it

zero weights to fend off reference bias of pairwise alignments. Substrings of sequences that

overlap the given window are iteratively added to the graph with global partial order align-

ment using linear gap model. Consensus of each window is collected and concatenated into

a polished unitig. Both pairwise and partial order alignment computations are embarrassingly

parallelizable. We assign each overlap into a separate thread task, and the same is done for each

window.

Suppressing high error rates of third generation sequencing is done with few filtering meth-

ods applied before construction of partial order graphs. Approximate overlaps in which the

overlap length ratio between the sequence and unitig is lower than ε are discarded. In addition,

only the longest overlap is retained for each sequence. Finally, if base quality values are avail-

able, sequence substrings that have average quality less than q are not used in multiple sequence

alignment. Pseudocode for our polishing implementation is available in Algorithm 14. Higher

sequence identities are achievable with several iterations of the proposed method.

4.2.1 Discussion

The use of nonoverlapping windows can affect the consensus quality at window ends due to

low coverage regions manifested as branches in partial order graphs. If they are located at ei-

ther graph end whilst being adequately long, they will be picked by the heaviest path procedure

(Algorithm 12). We tried to extend the nonoverlapping windows by 10% in total and overlap

their consensus sequences, but the accuracy boost was not justified with the increase in execu-

tion time. Knowing the number of sequences covering each base in the consensus sequence,

we instead apply a heuristic which trims each end of the consensus until the base coverage is

large enough. The coverage threshold was declared as half the number of sequences used for

polishing the corresponding window. This methods works great when the window has uniform

coverage, but fails dealing with datasets in which sequences are smaller than the window size.

Therefore, the implementation automatically skips trimming if sequences are obtained with

second generation of sequencing. Additionally, we apply subgraph alignment as described in

Section 4.1.2. Sequence division into windows will leave some substrings that are much smaller

than the window, which will to lead to misplaced alignments and might influence accuracy.

49

Algorithms for consensus phase of the OLC paradigm

Algorithm 14 Sequence polishing with partial order alignment
Input: Set of target sequences T , set of sequences used for polishing S and their qualities
Q, and set of approximate overlaps O between sets T and S. Overlaps o ∈ O are tuples of
seven values (t_id, t_begin, t_end,s_id,s_begin,s_end,strand,alignment), where t_id and
s_id are identifiers of overlapping sequences, (t_begin, t_end) and (s_begin,s_end) overlap
positions on forward strands of t and s, respectively, strand denotes whether either of the
sequences is reversed complemented in the overlap, and optionally the alignment).
Output: Set of polished target sequences.

1: procedure CONSENSUS(T,S,Q,O)
2: O← SORT(O) . Sort by os_id and (os_end−os_begin)
3: f ← new Array(0, |S|)
4: for all o ∈ O do . Filter overlaps
5: if min(ot_end−ot_begin,os_end−os_begin)

max(ot_end−ot_begin,os_end−os_begin)
< 0.7 or f [os_id] = 1 then

6: O← O\{o}
7: else
8: f [os_id]← 1
9: if |oalignment |= 0 then

10: t← (t ′ ∈ T, t ′id = ot_id)[ot_begin,ot_end]
11: s← (s′ ∈ S,s′id = os_id)[os_begin,os_end]
12: oalignment ← EDLIB(t,s if ostrand else s) . [61]

13: P← new Set
14: for all t ∈ T do
15: p← new String
16: for w← 0 to d|t|/500e do
17: (V,E)← new PartialOrderGraph
18: PARTIALORDERGRAPHADDSEQUENCE(V,E,

t[w ·500,(w+ i) ·500], new Array(0,500), [])
. Algorithm 11

19: for all o ∈ O,ot_id = tid do
20: (b,e)←FINDBREAKPOINTS(oalignment ,w)
21: if b =−1 and e =−1 then . s does not overlap w
22: continue
23: q← (q′ ∈ Q,q′id = os_id)[b,e]
24: if |q| 6= 0 and avg(q)< 10.0 then . Substring quality filter
25: continue
26: s← (s′ ∈ S,s′id = os_id)[b,e]
27: if ostrand then
28: s← s
29: q← REVERSED(q)
30: a← PARTIALORDERALIGNMENT(V,E,s,5,−4,−8) . Algorithm 13
31: PARTIALORDERGRAPHADDSEQUENCE(V,E,s,q,a) . Algorithm 11
32: c← PARTIALORDERGRAPHCONSENSUS(V,E) . Algorithm 12
33: APPEND(p, TRIM(c))
34: P← P∪{p}
35: return P

50

Chapter 5

Integration and evaluation

Algorithms described in chapters 3 and 4, together with Minimap [30] used for the overlap

phase of the OLC paradigm, are integrated into a de novo genome assembler called Raven.

To summarize, Raven finds approximate pairwise overlaps to build an assembly graph that is

simplified stepwise. The same overlaps are used for creation of pile-o-grams which aid in se-

quence preprocessing during graph construction. To decrease fragmentation, a novel approach

based on graph drawings is utilized to untangle the assembly graph. Eventually, the assembly

accuracy is iteratively improved by computing multiple sequence alignment on small substrings

with the help of partial order graphs. Raven does not employ correction of third generation se-

quencing data prior assembly, but still yields accurate genome reconstructions while not being

resource-intensive. It is a culmination of several independent implementations which are briefly

described and evaluated in the following sections.

5.1 Implementation

Every tool that arose from this doctoral thesis was implemented in C++, and is publicly available

under the MIT license at several GitHub web addresses. Chronologically, we first worked on

algorithms for the consensus phase. Multiple sequence alignment utilizing partial order graphs

[20][21] is incorporated into a library called Spoa, which can also be used as a standalone tool.

Spoa implements Algorithms 11, 12 and 13 from Chapter 4, including three alignment types

and three gap models, from which any combination can be run with or without vectorization.

Spoa is used as a library in our polishing tool called Racon which equals Algorithm 14. Be-

sides computing consensus sequences with Spoa, Racon performs overlap filtering, sequence

shearing and consensus trimming. Racon is a versatile polishing tool mostly used to improve

the accuracy of de novo assembled genomes, operating with either second or third generation of

sequencing data. Spoa and Racon are accessible at https://github.com/rvaser/spoa and

https://github.com/lbcb-sci/racon, respectively.

51

https://github.com/rvaser/spoa
https://github.com/lbcb-sci/racon

Integration and evaluation

Algorithms 1-10 are the core of our layout module Rala. Rala modifies and extends the

assembly graph of the Miniasm assembler [30], with preprocessing and postprocessing methods

for graph untangling. The former is achieved with ideas from the HINGE assembler [33], while

the latter relies on force-directed placement [47] of the assembly graph. Rala was designed to

be run hierarchically on top of Minimap. A preconstruction step resolves chimeric and removes

contained sequences. Remaining sequences are given to Minimap again to reconstruct pile-

o-grams which are needed to finalize the construction of the assembly graph, which is later

simplified. The source code can be found at https://github.com/rvaser/rala.

Initial version of a complete OLC based de novo genome assembler was named Ra, and is

a Python script combining Minimap, Rala and Racon. Ra runs Minimap and Rala twice to find

unitigs which are later polished with two iterations of Racon. At that time, the postprocessing

method for graph simplification was based on overlap lengths, although a more strict version of

the one used in Miniasm. Ra is available at https://github.com/lbcb-sci/ra.

Finalizing our assembler we wanted to omit hefty disc requirements present in large genomes.

With that purpose in mind we transformed Minimap to a C++ library with some slight modifi-

cations. We called it Ram and it is available at https://github.com/lbcb-sci/ram. Source

code of Rala, a library version of Racon and Ram were integrated in a single C++ project which

we renamed to Raven, as Ra was a tad bit short. Raven loads the whole sequence set into

memory only once at the beginning of execution. Sequences are transformed into minimizer

hashes in blocks of one gigabyte. Found pairwise overlaps are immediately transformed into

downsampled pile-o-grams, each with size that approximately equals to 25% of the correspond-

ing sequence size. In addition, the 16 longest overlaps are stored per sequence which increase

the memory usage slightly as each overlap consists of only 512 bytes. Longest overlaps are

used for containment removal following after sequence trimming and chimeric resolution. The

remaining sequences are again hashed by blocks. They are overlapped to each other and to

the rest of the dataset, but with a reduced k-mer filter. Recreated pile-o-grams help remove

repeat induced overlaps prior the construction of the assembly graph. After employing sev-

eral simplification methods, we utilize force-directed layout to try and untangle the leftover

junctions in the graph. All sequences are overlapped with extracted unitigs and polished with

Racon. The same is done twice in a row and the final result is a set of very accurate unitigs.

All mentioned overlap steps are done completely in memory without anything stored to the

hard drive. They are embarrassingly parallelized by assigning one sequence to each thread.

Pseudocode of Raven is presented in Algorithm 15, while the assembler itself is accessible at

https://github.com/lbcb-sci/raven.

52

https://github.com/rvaser/rala
https://github.com/lbcb-sci/ra
https://github.com/lbcb-sci/ram
https://github.com/lbcb-sci/raven

Integration and evaluation

Algorithm 15 Raven algorithm for de novo genome assembly from long uncorrected sequences
Input: Set of raw sequences S obtained with third generation of sequencing, with optional
base qualities Q.
Output: Set of high accuracy unitigs.

1: procedure RAVEN(S,Q)
2: P← /0
3: for all s ∈ S do
4: P← P∪{PILEOGRAMCREATE(s)} . Initialize downsampled pile-o-grams
5: O← /0
6: B← /0
7: for all s ∈ S do
8: B← B∪{s}
9: if SIZE(B) < 230 then

10: continue
11: H← MINIMIZERHASHCREATE(B) . [30]
12: O′← /0
13: for all s′ ∈ S do
14: O′← O′∪ MINIMIZERHASHOVERLAP(s′,10−3) . [30]
15: for all p ∈ P do . Fill pile-o-grams
16: p← PILEOGRAMADDOVERLAPS(p,O′)
17: O← RETAINLONGESTOVERLAPS(O∪O′,16)
18: B← /0
19: for all p ∈ P do
20: PILEOGRAMTRIM(p,4) . Described in Section 3.2.1
21: PILEOGRAMSLOPEDETECTION(p,1.84) . Algorithm 6
22: (S′,O)← REMOVECONTAINEDSEQUENCES(S, O, P)
23: C← CONNECTEDCOMPONENTS(O,P) . [48]
24: for all c ∈C do
25: m← med(pmedian,∀p ∈ c)
26: for all p ∈ c do
27: PILEOGRAMRESOLVECHIMERICREGIONS(p,m) . Described in Section 3.2.1
28: P← /0
29: for all s ∈ S′ do
30: B← B∪{s}
31: if SIZE(B) < 230 then
32: continue
33: H← MINIMIZERHASHCREATE(B) . [30]
34: for all s′ ∈ S′ do
35: O← O∪ MINIMIZERHASHOVERLAP(s′,10−3) . [30]
36: O′← /0
37: for all s′ ∈ S\S′ do
38: O′← O′∪ MINIMIZERHASHOVERLAP(s′,10−5) . [30]
39: for all p ∈ P do . Update pile-o-grams
40: PILEOGRAMADDOVERLAPS(p,O′)
41: B← /0

53

Integration and evaluation

42: C← CONNECTEDCOMPONENTS(O,P)
43: for all c ∈C do
44: m← med(pmedian,∀p ∈ c)
45: for all p ∈ c do
46: PILEOGRAMSLOPEDETECTION(p,1.42) . Algorithm 6
47: PILEOGRAMREMOVEFALSEOVERLAPS(p,O) . Described in Section 3.2.1
48: (V,E)← ASSEMBLYGRAPHCREATE(S′,O) . [30]
49: ASSEMBLYGRAPHTRANSITIVEREDUCTION(V,E) . Algorithm 1
50: while True do
51: (V ′,E ′)← (V,E)
52: ASSEMBLYGRAPHPRUNING(V,E) . Algorithm 2
53: ASSEMBLYGRAPHBUBBLEPOPPING(V,E) . Algorithm 3
54: if V ′ =V and E ′ = E then
55: break
56: ASSEMBLYGRAPHUNITIGS(V,E,42) . Modified Algorithm 5
57: for i← 0 to 16 do
58: ASSEMBLYGRAPHDRAWING(V,E) . Algorithm 7
59: ASSEMBLYGRAPHREMOVELONGEDGES(V,E) . Described in Section 3.3.1
60: ASSEMBLYGRAPHUNITIGS(V,E) . Algorithm 5
61: U ← ASSEMBLYGRAPHEXTRACTUNITIGS(V,E)
62: for i← 0 to 2 do
63: O← /0
64: for all u ∈U do
65: B← B∪{u}
66: if SIZE(B) < 230 then
67: continue
68: H← MINIMIZERHASHCREATE(B) . [30]
69: for all s ∈ S do
70: O← O∪ MINIMIZERHASHOVERLAP(s,10−3) . [30]
71: B← /0
72: U ← CONSENSUS(U,S,Q,O) . Algorithm 14
73: return U

5.2 Datasets

To evaluate the described tools we used various publicly available datasets. The complete

list is provided in Table 5.1, with dataset descriptions and references. This includes the se-

quenced species, sequencing technology and depth, and the expected genome size. All refer-

ence genomes were obtained from the National Center for Biotechnology Information (NCBI)

genome browser. Datasets prefixed with SR, ER or DR are available for download from ei-

ther the Sequence Read Archive (SRA) or the European Nucleotide Archive (ENA). The rest is

hosted on different web services which can be found in corresponding references. We tried to

capture as many different datasets as possible, ranging from small prokaryotes to large eukary-

otes while balancing the ratio between Oxford Nanopore Technologies and Pacific Biosciences.

54

Integration and evaluation

Table 5.1: Third generation sequencing data used in evaluation of tools for de novo genome assembly.

Species Size (×106) Dataset Coverage Technology Reference

Fusobacterium
gonidiaformans

1.7 SRR6780920 61 ONT R9.4 [62]

Fusobacterium
varium

3.3 SRR6780912 27 ONT R9.4 [62]

Bordetella
pertussis

4.1 ERR1475873 147 PB [63]

Escherichia
coli

4.6
ERR1147227 54 ONT R7.3 [64]

PBEC 161 PB P6-C4 [65]

Salmonella
enterica

5.1 ERR987680 176 PB [63]

Enterobacter
aerogenes

5.3 ERS715397 132 PB [63]

Klebsiella
pneumoniae

5.7

SRR5665597 114 ONT R9.4 [66]

SRR5665591 11 ONT R9.4 [66]

ERR1046594 104 PB [63]

ERR1140973 42 PB [63]

Saccharomyces
cerevisiae

12.1
ERX1910723 59 ONT R9 [67]

SRX533604 127 PB P4-C2 [65]

Plasmodium
falciparum

23.3 SRA360189 320 PB P6-C4 [68]

Caenorhabditis
elegans

100.3 PBCE 81 PB P6-C4 [65]

Arabidopsis
thaliana

119.7 PBAT 90 PB P5-C3 [65]

Drosophila
melanogaster

143.7

SRR6702603 32 ONT R9.5 [69]

SRR5439404 127 PB P6-C4 [70]

SRX499318 109 PB P5-C3 [65]

Ipomoea
nil

735.2 DRA002710 54 PB P5-C3 [71]

Solanum
pennellii

938.0 ONTSP 119 ONT R9.4 [72]

Homo
sapiens

3234.8 ONTHS 35 ONT R9.4 [9]

55

Integration and evaluation

5.3 Evaluation methods

Consensus quality was evaluted with Dnadiff, a tool from the Mummer package [73], focusing

on parameters like the average identity (accuracy) and the number of aligned bases of both the

assembly and the reference genome. Accuracy metrics can also be found in Quast-LG [74], but

Quast-LG was primarily used in misassembly and fragmentation analyses. The most frequently

used meassure for comparison of different assemblies is the NG50 value, which denotes the

length of the smallest conting that with all longer contigs covers half of the sequenced genome.

However, we also considered the reconstructed genome fraction, number of contigs, and number

of different missasemblies, namely relocations, translocations and inversions. Additionally, we

assessed the completeness of each assembly based on evolutionary expectations of gene content

with the help of BUSCO [75], which reports the number of complete and fragmented single-

copy orthologs. Each de novo assembler was also evaluated in terms of execution time and

memory consumption.

All datasets from Table 5.1 were run on Ubuntu based systems with two 6-core Intel® Xeon®

CPU E5645 @ 2.40GHz processors, using 12 threads. Maximal memory consumption and CPU

time were measured with the time command using parameter -v. Bellow is the complete list of

all tools used in the evaluation:

• Dnadiff [73] - https://sourceforge.net/projects/mummer, version 3.23,

• Quast-LG [74] - https://https://github.com/ablab/quast, version 5.0.2

• BUSCO [75] - https://gitlab.com/ezlab/busco, integrated in Quast-LG

• Minimap [30] - https://github.com/lh3/minimap, commit: 1cd6ae3

• Miniasm [30] - https://github.com/lh3/miniasm, commit: 17d5bd1

• Canu [28] - https://github.com/marbl/canu, version 1.2

• FALCON [26] - https://github.com/PacificBiosciences/FALCON-integrate, com-

mit: 8bb2737.

• Nanopolish [23] - https://github.com/jts/nanopolish, commit: 47dcd7f

• Flye [35] - https://github.com/fenderglass/Flye, version 2.6

• Wtdbg2 [36] - https://github.com/ruanjue/wtdbg2, version 2.5

• Shasta [38] - https://github.com/chanzuckerberg/shasta, version 0.3.0

• Racon [32] - https://github.com/lbcb-sci/racon, commit 2f41352

• Ra [76] - https://github.com/lbcb-sci/ra, commit 07364a1

• Raven - https://github.com/lbcb-sci/raven, version 0.0.5

Due to lack of sufficient computing power, we obtained the ONTHS assemblies of Wtdbg2

and Flye from their respective GitHub pages, including execution time and memory consump-

tion. The same holds for plant datasets DRA002710 and ONTSP, which were only used to see

the execution time ratios of each Raven component.

56

https://sourceforge.net/projects/mummer
https://https://github.com/ablab/quast
https://gitlab.com/ezlab/busco
https://github.com/lh3/minimap
https://github.com/lh3/miniasm
https://github.com/marbl/canu
https://github.com/PacificBiosciences/ FALCON-integrate
https://github.com/jts/nanopolish
https://github.com/fenderglass/Flye
https://github.com/ruanjue/wtdbg2
https://github.com/chanzuckerberg/shasta
https://github.com/lbcb-sci/racon
https://github.com/lbcb-sci/ra
https://github.com/lbcb-sci/raven

Integration and evaluation

5.4 Results

Racon coupled with Minimap and Miniasm (abbreviated with MR) was compared to Canu and

Falcon, state-of-the-art assemblers at the time Racon was published [32], and the results are

presented in Table 5.2. The same Minimap and Miniasm combination was polished with a sim-

ilar consensus module called Sparc [77], but Racon outperformed it in both accuracy and speed

[32]. We also tried to use overlapping windows which resulted with a quality improvement up

to 0.06%, but the increase of 10−15% in running time was not justifiable. Racon can also be

utilized for sequence error correction as shown in [32], but the comparison was left out because

majority of assemblers nowadays skip that step in the assembly.

Ra was independently evaluated before publication in two different studies. Authors of [78]

evaluated different assemblers on simulated and real bacterial datasets, from which Ra was de-

clared the most reliable assembler. Authors of [79] tried to assemble three large plant genomes,

and Ra yielded the most contiguous assemblies. Both results encouraged us to publish a brief

description and evalution of Ra in [76]. Table 5.3 encapsulates that assembly evaluation on sev-

eral third generation sequencing data. Here we extend it to more datasets (table entries bellow

the horizontal line) and include Raven. We want to see the benefits of combining all phases into

a single binary and the impact of the postprocessing assembly graph method introduced in the

Raven assembler.

Eventually, we evaluated Raven in more detail on much larger eukaryotic genomes. The

results are compared to newer state-of-the-art assemblers Flye, Wtdbg2 and Shasta, and are

presented in Table 5.4. The evaluation includes execution time, peak memory consumption,

the NG50 value, number of contigs, number of missasemblies, overall accuracy and BUSCO

scores. More insights about execution time of each Raven component can be found in Table

5.5.

57

Integration and evaluation

Table 5.2: Racon consensus evaluation with two state-of-the-art assemblers Canu and Falcon. Assembly
metrics were obtained with Dnadiff [73] across five datasets of varying genome sizes.

Dataset
(Size) Assembler Total bases Aln. bases ref. Aln. bases asm. Avg. identity CPU time

(min)

ERR1147227
(4641652)

MR (1×R) 4637173 4640867 4636689 0.9913 25

MR (2×R) 4632058 4641323 4632055 0.9932 46

Canu 4601503 4631173 4601365 0.9928 1328

Falcon 4580230 4627613 4580230 0.9884 829

PBEC
(4641652)

MR (1×R) 4653199 4641501 4653111 0.9963 86

MR (2×R) 4645508 4641439 4645508 0.9990 162

Canu 4664416 4641652 4664416 0.9999 773

Falcon 4666788 4641652 4666788 0.9990 2908

ERX1910723
(12157105)

MR (1×R) 12172019 12104541 12108082 0.9788 28

MR (2×R) 12167797 12110095 12115796 0.9804 44

Canu 12224535 12120070 12196684 0.9861 13243

Falcon 11643917 11885904 11643482 0.9822 9603

SRX533604
(12157105)

MR (1×R) 12071278 12023607 12046299 0.9943 115

MR (2×R) 12051573 12025677 12027338 0.9972 215

Canu 12402332 12127627 12363941 0.9986 6375

Falcon 12003077 11932488 11910549 0.9970 14808

PBCE
(100272607)

MR (1×R) 106353704 100017898 101711974 0.9944 1247

MR (2×R) 106392402 99979140 101741297 0.9973 2004

Canu 106687886 100166301 102928910 0.9989 37853

Falcon 105858394 99295695 102008289 0.9974 119766

58

Integration and evaluation

Table 5.3: Comparison between assemblers Ra and Raven. Assembly metrics were obtained with Quast-
LG [74] on fourteen datasets of varying genome sizes.

Dataset
(Size) Assembler Total length NG50 Accuracy CPU time

(min)
Memory

(GB)

SRR5665597
(5682322)

Ra 5453526 5344601 0.9841 147 8.32

Raven 5476848 5335669 0.9881 81 9.36

ERR1140973
(5682322)

Ra 5548584 5299089 0.9915 27 3.45

Raven 5545774 5296442 0.9927 25 4.38

ERX1910723
(12157105)

Ra 12166217 288671 0.9740 114 8.62

Raven 12437509 533782 0.9913 87 9.79

SRX533604
(12157105)

Ra 12267357 711780 0.9974 178 16.87

Raven 12288222 755443 0.9982 222 17.77

SRR6702603
(143726002)

Ra 128449879 1854698 0.9884 1276 22.94

Raven 135925805 7402264 0.9911 726 25.91

SRX499318
(143726002)

Ra 135936009 2128249 0.9976 4649 51.92

Raven 151262482 7782087 0.9971 4855 52.16

SRR6780920
(1698329)

Ra 1673060 1673060 0.9946 13 1.19

Raven 1672065 1672065 0.9940 9 1.95

SRR6780912
(3299801)

Ra 3259446 498596 0.9927 9 0.90

Raven 3332155 1823705 0.9920 8 1.48

ERR1475873
(4086189)

Ra 4163102 2539687 0.9994 139 6.66

Raven 4190513 2445540 0.9995 87 9.74

ERR987680
(5133713)

Ra 4795265 4795265 0.9856 157 9.14

Raven 4795725 4795725 0.9858 124 15.60

ERS715397
(5280350)

Ra 5538171 5295377 0.9245 106 7.45

Raven 5547345 5294765 0.9240 103 10.27

SRR5665591
(5682322)

Ra 5280019 98427 0.9827 7 0.59

Raven 5526879 133005 0.9788 6 1.47

ERR1046594
(5682322)

Ra 5876581 4235452 0.9906 88 6.98

Raven 5856164 5323392 0.9909 86 9.27

SRA360189
(23270305)

Ra 23104151 825454 0.9894 1818 30.09

Raven 23959339 1295320 0.9868 3556 31.42

59

Integration
and

evaluation

Table 5.4: Comparison between Raven and state-of-the-art assemblers Wtdbg2, Flye and Shasta. Assembly metrics were obtained with Quast-LG [74] on five
datasets of varying genome sizes.

Dataset
(Size) Assembler Total length Contigs NG50 Accuracy

Misassemblies BUSCO CPU time
(min)

Memory
(GB)Reloc. Transloc. Inver. Complete Partial

PBCE
(100286401)

Raven 108388051 110 1914650 0.9979 362 208 95 0.9538 0.0033 1755 33.11

Flye 102386568 66 2860001 0.9985 414 178 76 0.9637 0.0000 3860 32.16

Wtdbg2 106376824 147 2660891 0.9983 240 121 73 0.9406 0.0198 466 11.42

Shasta 106442541 282 1034734 0.9875 221 81 70 0.7096 0.1551 319 35.94

PBAT
(119668634)

Raven 122311874 80 8679429 0.9866 2682 3215 17 0.8614 0.0561 3587 30.35

Flye 119566437 214 11162372 0.9887 2699 3146 20 0.9340 0.0066 6504 46.54

Wtdbg2 121374889 288 13977787 0.9869 2522 2953 16 0.9142 0.0165 1528 23.82

Shasta 42476282 1840 40285 0.9667 441 225 2 0.0066 0.462 115 46.82

SRR6702603
(143726002)

Raven 135925805 164 7402264 0.9911 439 757 6 0.8878 0.0792 726 25.91

Flye 139296030 624 16953989 0.9897 508 1177 7 0.8482 0.1155 3827 31.03

Wtdbg2 136380456 633 10619613 0.9841 313 291 6 0.5050 0.3564 943 17.89

Shasta 106644146 1394 125561 0.9779 143 141 3 0.3366 0.3630 171 19.18

SRR5439404
(143726002)

Raven 139428168 142 7383867 0.9917 1883 2343 22 0.9934 0.0000 5275 56.98

Flye 134586137 249 13842171 0.9927 1652 1972 22 0.9967 0.0000 9942 75.32

Wtdbg2 138182771 344 21294972 0.9906 1636 2066 24 0.9934 0.0033 618 19.34

Shasta 132820272 284 3816008 0.9870 1554 1553 21 0.9307 0.0396 665 85.73

ONTHS
(3272116950)

Raven 2765865635 741 5706195 0.9822 3159 1625 46 0.4323 0.1716 136706 285.44

Flye 2876181491 2589 20413247 0.9953 5171 2890 65 0.8746 0.0429 150000 714

Wtdbg2 2701125720 4219 11044992 0.9858 2564 1188 39 0.4191 0.1914 53457 221.8

Shasta 1617731845 20637 215694 0.9636 1237 341 12 0.0264 0.0132 5030 346.5

60

Integration and evaluation

Table 5.5: Detailed look into execution time of Raven components. All values are measured inside the
source code and represent wall clock time in seconds.

Dataset Overlap Preproc. Layout Postproc. Mapping Consensus

SRX533604 178 66 4 14 42 876

SRA360189 2593 11785 157 62 327 3287

PBCE 2735 1925 10 130 414 4068

PBAT 4048 1422 28 71 457 12599

SRR6702603 900 471 16 88 227 2217

SRR5439404 9814 3002 105 113 789 14227

SRX499318 8243 4013 293 221 768 12486

DRA002710 61688 29310 2544 3787 4712 19777

ONTSP 669990 155698 3056 3075 16373 119981

ONTHS 970264 161358 445 854 29503 95137

5.5 Discussion

By combining Racon with Miniasm and Minimap we showed that it is posible to obtain high

accuracy assemblies without sequence error correction prior assembly, while being an order of

magnitute faster as shown in Table 5.2. In addition, the resulting assembly sizes were more

similar to corresponding reference genomes than other methods in the evaluation. Shearing

unitigs into nonoverlapping windows enabled linear scalability given constant sequencing depth

[32], which contributed in more conspicuous speedups on larger genomes. Racon was upgraded

after the publication which resulted in decreased resource requirements and ability to use second

generation sequencing data.

Evaluation between two versions of our de novo assembler, Ra and Raven, showed that

writing of intermediate results to the hard drive can be omitted without any negative impact

on execution time or memory consumption, but can even lead to decreased execution times.

Implementing the graph drawing based simplification method increased the NG50 value of

larger genomes significantly, but sometimes yields a bit longer assembly which needs to be

investigated further. When compared to other state-of-the-art assemblers, Raven is positioned

between Wtdbg2 and Flye in terms of execution speed, and comes second in terms of memory

allocation. Raven consistently outputs the smallest number of contigs covering almost the entire

genome, but has smaller NG50 values. The accuracy is comparable across all datasets, including

the number of different misassembly types and BUSCO scores. Shasta was significantly faster

61

Integration and evaluation

than any other assembler, but had troubles assembling the provided datasets probably due to its

design for large genomes sequenced with Oxford Nanopore Technologies at depth around 60.

Inspecting the execution time of all virtual components of Raven in Table 5.5, we can ob-

serve that in small prokaryotic and fungal datasets the consensus phase is the most dominant

component. Increasing the size of the genome suits the linear complexity of it, and the overlap

phase becomes the most dominant component. The increase in execution time is also palpa-

ble in the preprocesing step, where pile-o-grams are constructed anew by finding a subset of

pairwise overlaps with a relaxed k-mer filter. We think that both the overlap and the preprocess-

ing phase have room for improvements. Graph construction and simplification methods of the

layout phase take minor part in the cumulative execution time. While the postprocessing time

overtakes the time needed for the layout, it is still greatly dominated by other components.

62

Chapter 6

Conclusion

We have presented the algorithms behind our de novo assembler Raven. It is based on the

overlap-layout-consensus paradigm and designed for long erroneous sequences produced by

Pacific Biosciences or Oxford Nanopore Technologies. Raven does not employ error correc-

tion prior assembly, has memory requirements bounded by the input sequence set and rapidly

generates consensus sequences with better or comparable accuracy than the state-of-the art. We

have successfully managed to prove set out research hypotheses and developed several open-

source tools. The predefined contribution of the research conducted in this thesis is fulfilled and

presented in the next section.

6.1 Contribution of the thesis

Memory efficient algorithm for layout phase of the overlap-layout-consensus paradigm
achieving a low number of fragments in large genome assemblies.

A detailed description of algorithms used for the layout phase with long erroneous reads pro-

duced by third generation of sequencing is given in Chapter 3. The focus was to enable large

genome assemblies with considerate memory requirements. We extended the assembly graph

introduced by Miniasm [30] with ideas from the HINGE [33] for preprocessing, and a novel

algorithm for graph postprocessing. Pile-o-grams are utilized for identification of chimeric se-

quences and repeat-induced overlaps. The goal was to decrease the number of tangles in the

assembly graph prior construction. Pile-o-grams are downsampled and constructed iteratively

from blocks of overlaps, either loading them from a file or computing them in memory. The

whole set of overlaps is never stored entirely in the memory. Only a small portion of over-

laps are stored for containment removal, and afterwards the suffix-prefix overlaps are computed

anew. The graph is simplified the regular way, with pruning of dead ends and bubble popping.

The leftover junctions are resolved based on vertex distances in a force directed placement in a

two dimensional plane [47], an algorithm which was optimized to run in quasilinear time. Men-

63

Conclusion

tioned algorithms were integrated in a standalone module Rala, and the complete OLC based

assembler Ra, which was later upgraded to Raven. Preliminary results without the postprocess-

ing method were presented in:

• Vaser, R., Šikić, M., “Yet another de novo genome assembler”, in 2019 11th International

Symposium on Image and Signal Processing and Analysis (ISPA), 2019, pp. 147-151,

available at: https://doi.org/10.1109/ISPA.2019.8868909

Fast algorithm for consensus phase of the overlap-layout-consensus paradigm ensuring
high accuracy of large genome assemblies.

Algorithms for the consensus phase with long error-prone reads obtained with third generation

of sequencing data are presented in Chapter 4. We based our standalone consensus module

on partial order alignment [20], which was implemented in a separate tool called Spoa. Par-

tial order alignment was optimized with SIMD instructions, supporting three alignment modes

and three gap models, following the intraset parallelization proposed for pairwise alignment

by [54] and applying the prefix-max algorithm horizontally. The consensus module Racon di-

vides sequences into short nonoverlapping windows, filters out erroneous portions of them and

computes the consensus from multiple sequence alignment with the help of Spoa. Coupled

with the Minimap-Miniasm pipeline, which does not employ error correction prior assembly,

we showed that accurate genome assemblies are possible with an order of magnitude speedup

when compared to state-of-the-art. We later integrated Racon in our assemblers Ra and Raven.

The results were published in:

• Vaser, R., Sović, I., Nagarajan, N., Šikić, M., “Fast and accurate de novo genome as-

sembly from long uncorrected reads”, Genome Research, Vol. 27, 2017, pp. 737-746,

available at: https://doi.org/10.1101/gr.214270.116

System for de novo assembly of large genomes from data produced by third generation of
sequencing.

Chapter 5 provides a look into the development of our complete overlap-layut-consensus based

assembler Raven, accompanied with a full pseudocode. We integrated the drawing based sim-

plification method for assembly graphs in Raven and therefore compared the results with Ra.

Results show that the contiguity greatly increases with little impact on execution time. We

thoroughly evaluated Raven and newer state-of-the-art tools as well. Raven competes with

execution time, memory consumption and accuracy with both Flye [35] and Wtdbg2 [36], con-

sistently producing the fewest contigs but having a bit smaller NG50 values. Although, on

majority of the datasets the Wtdbg2 assembler is considerably faster due to its sparse represen-

tation of sequences. A glimpse in execution time of different components in Raven gives hope

for possible future improvements.

64

https://doi.org/10.1109/ISPA.2019.8868909
https://doi.org/10.1101/gr.214270.116

Conclusion

6.2 Future research

First and foremost the overlap phase and then the reconstruction of pile-o-grams should be

improved as they constitute the majority of time on larger genomes. Our belief is that a fast

containment removal algorithm could save a lot of wasted time in the overlap phase as the ma-

jority of reads are contained in others. This could be achieved by finding approximate overlaps

using k-mers located at ends of short sequences and the full k-mer set of the longest sequences.

The decreased amount of reads would later facilitate the retrieval of pairwise suffix-prefix over-

laps needed for assembly graph construction. On the other hand, increasing the coverage of

repetitive regions in pile-o-grams by aligning all contained sequences to the set of uncontained

sequences might be computationally demanding, as seen on the Plasmodium falciparum dataset.

A better approach would shrink the number of reads for which we recreate pile-o-grams, which

might be possible by identifying reads that have a high number of frequent k-mers that are

filtered out in the overlap phase.

The graph untangling procedure based on the graph drawing should be explored more in

detail. Removing edges based on a simple length threshold between two vertices might be re-

placed with a more robust method which takes into account the neighbourhood of vertices in

question. This could resolve even more corner cases which are hard to detected with prepro-

cessing methods.

Although the speed of the consensus module Racon is remarkable, additional improve-

ments might be possible with banded alignment applied to partial order graphs. Researches of

ClaraGenomics have already massively parallelized partial order alignments on GPUs, which

we have integrated in Racon resulting in almost an order of magnitude speedup. Additionally,

ClaraGenomics implemented pairwise alignment and started designing retrieval of approximate

overlaps with minimizers, improvements that might enable the whole Raven assembler to be

run on the GPU needing only a tiny portion of the current execution times.

65

Bibliography

[1] Maxam, A. M., Gilbert, W., “A new method for sequencing dna”, Proceedings of

the National Academy of Sciences, Vol. 74, No. 2, 1977, pp. 560-564, available at:

https://doi.org/10.1073/pnas.74.2.560

[2] Sanger, F., Nicklen, S., Coulson, A. R., “Dna sequencing with chain-terminating

inhibitors”, Proceedings of the National Academy of Sciences, Vol. 74, No. 12, 1977, pp.

5463-5467, available at: https://doi.org/10.1073/pnas.74.12.5463

[3] Sedlazeck, F., Lee, H., Darby, C., Schatz, M., “Piercing the dark matter: bioinformatics

of long-range sequencing and mapping”, Nature Reviews Genetics, Vol. 19, 2018, p.

329–346, available at: https://doi.org/10.1038/s41576-018-0003-4

[4] Loman, N., Misra, R., Dallman, T., Constantinidou, C., Gharbia, S., Wain, J., Pallen, M.,

“Performance comparison of benchtop high-throughout sequencing platforms”, Nature

biotechnology, Vol. 30, 2012, pp. 434-439, available at: https://doi.org/10.1038/nbt.2198

[5] Nagarajan, N., Pop, M., “Sequence assembly demystified”, Nature reviews. Genetics,

Vol. 14, p. 157–167, available at: https://doi.org/10.1038/nrg3367

[6] Rhoads, A., Au, K., “Pacbio sequencing and its applications”, Genomics, proteomics &

bioinformatics, Vol. 13, 2015, pp. 278-289, available at: https://doi.org/10.1016/j.gpb.

2015.08.002

[7] Lu, H., Giordano, F., Ning, Z., “Oxford nanopore minion sequencing and genome

assembly”, Genomics, Proteomics & Bioinformatics, Vol. 14, 2016, pp. 265-279,

available at: https://doi.org/10.1016/j.gpb.2016.05.004

[8] Wenger, A. M., Peluso, P., Rowell, W. J., Chang, P.-C., Hall, R. J., Concepcion,

G. T., Ebler, J., Fungtammasan, A., Kolesnikov, A., Olson, N. D., Töpfer, A.,

Alonge, M., Mahmoud, M., Qian, Y., Chin, C.-S., Phillippy, A. M., Schatz, M. C.,

Myers, G., DePristo, M. A., Ruan, J., Marschall, T., Sedlazeck, F. J., Zook, J. M.,

Li, H., Koren, S., Carroll, A., Rank, D. R., Hunkapiller, M. W., “Accurate circular

consensus long-read sequencing improves variant detection and assembly of a human

66

https://doi.org/10.1073/pnas.74.2.560
https://doi.org/10.1073/pnas.74.12.5463
https://doi.org/10.1038/s41576-018-0003-4
https://doi.org/10.1038/nbt.2198
https://doi.org/10.1038/nrg3367
https://doi.org/10.1016/j.gpb.2015.08.002
https://doi.org/10.1016/j.gpb.2015.08.002
https://doi.org/10.1016/j.gpb.2016.05.004

Bibliography

genome”, Nature Biotechnology, Vol. 37, No. 10, 2019, pp. 1152-1162, available at:

https://doi.org/10.1038/s41587-019-0217-9

[9] Jain, M., Koren, S., Miga, K., Quick, J., Rand, A., Sasani, T., Tyson, J., Beggs,

A., Dilthey, A., Fiddes, I., Malla, S., Marriott, H., Nieto, T., O’Grady, J., Olsen, H.,

Pedersen, B., Rhie, A., Richardson, H., Quinlan, A., Loose, M., “Nanopore sequencing

and assembly of a human genome with ultra-long reads”, Nature Biotechnology, Vol. 36,

2018, p. 338–345, available at: https://doi.org/10.1038/nbt.4060

[10] Sanger, F., Coulson, A. R., Hong, G. F., Hill, D. F., Petersen, G. B., “Nucleotide sequence

of bacteriophage λ dna”, Journal of Molecular Biology, Vol. 162, No. 4, 1982, pp.

729-773, available at: https://doi.org/10.1016/0022-2836(82)90546-0

[11] Myers, E. W., “Toward simplifying and accurately formulating fragment assembly”,

Journal of Computational Biology, Vol. 2, No. 2, 1995, pp. 275-290, available at:

https://doi.org/10.1089/cmb.1995.2.27

[12] Pevzner, P., Tang, H., Waterman, M., “An eulerian path approach to dna

fragment assembly”, Proceedings of the National Academy of Sciences of the

United States of America, Vol. 98, 2001, pp. 9748-9753, available at: https:

//doi.org/10.1073/pnas.171285098

[13] Hierholzer, C., Wiener, C., “Über die möglichkeit, einen linienzug ohne wiederholung

und ohne unterbrechung zu umfahren”, Mathematische Annalen, Vol. 6, 1873, pp. 30-32,

available at: https://doi.org/10.1007/BF01442866

[14] Koren, S., Schatz, M., Walenz, B., Martin, J., Howard, J., Ganapathy, G., Wang, Z.,

Rasko, D., Mccombie, W., Jarvis, E., Phillippy, A., “Hybrid error correction de novo

assembly of single-molecule sequencing reads”, Nature biotechnology, Vol. 30, 2012, pp.

693-700, available at: https://doi.org/10.1038/nbt.2280

[15] Goodwin, S., Gurtowski, J., Ethe-Sayers, S., Deshpande, P., Schatz, M., Mccombie,

W., “Oxford nanopore sequencing, hybrid error correction, and de novo assembly of

a eukaryotic genome”, Genome research, Vol. 25, 2015, p. 1750–1756, available at:

https://doi.org/10.1101/gr.191395.115

[16] Myers, E. W., Sutton, G. G., Delcher, A. L., Dew, I. M., Fasulo, D. P., Flanigan, M. J.,

Kravitz, S. A., Mobarry, C. M., Reinert, K. H. J., Remington, K. A., Anson, E. L.,

Bolanos, R. A., Chou, H.-H., Jordan, C. M., Halpern, A. L., Lonardi, S., Beasley, E. M.,

Brandon, R. C., Chen, L., Dunn, P. J., Lai, Z., Liang, Y., Nusskern, D. R., Zhan, M.,

Zhang, Q., Zheng, X., Rubin, G. M., Adams, M. D., Venter, J. C., “A whole-genome

67

https://doi.org/10.1038/s41587-019-0217-9
https://doi.org/10.1038/nbt.4060
https://doi.org/10.1016/0022-2836(82)90546-0
https://doi.org/10.1089/cmb.1995.2.27
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1007/BF01442866
https://doi.org/10.1038/nbt.2280
https://doi.org/10.1101/gr.191395.115

Bibliography

assembly of drosophila”, Science, Vol. 287, No. 5461, 2000, pp. 2196-2204, available at:

https://doi.org/10.1126/science.287.5461.2196

[17] Pop, M., Phillippy, A., Delcher, A. L., Salzberg, S. L., “Comparative genome

assembly”, Briefings in Bioinformatics, Vol. 5, No. 3, 2004, pp. 237-248, available at:

https://doi.org/10.1093/bib/5.3.237

[18] Chin, C.-S., Alexander, D., Marks, P., Klammer, A., Drake, J., Heiner, C., Clum, A.,

Copeland, A., Huddleston, J., Eichler, E., Turner, S., Korlach, J., “Nonhybrid, finished

microbial genome assemblies from long-read smrt sequencing data”, Nature methods,

Vol. 10, 2013, p. 563–569, available at: https://doi.org/10.1038/nmeth.2474

[19] Chaisson, M., Tesler, G., “Mapping single molecule sequencing reads using

basic local alignment with successive refinement (blasr): Theory and application.”,

BMC bioinformatics, Vol. 13, 2012, p. 238, available at: https://doi.org/10.1186/

1471-2105-13-238

[20] Lee, C., Grasso, C., Sharlow, M. F., “Multiple sequence alignment using partial

order graphs ”, Bioinformatics, Vol. 18, No. 3, 2002, pp. 452-464, available at:

https://doi.org/10.1093/bioinformatics/18.3.452

[21] Lee, C., “Generating consensus sequences from partial order multiple sequence

alignment graphs”, Bioinformatics, Vol. 19, No. 8, 2003, pp. 999-1008, available at:

https://doi.org/10.1093/bioinformatics/btg109

[22] Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D., “Basic local aligment

search tool”, Journal of molecular biology, Vol. 215, 1990, pp. 403-410, available at:

https://doi.org/10.1016/S0022-2836(05)80360-2

[23] Loman, N., Quick, J., Simpson, J., “A complete bacterial genome assembled de novo

using only nanopore sequencing data”, Nature methods, Vol. 12, 2015, p. 733–735,

available at: https://doi.org/10.1038/nmeth.3444

[24] Myers, E. W., “Efficient local alignment discovery amongst noisy long reads”, in

Algorithms in Bioinformatics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp.

52-67, available at: https://doi.org/10.1007/978-3-662-44753-6_5

[25] Berlin, K., Koren, S., Chin, C.-S., Drake, J., Landolin, J., Phillippy, A., “Assembling

large genomes with single-molecule sequencing and locality sensitive hashing”, Nature

biotechnology, Vol. 33, 2015, pp. 623-630, available at: https://doi.org/10.1038/nbt.3238

68

https://doi.org/10.1126/science.287.5461.2196
https://doi.org/10.1093/bib/5.3.237
https://doi.org/10.1038/nmeth.2474
https://doi.org/10.1186/1471-2105-13-238
https://doi.org/10.1186/1471-2105-13-238
https://doi.org/10.1093/bioinformatics/18.3.452
https://doi.org/10.1093/bioinformatics/btg109
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1038/nmeth.3444
https://doi.org/10.1007/978-3-662-44753-6_5
https://doi.org/10.1038/nbt.3238

Bibliography

[26] Chin, C.-S., Peluso, P., Sedlazeck, F., Nattestad, M., Concepcion, G., Clum, A., Dunn,

C., O’Malley, R., Figueroa-Balderas, R., Morales-Cruz, A., Cramer, G., Delledonne,

M., Luo, C., Ecker, J., Cantu, D., Rank, D., Schatz, M., “Phased diploid genome

assembly with single-molecule real-time sequencing”, Nature Methods, Vol. 13, 2016,

pp. 1050-1054, available at: https://doi.org/10.1038/nmeth.4035

[27] Myers, E. W., “The fragment assembly string graph”, Bioinformatics, Vol. 21, No.

suppl_2, 2005, pp. ii79-ii85, available at: https://doi.org/10.1093/bioinformatics/bti1114

[28] Koren, S., Walenz, B., Berlin, K., Miller, J., Bergman, N., Phillippy, A., “Canu:

Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat

separation”, Genome Research, Vol. 27, 03 2017, pp. 722-736, available at:

https://doi.org/10.1101/gr.215087.116

[29] Miller, J. R., Delcher, A. L., Koren, S., Venter, E., Walenz, B. P., Brownley, A.,

Johnson, J., Li, K., Mobarry, C., Sutton, G., “Aggressive assembly of pyrosequencing

reads with mates”, Bioinformatics, Vol. 24, No. 24, 2008, pp. 2818-2824, available at:

https://doi.org/10.1093/bioinformatics/btn548

[30] Li, H., “Minimap and miniasm: fast mapping and de novo assembly for noisy

long sequences”, Bioinformatics, Vol. 32, No. 14, 2016, pp. 2103-2110, available at:

https://doi.org/10.1093/bioinformatics/btw152

[31] Sović, I., Šikić, M., Wilm, A., Fenlon, S. N., Chen, S. L., Nagarajan, N.,

“Fast and sensitive mapping of nanopore sequencing reads with graphmap”, Nature

communications, Vol. 7, 2016, p. 11307, available at: https://doi.org/10.1038/

ncomms11307

[32] Vaser, R., Sović, I., Nagarajan, N., Sikic, M., “Fast and accurate de novo genome

assembly from long uncorrected reads”, Genome Research, Vol. 27, 2017, pp. 737-746,

available at: https://doi.org/10.1101/gr.214270.116

[33] Kamath, G. M., Shomorony, I., Xia, F., Courtade, T. A., Tse, D. N. C., “Hinge: long-read

assembly achieves optimal repeat resolution.”, Genome research, Vol. 27, No. 5, 2017,

pp. 747-756, available at: https://doi.org/10.1101/gr.216465.116

[34] Lin, Y., Yuan, J., Kolmogorov, M., Chaisson, M., Pevzner, P., “Assembly of long error-

prone reads using de bruijn graphs”, Proceedings of the National Academy of Sciences,

Vol. 113, 2016, pp. E8396-E8405, available at: https://doi.org/10.1073/pnas.1604560113

69

https://doi.org/10.1038/nmeth.4035
https://doi.org/10.1093/bioinformatics/bti1114
https://doi.org/10.1101/gr.215087.116
https://doi.org/10.1093/bioinformatics/btn548
https://doi.org/10.1093/bioinformatics/btw152
https://doi.org/10.1038/ncomms11307
https://doi.org/10.1038/ncomms11307
https://doi.org/10.1101/gr.214270.116
https://doi.org/10.1101/gr.216465.116
https://doi.org/10.1073/pnas.1604560113

Bibliography

[35] Kolmogorov, M., Yuan, J., Lin, Y., Pevzner, P., “Assembly of long, error-prone reads

using repeat graphs”, Nature Biotechnology, Vol. 37, 2019, pp. 540-546, available at:

https://doi.org/10.1038/s41587-019-0072-8

[36] Ruan, J., Li, H., “Fast and accurate long-read assembly with wtdbg2”, bioRxiv, 2019,

available at: https://doi.org/10.1101/53097

[37] Chin, C.-S., Khalak, A., “Human genome assembly in 100 minutes”, bioRxiv, 2019,

available at: https://doi.org/10.1101/705616

[38] Shafin, K., Pesout, T., Lorig-Roach, R., Haukness, M., Olsen, H. E., Bosworth, C., Arm-

strong, J., Tigyi, K., Maurer, N., Koren, S., Sedlazeck, F. J., Marschall, T., Mayes, S.,

Costa, V., Zook, J. M., Liu, K. J., Kilburn, D., Sorensen, M., Munson, K. M., Vollger,

M. R., Eichler, E. E., Salama, S., Haussler, D., Green, R. E., Akeson, M., Phillippy, A.,

Miga, K. H., Carnevali, P., Jain, M., Paten, B., “Efficient de novo assembly of eleven

human genomes using promethion sequencing and a novel nanopore toolkit”, bioRxiv,

2019.

[39] Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N.,

Schwikowski, B., Ideker, T., “Cytoscape: A software environment for integrated models

of biomolecular interaction networks”, Genome Research, Vol. 13, No. 11, 2003, pp.

2498-2504, available at: https://doi.org/10.1101/gr.1239303

[40] Pop, M., “Genome assembly reborn: recent computational challenges”, Briefings

in Bioinformatics, Vol. 10, No. 4, 2009, pp. 354-366, available at: https:

//doi.org/10.1093/bib/bbp026

[41] Garey, M. R., Johnson, D. S., Computers and Intractability; A Guide to the Theory of

NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990.

[42] Myers, E. W., “Whole-genome dna sequencing”, Computing in Science and Engg.,

Vol. 1, No. 3, 1999, pp. 33-43, available at: https://doi.org/10.1109/5992.764214

[43] Zerbino, D. R., Birney, E., “Velvet: algorithms for de novo short read assembly using

de bruijn graphs.”, Genome research, Vol. 18, No. 5, 2008, pp. 821-9, available at:

https://doi.org/10.1101/gr.074492.107

[44] Hunter, J. D., “Matplotlib: A 2d graphics environment”, Computing in Science &

Engineering, Vol. 9, No. 3, 2007, pp. 90-95, available at: https://doi.org/10.1109/MCSE.

2007.55

70

https://doi.org/10.1038/s41587-019-0072-8
https://doi.org/10.1101/53097
https://doi.org/10.1101/705616
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1093/bib/bbp026
https://doi.org/10.1093/bib/bbp026
https://doi.org/10.1109/5992.764214
https://doi.org/10.1101/gr.074492.107
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55

Bibliography

[45] Krumsiek, J., Arnold, R., Rattei, T., “Gepard: a rapid and sensitive tool for creating

dotplots on genome scale”, Bioinformatics, Vol. 23, No. 8, 2007, pp. 1026-1028, available

at: https://doi.org/10.1093/bioinformatics/btm039

[46] Wick, R. R., Judd, L. M., Gorrie, C. L., Holt, K. E., “Unicycler: Resolving bacterial

genome assemblies from short and long sequencing reads”, PLOS Computational Biology,

Vol. 13, No. 6, 2017, pp. 1-22, available at: https://doi.org/10.1371/journal.pcbi.1005595

[47] Fruchterman, T. M. J., Reingold, E. M., “Graph drawing by force-directed

placement”, Softw. Pract. Exper., Vol. 21, No. 11, 1991, pp. 1129-1164, available at:

https://doi.org/10.1002/spe.4380211102

[48] Hopcroft, J. E., Tarjan, R. E., “Efficient algorithms for graph manipulation

(algorithm 447)”, Commun. ACM, Vol. 16, 1973, pp. 372-378, available at:

https://doi.org/10.1145/362248.362272

[49] Barnes, J. K., Hut, P., “A hierarchical o(n log n) force-calculation algorithm”, Nature,

Vol. 324, 1986, pp. 446-449, available at: https://doi.org/10.1038/324446a0

[50] Finkel, R. A., Bentley, J. L., “Quad trees a data structure for retrieval on composite keys”,

Acta Informatica, Vol. 4, 1974, pp. 1-9, available at: https://doi.org/10.1007/BF00288933

[51] Needleman, S. B., Wunsch, C. D., “A general method applicable to the search for

similarities in the amino acid sequence of two proteins”, Journal of molecular biology,

Vol. 48, No. 3, 1970, pp. 443-53, available at: https://doi.org/10.1016/0022-2836(70)

90057-4

[52] Smith, T. F., Waterman, M. S., “Identification of common molecular subsequences”,

Journal of molecular biology, Vol. 147, No. 1, 1981, pp. 195-7, available at:

https://doi.org/10.1016/0022-2836(81)90087-5

[53] Wozniak, A., “Using video-oriented instructions to speed up sequence comparison”,

Bioinformatics, Vol. 13, No. 2, 1997, pp. 145-150, available at: https://doi.org/10.1093/

bioinformatics/13.2.145

[54] Rognes, T., Seeberg, E., “Six-fold speed-up of Smith–Waterman sequence database

searches using parallel processing on common microprocessors”, Bioinformatics, Vol. 16,

No. 8, 2000, pp. 699-706, available at: https://doi.org/10.1093/bioinformatics/16.8.699

[55] Farrar, M., “Striped Smith–Waterman speeds database searches six times over other

SIMD implementations”, Bioinformatics, Vol. 23, No. 2, 2006, pp. 156-161, available at:

https://doi.org/10.1093/bioinformatics/btl582

71

https://doi.org/10.1093/bioinformatics/btm039
https://doi.org/10.1371/journal.pcbi.1005595
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1145/362248.362272
https://doi.org/10.1038/324446a0
https://doi.org/10.1007/BF00288933
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1093/bioinformatics/13.2.145
https://doi.org/10.1093/bioinformatics/13.2.145
https://doi.org/10.1093/bioinformatics/16.8.699
https://doi.org/10.1093/bioinformatics/btl582

Bibliography

[56] Sankoff, D., “Matching sequences under deletion-insertion constraints”, Vol. 69, No. 1,

1972, pp. 4-6, available at: https://doi.org/10.1073/pnas.69.1.4

[57] Gotoh, O., “An improved algorithm for matching biological sequences”, Journal

of Molecular Biology, Vol. 162, No. 3, 1982, pp. 705-708, available at: https:

//doi.org/10.1016/0022-2836(82)90398-9

[58] Kahn, A. B., “Topological sorting of large networks”, Communications of the ACM,

Vol. 5, No. 11, 1962, pp. 558-562, available at: https://doi.org/10.1145/368996.369025

[59] Li, H., “Minimap2: pairwise alignment for nucleotide sequences”, Bioinformatics,

Vol. 34, No. 18, 2018, pp. 3094-3100, available at: https://doi.org/10.1093/bioinformatics/

bty191

[60] Ukkonen, E., “Algorithms for approximate string matching”, Information and Control,

Vol. 64, No. 1, 1985, pp. 100-118, international Conference on Foundations of

Computation Theory, available at: https://doi.org/10.1016/S0019-9958(85)80046-2

[61] ŠoŠić, M., Šikić, M., “Edlib: a C/C++ library for fast, exact sequence alignment

using edit distance”, Bioinformatics, Vol. 33, No. 9, 2017, pp. 1394-1395, available at:

https://doi.org/10.1093/bioinformatics/btw753

[62] Todd, S. M., Settlage, R. E., Lahmers, K. K., Slade, D. J., “Fusobacterium genomics

using minion and illumina sequencing enables genome completion and correction”,

mSphere, Vol. 3, No. 4, 2018, available at: https://doi.org/10.1128/mSphere.00269-18

[63] “Public Health England reference collections - NCTC3000”, available at: https:

//www.sanger.ac.uk/resources/downloads/bacteria/nctc accessed on: 1 October 2019.

[64] “Loman Labs”, available at: http://lab.loman.net/2015/09/24/

first-sqk-map-006-experiment accessed on: 1 October 2019.

[65] “Pacific Biosciences DevNet”, available at: https://github.com/PacificBiosciences/

DevNet/wiki/Datasets accessed on: 1 October 2019.

[66] Wick, R. R., Judd, L. M., Gorrie, C. L., Holt, K. E., “Completing bacterial genome

assemblies with multiplex minion sequencing”, Microbial Genomics, Vol. 3, No. 10,

2017, available at: https://doi.org/10.1099/mgen.0.000132

[67] Istace, B., Friedrich, A., d’Agata, L., Faye, S., Payen, E., Beluche, O., Caradec, C.,

Davidas, S., Cruaud, C., Liti, G., Lemainque, A., Engelen, S., Wincker, P., Schacherer, J.,

Aury, J.-M., “de novo assembly and population genomic survey of natural yeast isolates

72

https://doi.org/10.1073/pnas.69.1.4
https://doi.org/10.1016/0022-2836(82)90398-9
https://doi.org/10.1016/0022-2836(82)90398-9
https://doi.org/10.1145/368996.369025
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1016/S0019-9958(85)80046-2
https://doi.org/10.1093/bioinformatics/btw753
https://doi.org/10.1128/mSphere.00269-18
https://www.sanger.ac.uk/resources/downloads/bacteria/nctc
https://www.sanger.ac.uk/resources/downloads/bacteria/nctc
http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment
http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment
https://github.com/PacificBiosciences/DevNet/wiki/Datasets
https://github.com/PacificBiosciences/DevNet/wiki/Datasets
https://doi.org/10.1099/mgen.0.000132

Bibliography

with the Oxford Nanopore MinION sequencer”, GigaScience, Vol. 6, No. 2, 2017, pp.

1-13, available at: https://doi.org/10.1093/gigascience/giw018

[68] Vembar, S. S., Seetin, M., Lambert, C., Nattestad, M., Schatz, M. C., Baybayan,

P., Scherf, A., Smith, M. L., “Complete telomere-to-telomere de novo assembly

of the Plasmodium falciparum genome through long-read (>11kb), single molecule,

real-time sequencing”, DNA Research, Vol. 23, No. 4, 2016, pp. 339-351, available at:

https://doi.org/10.1093/dnares/dsw022

[69] Solares, E., Chakraborty, M., Miller, D., Kalsow, S., Hall, K., Perera, A., Emerson,

J., Hawley, R. S., “Rapid low-cost assembly of the drosophila melanogaster reference

genome using low-coverage, long-read sequencing”, G3-Genes Genomes Genetics,

Vol. 8, 2018, pp. 3143-3154, available at: https://doi.org/10.1534/g3.118.200162

[70] Chakraborty, M., Vankuren, N., Zhao, R., Zhang, X., Kalsow, S., Emerson,

J., “Hidden genetic variation shapes the structure of functional elements in

drosophila”, Nature Genetics, Vol. 50, 2018, pp. 20-25, available at: https:

//doi.org/10.1038/s41588-017-0010-y

[71] Hoshino, A., Jayakumar, V., Nitasaka, E., Toyoda, A., Noguchi, H., Itoh, T.,

Shin-I, T., Minakuchi, Y., Koda, Y., Nagano, A., Yasugi, M., Honjo, M., Kudoh,

H., Seki, M., Kamiya, A., Shiraki, T., Carninci, P., Asamizu, E., Nishide, H.,

Sakakibara, Y., “Genome sequence and analysis of the japanese morning glory

ipomoea nil”, Nature Communications, Vol. 7, 2016, p. 13295, available at:

https://doi.org/10.1038/ncomms13295

[72] Schmidt, M. H.-W., Vogel, A., Denton, A. K., Istace, B., Wormit, A., van de Geest, H.,

Bolger, M. E., Alseekh, S., Maß, J., Pfaff, C., Schurr, U., Chetelat, R., Maumus, F., Aury,

J.-M., Koren, S., Fernie, A. R., Zamir, D., Bolger, A. M., Usadel, B., “De novo assembly

of a new solanum pennellii accession using nanopore sequencing”, The Plant Cell,

Vol. 29, No. 10, 2017, pp. 2336-2348, available at: https://doi.org/10.1105/tpc.17.00521

[73] Delcher, A., Salzberg, S., Phillippy, A., “Using mummer to identify similar regions

in large sequence sets”, Current protocols in bioinformatics / editoral board, Andreas

D. Baxevanis ... [et al.], Vol. Chapter 10, 2003, p. Unit 10.3, available at:

https://doi.org/10.1002/0471250953.bi1003s00

[74] Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D., Gurevich, A., “Versatile genome

assembly evaluation with QUAST-LG”, Bioinformatics, Vol. 34, No. 13, 2018, pp.

i142-i150, available at: https://doi.org/10.1093/bioinformatics/bty266

73

https://doi.org/10.1093/gigascience/giw018
https://doi.org/10.1093/dnares/dsw022
https://doi.org/10.1534/g3.118.200162
https://doi.org/10.1038/s41588-017-0010-y
https://doi.org/10.1038/s41588-017-0010-y
https://doi.org/10.1038/ncomms13295
https://doi.org/10.1105/tpc.17.00521
https://doi.org/10.1002/0471250953.bi1003s00
https://doi.org/10.1093/bioinformatics/bty266

Bibliography

[75] Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., Zdobnov, E. M.,

“BUSCO: assessing genome assembly and annotation completeness with single-copy

orthologs”, Bioinformatics, Vol. 31, No. 19, 2015, pp. 3210-3212, available at:

https://doi.org/10.1093/bioinformatics/btv351

[76] Vaser, R., Šikić, M., “Yet another de novo genome assembler”, in 2019 11th International

Symposium on Image and Signal Processing and Analysis (ISPA), 2019, pp. 147-151,

available at: https://doi.org/10.1109/ISPA.2019.8868909

[77] Ye, C., Ma, Z., “Sparc: A sparsity-based consensus algorithm for long erroneous

sequencing reads”, PeerJ, Vol. 4, 2016, available at: https://doi.org/10.7717/peerj.2016

[78] Wick, R., “rrwick/Long-read-assembler-comparison: Initial release”, available at:

https://doi.org/10.5281/zenodo.2702443 2019.

[79] Belser, C., Istace, B., Denis, E., Dubarry, M., Baurens, F.-C., Falentin, C., Genete,

M., Berrabah, W., Chevre, A.-M., Delourme, R., Deniot, G., Denoeud, F., Duffé, P.,

Engelen, S., Lemainque, A., Manzanares-Dauleux, M., Martin, G., Morice, J., Noel,

B., Aury, J.-M., “Chromosome-scale assemblies of plant genomes using nanopore long

reads and optical maps”, Nature Plants, Vol. 4, 2018, p. pages879–887, available at:

https://doi.org/10.1038/s41477-018-0289-4

74

https://doi.org/10.1093/bioinformatics/btv351
https://doi.org/10.1109/ISPA.2019.8868909
https://doi.org/10.7717/peerj.2016
https://doi.org/10.5281/zenodo.2702443
https://doi.org/10.1038/s41477-018-0289-4

List of Figures

3.1. Example of an assembly graph constructed from an arbitrary set of sequences S

with cardinality |S| = 13. Vertices are denoted with vi and linked with dashed

lines to their Watson-Crick complements vi. Edges are denoted with ei, j, while

their complenetary pairs with e j,i. The graph was manually drawn and anno-

tated in Cytoscape [39]. Due to clarity, edge labels are absent in subsequent

figures. 12

3.2. Part of an assembly graph containing transitive edges. For any path of three

vertices vi→ v j→ vk, a transitive edge connects the first and last vertex of that

path, vi→ v j. It can be removed without any loss of information, but removing

any of them separately might hinder the detection of others. In this example,

edge v5→ v1 is not transitive without edge v4→ v1, as well as v4→ v1 without

v3→ v1. The subgraph was manually drawn and annotated in Cytoscape [39]. . 13

3.3. Part of an assembly graph containing a dead end (path v3 → v6 → v7). Re-

moving such paths should not lead to loss of information. The subgraph was

manually drawn and annotated in Cytoscape [39]. 14

List of Figures

3.4. Different path formations in bubble-like structures of the assembly graph. We

assume that the path v5→ v4→ v3→ v2→ v1 is the one we want to keep. The

path over vertices v8, v6 and v7 is searched for edges that will not discontinue

other paths of the graph if removed. Subfigure (a) depicts the simplest scenario

in which the whole path can be removed. When they are several vertices with

indegree deg−(v) ≥ 2 and outdegree deg+(v) = 1, everything before the first

such vertex can be removed as in subfigure (b). Similar rule applies to the case

in subfigure (c) where they are several vertices with deg+(v)≥ 2 and deg−(v) =

1. Everything after the last such vertex is safely removable. When there is a

combination of those vertex types, edges between the last vertex with deg+(v)≥
2 and the first vertex with deg−(v) ≥ 2 can be safely removed, as seen in (d).

This only applies when vertices do not have multiple edges of the other type,

that is if there is vertex with deg−(v) ≥ 2 and deg+ ≥ 2 in the path then no

edges are removed as they would break other paths in the graph (subfigure (e)).

All subfigures were manually drawn and annotated in Cytoscape [39]. 15

3.5. Sequence pile-o-gram construction from a set of pairwise overlaps. Overlaps

are stacked into a pile (subfigure (a)) and summed up over each base in the

sequence (subfigure (b)). If we align the sequence to the reference genome, we

can see that it is fully aligned to only one location (subfigure (c)), which results

in an almost uniform pile-o-gram. Such sequences are the basis for high quality

assemblies. The whole figure is tied to sequence 474ddffb-0b2b-4a92-8f06-

8568265ca639 obtained from the dataset ERR1147227. Subfigures (a) and (b)

were drawn in Python with Matplotlib [44], while subfigure (c) was exported

from Gepard [45]. 20

3.6. Pile-o-gram of a chimeric sequence. Not a single overlap covers the neigh-

bourhood of the base at position 6900, which is an indication of a chimeric

sequence (subfigure (a)). The resulting pile-o-gram has a rift around that posi-

tion, which is detectable without difficulties (subfigure (b)). When the sequence

is aligned to the reference genome, the alignment is split into two parts that are

dislocated on the reference (subfigure (c)), verifying the assumption about the

chimeric nature of the sequence. The figure is tied to sequence 6e5d1642abdc-

436ba597-4f68941ca163 obtained from the dataset ERR1147227. Subfigures

(a) and (b) were drawn in Python with Matplotlib [44], while subfigure (c) was

exported from Gepard [45]. 23

76

List of Figures

3.7. Pile-o-gram of a sequence containing a repetitive region. A large amount of

overlaps located at the end of the sequence is a good indicator for a reptitive

genomic region (subfigure (a)). When the overlaps are transformed into a pile-

o-gram, the sequence end has a large ridge over the median (subfigure (b)). If

k-mer filtering is employed on the whole dataset, the ridge is lost in the pile-

o-gram due to lack of repetitive k-mers (pastel orange line in subfigure (b)).

Aligning the sequence to the reference genome gives one primary alignment and

several small ones at various positions in the genome (subfigure (c)), confirming

that the end of sequence is part of a repetitive region. The whole figure is tied

to sequence 6c1f5fec-a9c6-434f-879c-f40bd4dccbb6 obtained from the dataset

ERR1147227. Subfigures (a) and (b) were drawn in Python with Matplotlib

[44], while subfigure (c) was exported from Gepard [45]. 24

3.8. Overlaps between pile-o-grams that contain reptitive regions. Subfigure (a)

shows a false overlap over the repetitive region, which we are trying to re-

move prior the construction of an assembly graph. The removal is prohibited

if there are no overlaps that bridge through the repeat in question. Example of

such overlap is shown in subfigure (b). Pile-o-gram drawn in blue is tied to se-

quence 6c1f5fec-a9c6-434f-879c-f40bd4dccbb6, while the red and green pile-

o-grams are tied to 6a7957d9-47e3-4b27-bc1c-b38f8e349884 and 8db143ed-

9007-4661-8174-634f94fb6a3b, respectively. All sequences were obtained from

the dataset ERR1147227. Both subfigures were drawn in Python with Mat-

plotlib [44]. 24

3.9. Pile-o-gram of a incorrectly declared chimeric sequence. Region between 8750

and 11000 has small coverage probably due to low quality (subfigure (b)). It is

declared chimeric even though there are a couple overlaps covering it (subfig-

ure (a)). The alignment confirms that the sequence is in fact non-chimeric. It

aligns to the reference genome completely and uniquely, although the low qual-

ity region is not part of the alignment (subfigure (c)). The whole figure is tied to

sequence 2e29dd15-c213-4f79-ac67-fb7e550443c1 obtained from the dataset

ERR1147227. Subfigures (a) and (b) were drawn in Python with Matplotlib

[44], while subfigure (c) was exported from Gepard [45]. 25

3.10. Magnified view of an assembly graph which shows three extended edges con-

necting remote parts of the graph. The assembly graph was constructed from

the bacterial dataset ERR1046594 and was drawn with Cytoscape [39] (using

the prefuse force-directed layout option) prior to applying any simplification

methods. 27

77

List of Figures

3.11. Condensed assembly graph displaying uniform edge lengths when using the

force-directed placement algorithm [47]. Edges of interest, those tied to ver-

tices with outdegree greater than two, are coloured in red and are really hard

to distinguish. The assembly graph was constructed from the same bacterial

dataset ERR1046594, but was drawn in Python with Matplotlib [44] after em-

ploying simplification methods. 28

3.12. Condensed assembly graph with reintroduced transitive edges exhibits proper

stretching of false paths drawn with the force-directed placement algorithm

[47]. Transitive edges are represented with green dotted lines, while edges of

interest, those tied to junction vertices, are coloured in red and are now eas-

ier to detect. The assembly graph was constructed from the bacterial dataset

ERR1046594 and was drawn in Python with Matplotlib [44]. 29

3.13. Condensed assembly graph drawn with the force-directed placement algorithm

[47] inside a fixed canvas frame. The vertices are pushed to the frame itself

and the graph loses the desired shape, although some of the false paths are

still elongated. The assembly graph was constructed from the bacterial dataset

ERR1046594 and was drawn in Python with Matplotlib [44]. 31

3.14. Condensed assembly graph drawn with the force-directed placement algorithm

[47] after unitig creation. Replacing unambiguous paths of the graph with a

single vertex, which is at least 42 vertices away from any junction, retains the

sought drawing structure. This will boost the performance of the algorithm as

the number of vertices decreased from 2430 to 1099. The assembly graph was

constructed from the bacterial dataset ERR1046594 and was drawn in Python

with Matplotlib [44]. 33

3.15. Condensed assembly graph drawn with the grid version of the force-directed

placement algorithm [47]. Ignoring repulsive force outside a circle of radius

2k renders the drawing unusable for detection of false paths. The assembly

graph was constructed from the bacterial dataset ERR1046594 and was drawn

in Python with Matplotlib [44]. 34

78

List of Figures

3.16. Condensed assembly graph drawn with Barnes-Hut approximation [49] of the

the force-directed placement algorithm [47]. The canvas is recursively split into

four quadrants until each vertex is a single occupant of a subquadrant. Repulsive

forces are calculated depending on the distance between a given vertex and

centers-of-mass of all quadrants, which enables quasilinear execution time. For

example, for the vertex marked with a rhombus the number of repulsive forces

calculated (denoted with red dashed lines) decreased from 1098 to only 20. The

assembly graph was constructed from the bacterial dataset ERR1046594 and

was drawn in Python with Matplotlib [44]. Edges of the assembly graph are not

drawn for clarity. 35

3.17. Condensed assembly graph of a larger genome drawn with the force-directed

placement algorithm [47]. Although the false edges are hard to see, they are

present and elongated enough to be removed. The assembly graph was con-

structed from the eukaryotic dataset SRR6702603 and was drawn in Python

with Matplotlib [44]. 38

3.18. Condensed assembly graph with repeat induced edges drawn with the force-

directed placement algorithm [47]. Increased number of such edges hinders

their proper elongation in the drawing, although some of them are still resolv-

able. The assembly graph was constructed from the bacterial dataset ERR1046594

and was drawn in Python with Matplotlib [44]. 39

4.1. Construction of a partial order graph from a set of two arbitrary sequences.

Vertices are denoted with vi, while edges with ei, j. Dashed lines link characters

that were aligned together but are mismatched. In subfigure (a) one sequence

of the set is transformed into a linear graph wihtout branches. The other is

aligned and afterwards included in the graph. Alignment is shown in subfigure

(b) where vertical lines between ci and vi denote matches for which nothing has

to be done during sequence inclusion. Subfigure (c) shows the resulting partial

order graph. It has two new vertices due to mismatches (c3,v3) and (c6,v7),

which are linked together with dashed lines. The graph has also three new edges

e2,8, e6,9 and e8,5. Edge e8,5 was added due to a deletion between characters c3

and c4. All graphs were manually drawn and annotated in Cytoscape [39]. . . . 41

79

List of Tables

5.1. Third generation sequencing data used in evaluation of tools for de novo genome

assembly. 55

5.2. Racon consensus evaluation with two state-of-the-art assemblers Canu and Fal-

con. Assembly metrics were obtained with Dnadiff [73] across five datasets of

varying genome sizes. 58

5.3. Comparison between assemblers Ra and Raven. Assembly metrics were ob-

tained with Quast-LG [74] on fourteen datasets of varying genome sizes. 59

5.4. Comparison between Raven and state-of-the-art assemblers Wtdbg2, Flye and

Shasta. Assembly metrics were obtained with Quast-LG [74] on five datasets

of varying genome sizes. 60

5.5. Detailed look into execution time of Raven components. All values are mea-

sured inside the source code and represent wall clock time in seconds. 61

Biography

Robert Vaser was born on the 2nd of May 1991 in Čakovec. In 2010 he enrolled at the Uni-

versity of Zagreb Faculty of Electrical Engineering and Computing. He finished the Computer

Science module in 2013, granting him the Bachelor of Science in Computing degree. Title of

his thesis was “Evaluation of protein database search tools”. The same year he enrolled in the

master degree programme, at the same faculty and the same module. In 2015, Robert grad-

uated and obtained the title Master of Science in Computing, magna cum laude. The topic

of his thesis was “De novo transcriptome assembly”. Since the end of 2015, Robert is en-

rolled in the Ph.D. programme at University of Zagreb Faculty of Electrical Engineering and

Computing. At the same institute, he was employed and worked on the project Algorithms

for Genome Sequence Analysis (UIP-11-2013-7353). Since the middle of 2019, he continued

his work on the project Advanced Methods and Technologies in Data Science and Cooperative

Systems (KK.01.1.1.01.009). In 2016, he was awarded with "Faculty of Electrical Engineering

and Computing Science Award for outstanding achievement in research work or innovations

in the last two years, especially for outstanding scientific contribution to research in the field

of bioinformatics and computer biology". Robert published two research and five conference

papers.

Publications

Journal papers

1. Vaser, R., Sović, I., Nagarajan, N., Šikić, M., “Fast and accurate de novo genome as-

sembly from long uncorrected reads”, Genome Research, Vol. 27, 2017, pp. 737-746,

available at: https://doi.org/10.1101/gr.214270.116

2. Vaser, R., Adusumalli, S., Leng, S., Šikić, M., Ng, P., “Sift missense predictions for

genomes”, Nature protocols, Vol. 11, 2015, pp. 1-9, available at: https://doi.org/

10.1038/nprot.2015.123

81

https://doi.org/10.1101/gr.214270.116
https://doi.org/10.1038/nprot.2015.123
https://doi.org/10.1038/nprot.2015.123

Biography

Conference papers

1. Vaser, R., Šikić, M., “Yet another de novo genome assembler”, in 2019 11th International

Symposium on Image and Signal Processing and Analysis (ISPA), 2019, pp. 147-151,

available at: https://doi.org/10.1109/ISPA.2019.8868909

2. Ristov, S., Vaser, R., Šikić, M., “Trade-offs in query and target indexing for the selection

of candidates in protein homology searches”, in 2017 Prague Stringology Conference,

2017, pp. 118-125.

3. Vaser, R., Pavlović, D., Šikić, M., “SWORD—a highly efficient protein database search”,

Bioinformatics, Vol. 32, 2016, pp. i680-i684, available at: https://doi.org/10.

1093/bioinformatics/btw445

4. Križanović, K., Marinović, M., Bulović, A., Vaser, R., Šikić, M., “Tgtp-db — a database

for extracting genome, transcriptome and proteome data using taxonomy”, in 2016 39th

International Convention on Information and Communication Technology, Electronics

and Microelectronics (MIPRO), 2016, pp. 452-456.

5. Pavlović, D., Vaser, R., Korpar, M., Šikić, M., “Protein database search optimization

based on cuda and mpi”, in 2013 36th International Convention on Information and Com-

munication Technology, Electronics and Microelectronics (MIPRO), 2013, pp. 1278-

1280.

82

https://doi.org/10.1109/ISPA.2019.8868909
https://doi.org/10.1093/bioinformatics/btw445
https://doi.org/10.1093/bioinformatics/btw445

Životopis

Robert Vaser rod̄en je 2. svibnja 1991. godine u Čakovcu. Upisao je Fakultet elektrotehnike

i računarstva Sveučilišta u Zagrebu 2010. godine. Završio je modul računarske znanosti 2013.

godine i stekao titulu sveučilišnog prvostupnika inženjera računarstva. Naslov obranjenog za-

vršnog rada bio je "Evaluacija aplikacija za pretraživanje baze proteinskih sljedova". Iste go-

dine upisao je isti modul na diplomskom studiju dotičnog fakulteta. 2015. godine Robert je

diplomirao te stekao titulu magistra inženjera računarstva, s velikom pohvalom. Tematika nje-

govog diplomskog rada bila je "De novo sastavljanje transkriptoma". Krajem 2015. godine up-

isao je doktorski studij Fakulteta elektrotehnike i računarstva Sveučilišta u Zagrebu. Zaposlen

je na istom fakultetu radeći na projektu Algoritmi za analizu slijeda genoma (UIP-11-2013-

7353). Od sredine 2019. godine nastavio je raditi na projektu Napredne metode i tehnologije

u znanosti o podatcima i kooperativnim sustavima (KK.01.1.1.01.009). 2016. godine nagrad̄en

je s "Nagradom za znanost Fakulteta elektrotehnike i računarstva za iznimno postignuće u is-

traživačkom radu ili inovacijama u prethodne dvije godine, a posebno za izuzetan znanstveni

doprinos istraživanjima u području bioinformatike i računalne biologije". Robert je objavio dva

znanstvena te pet konferencijskih radova.

83

	Introduction
	Research objectives
	Organization of the thesis

	Background
	Approaches to de novo genome assembly

	Algorithms for layout phase of the OLC paradigm
	Assembly graph
	Simplification methods
	Discussion

	Preprocessing
	Sequence annotation
	Discussion

	Postprocessing
	Force-directed placement
	Approximation techniques
	Discussion

	Algorithms for consensus phase of the OLC paradigm
	Partial order alignment
	Vectorization
	Discussion

	Unitig polishing
	Discussion

	Integration and evaluation
	Implementation
	Datasets
	Evaluation methods
	Results
	Discussion

	Conclusion
	Contribution of the thesis
	Future research

	Bibliography
	Biography
	Životopis

