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A B S T R A C T  A R T I C L E   I N F O 
Dimensional and geometric tolerances affect both the cost and the functionali-
ty of a given product. Finding the acceptable trade-off between the two is 
among the common engineering tasks. Thus, many tolerance analysis meth-
ods are developed to help engineers and assist in the decision-making pro-
cess. In this article, the authors have assessed four tolerance analysis methods 
by applying them to the open-loop assembly. The results obtained by the 
tolerance chart (worst-case) method, Monte-Carlo simulation, vector-loop 
analysis, and the Unified Jacobian-torsor model were analysed and compared. 
Additionally, the overview and application guidelines are included for each of 
the methods, aiming to help both researchers and practitioners. The results 
have confirmed that there are significant variations in the outputs across the 
observed methods, implying the need for informed method selection. 
© 2020 CPE, University of Maribor. All rights reserved. 
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1. Introduction 
During the design phase, tolerances are assigned to nominal dimensions, ensuring successful 
assembly while retaining the manufacturing costs at an acceptable level. As the complexity of 
mechanical design increases, keeping track of the tolerances becomes harder. To mitigate the 
problem, tolerance analysis methods of various complexity are available. The methods range 
from simple, 1D tolerance chart analysis, to advanced procedures requiring the use of advanced 
mathematical models. Examples include vector loop, Unified Jacobian-torsor, T-maps, and Skin 
model Shapes. Furthermore, tolerance analysis methods can be divided by several criteria: an 
approach to the analysis, identification process, and the calculation procedure of dependent di-
mensions [1].  
 Before analysing, tolerances are assigned to assembly features and are organised into stacks, 
easing the variation analysis. Stacks are then used to analyse the assembly by reading the draw-
ings or by assigning tolerances on computer-aided drawing (CAD). The tolerances are then 
stacked into loops using points, surfaces, vectors, or joints, among others – depending on the 
method [1]. Manual charting is frequently used when solving simple problems consisting of few 
dimensions. As the number of dimensions increases, its reliability decreases – it is error-prone 
and tiresome. Additionally, manual analysis is hard to perform in 2D and 3D tolerancing prob-
lems. 
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 The tolerancing problem complexity further increases when the geometric tolerances are 
necessary [2]. Geometric tolerances are defined by 3D tolerance zones, rendering most of the 
simpler methods unusable. Thus, computer-aided tools (CAT) were developed, increasing the 
capabilities in terms of the number of available approaches and mathematical models. Many 
such tools are developed and successfully applied (VisVSA, 3DCS, CETOL, OpTol) [3] in the in-
dustrial environment. Unfortunately, various proprietary CAT tools use different mathematical 
models to define and analyse tolerances, meaning that the obtained results may differ [4]. 
 State-of-the-art CAT tools allow users to model assembly stacks with point-to-point features. 
The contributing tolerances are identified and arranged into suitable stacks or loops [5] as each 
method is compatible with a specific stacking procedure to build the stacking equation. In recent 
papers, many researchers have studied differences and similarities of tolerance analysis meth-
ods. Studies considered the contributing tolerances from multiple directions [6], the angular 
deviation of the adjustable element, or a critical assembly feature (functional requirement) [6]. 
Also, the form [1] and interaction of the multiple tolerances in the 3D context is defined by the 
geometric drawing and tolerancing (GD&T) standards [1, 10]. Due to frequent changes in GD&T 
standards [7] such as ISO 8015 [2] and ASME Y14.5 [8, 9], continuous support of the tolerance 
analysis methods is needed. 
 Various assembly applications are described as a system of open-loop or closed-loop that 
must be solved together. The open-loop describes a dimension stack terminated with a gap or a 
critical assembly feature. The closed-loop defines a closure constraint for the assembly, implying 
that adjustable elements are in the assembly. Thus, the critical difference between the open-loop 
and closed-loop assemblies is the existence of gap; in the open-loop assemblies, we anticipate 
that gap dimension must be properly toleranced to allow us to form an engineering fit with an-
other part (for the schema of the open-loop assembly, (please see Fig. 3). Those elements, gap or 
functional requirement, are the result of part tolerance accumulation. If there are no adjustable 
components, there is no need for closed-loops – the assembly model is composed only of open-
loops [2]. 
 In recent studies, methods for tolerance analysis were compared using the closed-loop exam-
ples. The aim was to determine the advantages and shortcomings of each method, along with the 
differences in output (e.g. [10-15]). To the best of our knowledge, mentioned research studies 
have not considered the open-loop assemblies. Hence, the contribution of the article at hand is 
the evaluation of the tolerance analysis methods on open-loop problems. Furthermore, besides 
the scientific contribution, this article aims to provide the practitioners with a simple review and 
guidelines for the application of each method. To achieve this, we have compared four different 
methods: tolerance chart method, Monte Carlo method, vector loop model, and Unified Jacobian-
torsor model. Each method was applied to an open-loop assembly, allowing for comparison in 
performances and outcomes. 

2. Methods and materials 
In this research study, four tolerancing methods were compared: tolerance chart method [16], 
Monte Carlo method, vector-loop model [15], and Unified Jacobian-torsor (see Section 2.1). Each 
method is described, along with the steps necessary to apply it. Those include tolerancing prob-
lem identification, mathematical modelling, and calculation procedures. 

2.1 Used tolerance analysis methods 

Tolerance chart method is the most frequently used tolerance analysis method in the industry 
[16], mostly due to its simplicity. It is widely used for solving problems concerned with dimen-
sional tolerances, although the recent improvements enabled its application to geometric toler-
ances [15]. The method is one-dimensional; in order to apply it to the multi-dimensional geo-
metric tolerances, they must be converted to 1D space [15].  
 Tolerance chart method can be performed on both the part and assembly level. For assembly 
level, parts included in the tolerance chain represent one of the tolerance end-points (maximum 
or minimum). Each part is placed against its mating part in one of its tolerance end-points. As a 
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result, the worst-case tolerance chart method illustrates the minimal and maximal variation of a 
functional requirement based on the values in the tolerance chain [9]. 
 When performing the tolerance chart method analysis, the first step is to set a goal by label-
ling the chain starting and ending points [16]. The starting point is selected on one edge and the 
ending point on the opposite edge of the analysed feature (see Fig. 1). The chain indicator is 
placed to determine the direction of the dimension vector and is either positive or negative [17]. 
The vector pointing toward the chain end-point is marked “⊕”, and the vector pointing opposite 
of the end-point is marked “⊖“. The indicator shows whether to add or subtract dimensions and 
tolerances during the stack calculation. Additionally, it simplifies the interpretation of tolerance 
chart results [16]. The resulting dimension chain is the shortest possible and consists only of 
known dimensions - dimensions set by designers. 
 Tolerance chart method was used in recent studies [5, 6, 9, 15-17], mostly as a reference for 
the comparison of advanced tolerance analysis methods. Its most important advantage is sim-
plicity; no computational tools are needed as it can be carried out by hand. The downside is that 
the user has to keep in mind all the standard rules [2, 8] for creating the stacks, making the pro-
cess error-prone. Besides, the tolerance chart method creates stacks in one direction and ignores 
the contributions of others, possibly providing unsatisfactory results. 
 

 

 

Description ⊕ ⊖ TOL 
Dimension 1 50  ±1.5 
Dimension 2  12 ±0.5 
Dimension 3  14 ±0.7 
Dimension 4  9 ±0.2 
Sum 50 35 ±2.9 

𝐷𝐷𝐷𝐷𝐷𝐷 = � ⊕i
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𝑛𝑛

𝑖𝑖=1
= ±2.9 

 
Final dimension: 

15 ± 2.9 
Fig. 1 Tolerance chart method 

A plethora of statistical approaches was introduced to conduct non-linear statistical tolerance 
analysis. A typical example is the Monte Carlo simulation (MCS) based on the algorithm of the 
same name. It utilises random sampling input values to calculate the output results. For a given 
input vector 𝒙𝒙, the number of sampling values 𝑛𝑛 is determined {𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}. By using the math-
ematical model (transfer function) 𝒚𝒚 = 𝑓𝑓(𝒙𝒙) new output vector of same length is found 
{𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛}. Finally, the output results 𝒚𝒚 are analysed by calculating statistical data such as 
mean, standard deviation, or range. 
 Monte Carlo simulation (MCS) is a beneficial tool for tolerance analysis of mechanical assem-
blies. Its main advantage is flexibility and ability to use various non-normal input or output dis-
tributions [18]. A large set of sample parts is created by randomly assigning a tolerance value to 
each nominal dimension. Values are selected within the tolerance interval to simulate the manu-
facturing variation [18]. The process is repeated until enough output data is acquired to enable 
the use of statistical techniques. It allows the calculation of the mean value, standard deviation, 
range, upper and lower specification limit, and share of rejected samples [19]. 
  

Define the problem

Assign the expected 
tolerance distribution 

to each dimension

Estimate the required 
number of runs

Analyse the data

Apply transfer function

Randomly generate 
tolerances (at input)  

Fig. 2 Monte Carlo simulation for implicit assembly constraints 
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In this article, MCS is applied as an extension to the Tolerance chart method. A modified form 
of MCS (McCATS) accounting for the implicit assembly variations was used, as suggested in [20]. 
In the modified simulation, the random parts are sent to the assembly function, which iteratively 
solves the tolerance chart equations for the dependent assembly variations [20]. The process is 
repeated until a sample of a suitable size to produce the assembly histogram is created. The 
steps necessary to carry out the tolerance analysis using the MCS are shown in Fig. 2. 

The vector loop model is a stack-up technique used to extend the stack analysis to two and 
three-dimensional assemblies [1]. The idea of the vector loop method is to use vectors to de-
scribe the dimensions and associated tolerances. Vectors are arranged in loops to determine the 
assembly deviations. Tolerance analysis problems are solved using the kinematic concept; con-
tact points are set as kinematic joints. A number of possible motions is defined for each joint (i.e. 
degrees of freedom), along with the local datum reference plane. Three types of variations are 
described in vector loop model: dimensional variations (lengths and angles), kinematic varia-
tions (small adjustments between mating points, joints) and geometric/feature variations (posi-
tion, roundness, angularity) [1]. 
 Dimensional and geometric tolerances are described as additional degrees of freedom on the 
kinematic joints [1]. Kinematic simplification is required to represent geometric tolerances in 
such way. Thus, in the vector loop model, geometric tolerances are included only at mating 
points, in the direction defined by the type of kinematic joint [1]. They are described as addi-
tional translational and rotational transformations (displacement vectors, rotation matrices) – 
as gaps with zero-length nominal dimension vectors. 
 The assembly graph is a diagram that represents the analysed assembly, including its parts, 
dimensions, mating conditions, functional elements, and functional requirements. The graph is 
used to represent any linear dimension in the assembly as a vector (see Fig. 3). Vectors are con-
nected and form chains or loops, reflecting how assembly parts stack-up together. The associat-
ed tolerance is included as a small kinematic adjustment of such a vector (gap) [1, 12]. Such rep-
resentation allows us to determine the functional requirements of an assembly. Stack-up func-
tions are built by including the vector variations involved in each chain into implicit kinematic 
equations. As such, they can then be solved using various mathematical approaches [1, 6]. 
 For each part in the tolerance chain, a local datum reference frame (DRF) is added to identify 
the relevant features of a part for tolerance analysis. DRFs are then connected using datum paths 
representing geometric layouts, which define the direction and orientation of vectors forming 
the loop [1]. They are created by stacking and chaining the dimensions that locate the contact 
point between two parts. After creating datum paths, the vector loops can be created by connect-
ing datums. Loops can be open or closed, depending on the functional requirement of the toler-
ance analysis. The number of closed loops is calculated as 𝐿𝐿 = 𝐽𝐽 − 𝑃𝑃 + 1, where 𝐽𝐽 is the number 
of the mating points, and 𝑃𝑃 the number of parts. 
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Fig. 3 Assembly graph and the example of vector loops 
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 After defining the vector loops, the calculation is carried out [1, 11]. When considering the 
closed-loop problem, the equations are often non-linear; they must be linearized using direct 
linearization method [1, 11], producing approximate results. Thus, vector loop, when using di-
rect linearization, is unable to generate true worst-case results [4, 11]. When the open-loop 
problem is considered, deviations are calculated directly using explicit equations [11]. 

Unified Jacobian-torsor (JT) method [21] is a 3D tolerance analysis method. It uses the Jaco-
bian matrix to relate the functional requirement (FR) and virtual joints displacements. JT ad-
vances the punctual small-displacement variables of the Jacobian formulation to represent tol-
erance zones using the torsor model and interval arithmetic. It offers more output information 
on the FR, reducing the size of the analysed model since it is no longer point-based [21]. 
 Torsor model uses small displacement screws to establish tolerance zones of points, curves, 
and surfaces [21, 22]. Each real surface is modelled by a substitution surface defined by a set of 
screw parameters that are modelling the deviations from nominal geometry [23]. Screw param-
eters are arranged in torsors containing translational components of a point (𝑢𝑢, 𝑣𝑣,𝑤𝑤) and 𝛼𝛼,𝛽𝛽, 𝛿𝛿 
as rotational components with respect to the nominal geometry: 

𝑇𝑇 = �
𝛼𝛼 𝑢𝑢
𝛽𝛽 𝑣𝑣
𝛿𝛿 𝑤𝑤

�
𝑅𝑅

, (1) 

where 𝑅𝑅 is DRF used to evaluate the screw components. Torsor model can fully define the toler-
ance zones due to its ability to shape spatial volumes within which the surfaces are deviating [10]. 
 The procedure of Unified Jacobian-torsor method consists of 4 steps [24]. The first step is to 
identify all functional elements (FEs) affecting the FR by distinguishing kinematic chains involv-
ing the functional condition or part under study. Functional element can be any point, curve or 
surface of a part and creates internal or kinematic pairs [21]. The second step is to associate a 
torsor or screw parameter to each element (surface, axis) of the kinematic chain. Torsors ex-
press the degrees of freedom and the allowable element displacements and their bounds. Small 
displacements are applied to parts’ geometrical features affecting the FR [21], after which the 
Jacobian matrix is used to determine relative positions and orientations of torsors within the 
chosen kinematic chain (step three) [22]. The final step is to combine torsor and Jacobian to 
provide a matrix equation. Solving a resulting matrix using interval algebra provides the func-
tional condition bounds. 

2.2 Assembly model for case study 

The above-described methods were compared by analysing a 3D tolerancing problem. The as-
sembly consisting of the cantilever and the rotating handle (open loop) was used as an example. 
Thus, both the dimensional and geometric tolerances were considered. The functional require-
ment deviations are assessed using each of the methods, while the results are compared in Sec-
tion 3.5. The nominal dimension (DIM), upper deviation limit (UDL), and lower deviation limit 
(LDL) were calculated. The comparison is focused on the similarities and differences between 
results obtained by each method. Differences in procedures and calculation approaches are also 
observed. 

A simple rotating handle assembly consisting of four parts was used to carry out the compari-
son between the methods (see Fig. 4). The pole (2) is fixed to the bottom plate (1), while the 
lever (3) is mounted onto the journal located on the pole. The handle (4) is installed into the 
bore located on the lever. Tolerances were assigned to all the dimensions apart from a distance 
between the handle (4) and the base plate (1), which is selected as a functional requirement). 
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Fig. 4 Case study model 

  The positional tolerance between the top surface of the base and its cut-out was includ-
ed. The contact between the base and the cylindrical base of the pole is considered ideal. The 
parallelism tolerance between the axis of the cylindrical pin located on the pole and the bottom 
surface of the pole was also included. The lever is mounted onto the pole pin (see Fig. 4) by 
clearance fit ⌀45 H8/g7. On the opposite side of the lever, the handle is mounted into the bore 
with a clearance fit ⌀45 G6/h7. Regarding the geometric tolerances, the parallelism between two 
lever bores and perpendicularity between the handle and the mounting sleeve wall were re-
quired. 
 Each method was then applied to the above-described open-loop assembly. The results were 
compared according to three criteria: 

• identification of the contributing tolerances, 
• calculation of the dependent dimension (functional requirement),  
• analysis of calculation differences compared to the assemblies with closed loops.  

 An assembly graph was created for each of the methods except for the Monte Carlo simula-
tion, as it is based on Tolerance chart method.  

3. Results and discussion 
3.1 Tolerance chart results 

Tolerance chart method is mostly used for dimensional tolerances, even though the recent modi-
fications have enabled the analysis of geometric tolerances as well [15]. The geometric toleranc-
es are to be transformed into their dimensional counterparts. Yet, such transformation does not 
account for the angular surface deviation. In this article, the tolerance chart method is applied 
only to dimensional tolerances. 

Tolerance chain consisting of base plate bore depth (a), length between the pole basis and 
pole journal axis (b), tolerance fit between pole journal and lever bore (c and d), distance be-
tween lever bore axes (e), and tolerance fit between lower lever bore and handle (f and g). As 
mentioned, the distance between the top surface of the base plate (part 1) and handle (4) is a 
functional requirement. Indices U and L were included to denote the upper and lower deviation 
limit, respectively. 
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Dimension + - TOL. 
a  15 0 
b 317  0 
c 22.5  cut=-0.009/2; clt=-0.034/2  
d  22.5 dut=0.039/2; dlt=0 
e  150 0 
f  22.5 fut=0.025/2; dlt=0.006/2 
g 22.5  gut=0/2; glt=-0.025/2  

Sum 362 210  
 
Nominal functional requirement dimension: 

𝐷𝐷𝐷𝐷𝑀𝑀TC = −𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 − 𝑑𝑑 − 𝑒𝑒 − 𝑓𝑓 + 𝑔𝑔 = 152 mm 
 

Stack equation for the upper deviation limit: 
𝑈𝑈𝑈𝑈𝑀𝑀TC = −𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐𝑢𝑢𝑢𝑢 − 𝑑𝑑𝑙𝑙𝑙𝑙 − 𝑒𝑒 − 𝑓𝑓𝑙𝑙𝑙𝑙 + 𝑔𝑔𝑢𝑢𝑢𝑢 = −0.008 mm 

 

Stack equation for the lower deviation limit: 
𝑈𝑈𝑈𝑈𝑀𝑀TC = −𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐𝑙𝑙𝑙𝑙 − 𝑑𝑑𝑢𝑢𝑢𝑢 − 𝑒𝑒 − 𝑓𝑓𝑢𝑢𝑢𝑢 + 𝑔𝑔𝑙𝑙𝑙𝑙 = −0.062 mm 

 

Fig. 5 Application of tolerance chart method 

 The tolerance stack coordinate system is defined next; the starting point is set at the base 
plate surface (1). The upward dimension is shown in Fig. 5 is selected as positive and marked 
with the indicator “⊕”, while the downward is negative and marked with “⊖”. The direction of 
the tolerance chain is chosen arbitrarily, but it is important to respect the specified direction 
along the chain. Finally, the results are calculated by adding and subtracting values along the 
tolerance chain and shown in Fig. 5. 

3.2 Monte Carlo simulation results 

Monte Carlo simulation was applied following the procedure explained in Section 2.1. Determin-
ing the appropriate distribution to each of the tolerances was the crucial step, as it affects the 
results. The distribution of geometric tolerances along with the interval between the upper and 
lower deviation limit most frequently follows the normal distribution. 
 Tolerance fits are asymmetrical, requiring the use of the skewed distribution according to 
[19]. Distribution of input values is described using ± 3𝜎𝜎 process range (6𝜎𝜎). Since data about 
the manufacturing process was not available, 3DCS CATS software was used to determine the 
distribution models of tolerance fits. According to 3DCS, tolerance fits have unimodal continuous 
probability distribution called Pearson 1. Since tolerance limits assigned to dimension c are neg-
ative, the distribution model is skewed left from the nominal dimension. The same can be con-
cluded for the tolerance assigned to dimension g. On the other hand, tolerance limits assigned to 
dimensions d and f are positive, and distribution is right-skewed. 
  

 

Runs 2000 
Nominal 152.000 mm 
Mean 151.999 mm 
STD 0.018 mm 
6STD 0.110 mm 
LSL 151.000 mm 
USL 153.000 mm 
EST. TYPE Pearson I 
EST. LOW 151.958 mm 
EST. HIGH 151.995 mm 
EST. RANGE 0.085 mm 

 
Fig. 6 Monte Carlo assembly results and histogram 
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Next step is to define the variation model function. Since Monte Carlo is applied to tolerance 
chart method, tolerance stack equations are used to define it. After running the simulation for 𝑛𝑛 
= 2000 times with randomized input variables, an output model for FR was created. A variation 
analysis provides descriptive statistics, inferential statistics data, and a histogram (shown in Fig. 
6). By adding and subtracting the input variables using the variation model functions, distribu-
tion of FR tolerances was found. The resulting functional requirement distribution is also Pear-
son 1. However, it is not as profoundly left- or right-skewed as are the input variables. 

3.3 Vector-loop results 

An assembly graph describing the open-loop of the assembly and its vector loop tolerance chain 
(or datum path) was created. It was used to identify of the number of vector chains and loops 
involved in the assembly (Fig. 4). Since each part is in contact with its two neighbouring parts 
only once, this assembly contains one open loop. Same can be seen on the assembly graph (Fig. 
7) where each arrow is representing the contact between parts. Vector loop is open at the gap 
(noted g) between the Handle (Part 4) and Base (Part 1). 

The datum path (Fig. 7, right) connects the point, surface, axis or DRF of a part with next 
part’s point, surface axis or DRF. DRFs have been assigned to each part with respect to the origin 
coordinate system at the top of the Base (Part 1). All the DRFs have a horizontal 𝑥𝑥-axis and verti-
cal 𝑧𝑧-axis. Origin coordinate system is set in such a way that positive direction of 𝑍𝑍0 axis corre-
sponds with the positive direction of a tolerance chain in Tolerance chart method. This eases the 
tracking and method comparison. 

The geometric tolerances were also accounted for. Each tolerance was represented as an ad-
ditional vector of magnitude equal to ± 𝑡𝑡/2, where 𝑡𝑡 is the width of corresponding tolerance field 
(see Fig. 4; 0.2 for the positional, and 0.1 for parallelism and perpendicularity tolerances). The 
additional vectors represent gaps between parts contacting points and were denoted based on 
the corresponding nominal dimension. The position tolerance on the Base cut-out with respect 
to the datum A (apos) is represented as a translation vector of the surface in the 𝑧𝑧-direction (Fig. 
7). The parallelisms applied to the Pole’s pin (𝑏𝑏par), and Lever holes (𝑒𝑒par) with respect to the 
datum B were also represented as translation vector along the 𝑧𝑧-axis [1]. Perpendicularity ap-
plied to the horizontal axis of the Handle (𝑔𝑔per) with respect to the datum D can be described as 
a translation along 𝑥𝑥-axis [1]. According to the assembly graph there are 𝐽𝐽 = 3 contacting points 
and 𝑃𝑃 = 4 parts, resulting in 0 closed loops (Eq. 1 was used). There is also one open-loop func-
tional requirement. 
 

 

 

Var. Tol. description Gap vector length 
apos Position (Base top to cutout) ±0.1 
bpar Parallelism (Pole’s to bottom) ±0.05 
cd Dimensional tol. (Pole’s pin) cdu=-0.009; cdl=-0.034 

dd Dimensional tol. (Lever’s upper hole) ddu=0.039; ddl= 0 
epar Parallelism (Lever hole axes) ±0.05 
fd Dimensional tol. (Lever’s lower hole) fdu=0.025; fdl= 0.009 
gd Dimensional tol.(Handle) fdu=0.0; fdl= -0.025 

hpar Perpendicularity (Handle axis) ±0.05 
 
Uppervalue of functional requirement: 

𝐹𝐹𝐹𝐹u = −�𝑎𝑎 − 𝑎𝑎pos� + �𝑏𝑏 + 𝑏𝑏par� +
𝑐𝑐 + 𝑐𝑐du

2 −
𝑑𝑑 + 𝑑𝑑dl

2 − �𝑒𝑒 − 𝑒𝑒par�

−
𝑓𝑓 − 𝑓𝑓dl

2 +
𝑔𝑔 + 𝑔𝑔du

2 + ℎpar = 152.241mm 
 

Lower value of functional requirement: 

𝐹𝐹𝐹𝐹l = −�𝑎𝑎 + 𝑎𝑎pos� + �𝑏𝑏 − 𝑏𝑏par� +
𝑐𝑐 + 𝑐𝑐dl

2 −
𝑑𝑑 + 𝑑𝑑du

2 − �𝑒𝑒 + 𝑒𝑒par�

−
𝑓𝑓 + 𝑓𝑓du

2 +
𝑔𝑔 − 𝑔𝑔dl

2 − ℎpar = 151.680 mm 
 

Fig. 7 Vector loop assembly graph and results 
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3.4 Unified Jacobian-torsor results 

Before creating the assembly graph (Fig. 8), it was necessary to identify the functional elements 
(FE) and functional requirements (FR). Also, it was required to differentiate between the inter-
nal and kinematic pairs. For the assembly at hand, there are four internal and one kinematic 
pair. First internal pair (FE0-1) is located on the Base (Part 1), as the positional tolerance defined 
between its top and cut-out surface corresponds to functional surfaces 0 and 1 on the assembly. 
The parallelism tolerances define FE2-3 and FE4-5. Internal pair FE6-7 is defined by the perpendicu-
larity tolerance set on the Handle (Part 4). 
 Only kinematic pair (FE1-2) is set between the Base cut-out and Pole’s bottom. However, the 
contact is assumed to be ideal so that it will not impact the analysis. Two more contacts defined 
by tolerance fits (between Pole and Lever, and between Lever and Handle) were not set as kin-
ematic pairs even though they are in physical contact. This means they are defined as important 
conditions to be satisfied between two FEs. So, according to [13], they are then defined as func-
tional requirements that will be taken into account in the analysis as kinematic pairs. 
 

 

 
 

Upper value of functional requirement: 
𝐹𝐹𝐹𝐹u = 𝐹𝐹𝑅𝑅nominal + 𝐹𝐹𝐹𝐹 = 152.28mm 
 

Lower value of functional requirement: 
𝐹𝐹𝐹𝐹l = 𝐹𝐹𝑅𝑅nominal + 𝐹𝐹𝐹𝐹 = 151.143mm 

 

Fig. 8 Jacobian-torsor method and results  

 Jacobian matrix and small-displacement torsor vector were calculated for each internal and 
kinematic pair. A small-displacement torsor vector was also calculated for each FE (based on 
torsor representing the tolerance zone [21]): 

[𝐹𝐹𝐹𝐹]T = �
𝑢𝑢 𝑣𝑣 𝑤𝑤
𝑢𝑢 𝑣𝑣 𝑤𝑤

𝛼𝛼 𝛽𝛽 𝛿𝛿

𝛼𝛼 𝛽𝛽 𝛿𝛿
�
FR

, [𝐹𝐹𝐹𝐹𝐹𝐹]T = �
𝑢𝑢 𝑣𝑣 𝑤𝑤
𝑢𝑢 𝑣𝑣 𝑤𝑤

𝛼𝛼 𝛽𝛽 𝛿𝛿

𝛼𝛼 𝛽𝛽 𝛿𝛿
�
FEi

 (2) 

 For each tolerance, translational and rotational components inside the tolerance zone were 
determined [21]. Since the direction of a functional requirement is along the 𝑧𝑧-axis and rotations 
that would influence functional requirement are around 𝑥𝑥 and 𝑦𝑦-axis, 𝑤𝑤, 𝛼𝛼 and 𝛽𝛽 component 
must be calculated. 
 Contact between functional surfaces 0 and 1 in the FE0-1 is a planar contact with normal con-
taining one translation component (𝑤𝑤) and two rotational components (𝛼𝛼,𝛽𝛽) [12, 21]. Compo-
nents are calculated using the equations for planar surface according to [21]. Internal pairs FE2-3, 
FE4-5, and FE6-7, and functional requirements FR3-4 and FR5-6 are defined by the tolerance fits. 
They use translational components v and w and rotational components 𝛽𝛽 and 𝛿𝛿 of a slipping piv-
ot with the axis [21]. Below is a table containing displacements torsors for each internal and 
kinematic pair.  
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Table 1 Displacement torsors for each internal and kinematic pair 
FE0-1 FE2-3 FR3-4 FE4-5 FR5-6 FE6-7 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0 0

0 0
0.1 −0.1

0.0013 −0.0013
0.0013 −0.0013

0 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0 0

0.05 −0.05
0.05 −0.05

0 0
0.004 −0.004
0.004 −0.004⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0 0

0.00365 0.0045
0.00365 0.0045

0 0
−0.0003 0.0004
−0.0003 0.0004⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0 0

0.05 −0.05
0.05 −0.05

0 0
0.004 −0.004
0.004 −0.004⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0 0

0.025 0.045
0.025 0.045

0 0
−0.002 −0.0004
−0.002 −0.0004⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0 0

0.05 −0.05
0.05 −0.05

0 0
0.001 −0.001
0.001 −0.001⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
Jacobian matrix is calculated according to the procedure presented in [21]. Its purpose is to 

calculate the effect of the traditional torsor set for each functional element (FE) on the functional 
requirement (FR) of the assembly [21]. Finally, after calculating small-displacement torsor vec-
tors and Jacobian matrices for each FE, the same can be done for FR: 

𝐹𝐹𝐹𝐹 = 𝐽𝐽 ∙ 𝐹𝐹𝐹𝐹 = �−0.058 0.239 𝟎𝟎.𝟔𝟔𝟔𝟔𝟔𝟔
−0.434 0.184 −𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗

0.001 0.005 0.004
−0.001 −0.011 −0.010�

T
 (3) 

3.5 Comparison of the results obtained by different methods 

After analysing the assembly presented in Section 3.1 using the four methods, results are pre-
sented in Table 2. Abbreviations are used to ease the result disambiguation; TC was used for 
tolerance chain method, MC for Monte Carlo simulation, VL for the vector loop method, and JT 
for the Unified Jacobian-torsor method. Since it is not possible to include geometric tolerances in 
TC and MC analysis, two results were provided for VL and JT methods. The first batch of results 
included dimensional tolerances, while the second includes both. Besides the quantitative analy-
sis results, qualitative properties such as the scope and perceived complexity of each method 
were assessed.  
 Proprietary CAT tools that are used in day-to-day work are often perceived as black boxes. 
That means that the users are frequently not familiar with the underlying processes and mathe-
matical models. Besides, the tolerance analysis methods used in CAT tools are often not comply-
ing to the technical standards. For this reason, we have analysed underlying tolerance analysis 
methods, aiming to determine their advantages and shortcomings.  

When considering the dimensional tolerances (DT) exclusively, TC, MC, and VL provide simi-
lar results, with FRu being practically equal. Contrary to the upper value of the functional re-
quirement, the deviations in lower (FRl ) are greater – TC and VL provide more conservative 
results when compared to MC. A significant deviation in FRu was found when calculating it using 
JT. Unlike other analysed methods, in Jacobian-torsor method tolerance analysis is carried out 
using a tolerance zone as a basis (instead of points), causing the afore-mentioned variations in 
results. By using zones and surfaces instead of points, it is possible to create a more credible 
representation of a realistic case. 
  

Table 2 Method comparison 
 Scope FRu FRl Δ Applicability Complexity 

Tolerance chain method DT 151.992 151.938 0.054 For simple 1D tasks Simple, carried out 
by hand 

Monte Carlo  
simulation method DT 151.995 151.958 0.037 Simple tasks,  

statistical analysis 
Statistical tools 
required 

Vector Loop  
method DT 151.991 151.930 0.061 Multi-dimensional  Carried by 

hand/more complex  D&GT 152.243 151.143 1.100 
Unified Jacobian-torsor 
method DT 152.369 151.946 0.423 Multi-dimensional, 

automation 

Requires mathemati-
cal tools, enables 
automation  D&GT 152.665 151.053 1.612 
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The MC method is the least conservative due to its statistical approach – when carrying out 
the tolerance analysis using the MC method, most extreme cases are excluded from the analysis 
and counted as write-offs. The advantage of such an approach is that it reduces the cost of manu-
facturing equipment; it is less expensive to write-off a portion of parts, then to purchase more 
accurate manufacturing tools. Thus, the analysis method should be selected in accordance with 
the manufacturing process. Statistical approaches are suitable when analysed products are 
manufactured in large series, while prototypes and one-of-a-kind products warrant the use of 
more complex and conservative methods, such as JT. 

The applicability of methods regarding the tolerancing problem dimensionality should be ad-
dressed next. As applied in this study, by using TC and MC only 1D problem containing dimen-
sional tolerances can be solved. This drawback can be partially mitigated by converting the ge-
ometric tolerances into their dimensional counterparts; however, methods remain limited to 1D 
problems. In comparison, VL and JT were developed with having the 2D and 3D tolerancing 
problems in mind. Besides the dimensional tolerances, both methods can be used to analyse the 
geometric tolerances as well. However, there is a significant difference between VL and JT in 
terms of tolerance representation. The former, vector loop, observes a set of tolerances simulta-
neously, forgoing the possible interactions among them. The latter, Unified Jacobian-torsor, in-
cludes both the translational and rotational components, thus including different tolerances as 
complementary. 
 The procedure complexity of each method should also be considered. TC is by far the most 
straightforward method and can be carried by hand. It is suitable for simple tolerancing prob-
lems that engineers solve daily. Second is the VL, which requires an additional schema of the 
vector loop. By procedure complexity, MC comes next. It is a statistical method, meaning that it 
requires a large sample in order to provide significant results – experience with similar parts 
and their tolerances is necessary. The last method is JT, which is found to be the most complex. 
To carry it out, it requires the detection of functional elements, functional requirements, and 
kinematic pairs.  
 When comparing the method performance on open and closed-loop tolerancing, changes 
were detected only in VL. The vector-loop method is affected by the procedure system of open 
and closed loops. In cases where only open-loop tolerances are used, the vector loop method is 
reduced to explicit equations. This allows for a direct calculation of the functional requirement 
values. In other words, the VL method loses its advantage to TC.  
 The limitations of the study should also be considered. Each of the methods is carried out 
strictly according to the literature, without additional data manipulation (for example, geometric 
tolerances were not converted to dimensional ones). Additionally, when carrying out MC, it 
should be stressed that previous knowledge about the manufacturing process and manufactur-
ing tool properties is necessary to enable satisfying approximation of tolerance distribution. 
 Lastly, during the planning of the product design process, in addition to tolerance analysis 
methods, engineers should also consider applying the tolerance optimisation methods. Several 
studies have been carried out on the subject, such as [25, 26]. Using optimisation algorithms to 
tolerancing problems allows us to find the optimal trade-off between the tolerances, manufac-
turing costs, and quality loss [25]. Such an approach would surely increase the design effective-
ness, increasing its market success. 

4. Conclusion 
Simple tolerancing problem was used to assess the similarities and differences between four 
tolerance analysis methods: Tolerance chart (“Worst-case analysis”), Monte Carlo Simulation 
method, Vector-loop method, and Unified Jacobian-torsor. Open-loop assembly was used to illus-
trate the problem-solving process using each of the methods. Based on the results, the authors 
have concluded the following: 

54 Advances in Production Engineering & Management 15(1) 2020 
 



A comparison of the tolerance analysis methods in the open-loop assembly 
 

• Tolerance chart and Monte Carlo Simulation methods do not account for the geometrical 
tolerances. This results in overly optimistic results; however, both methods are only suita-
ble for solving simple, 1D tolerancing problems. 

• The unified Jacobian-torsor method was found to be most conservative (i.e. provided the 
most substantial deviations in functional requirement), followed by Vector-loop, Toler-
ance chart, and Monte Carlo Simulation, respectively. 

• Tolerance chart is the simplest and thus suitable for solving many day-to-day tolerancing 
problems. Monte Carlo Simulation and Unified Jacobian-torsor require more detailed anal-
ysis and know-how and are suitable for more pressing problems. Vector loop can be con-
sidered the middle ground – it offers good results at the moderate complexity. 

• When comparing the method performance in open-loop assemblies to closed-loop ones, 
differences are detected only in Vector-loop method. 

 The field of tolerance analysis is fruitful, and there is more work to be done. Following this 
study, the authors aim to analyse the performance of tolerancing methods by carrying out an 
industrial case study. The part deviations measured during the quality assurance are to be com-
pared to the values provided by analysis methods, providing additional insight. 
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