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Croatia

Keywords: photosynthesis, linear electron transfer, ROS, electron partitioning, stress-tolerance

Photosynthesis not only supplies plants with needed energy for growth and nutrient storage,
but links light-to-chemical energy conversion with redox regulatory networks of the entire cell.
By modulating photosynthetic electron flow, plants can adapt to constantly changing light and
environmental conditions. Different mechanisms direct electrons formed during light reactions to
either energy-conserving or energy-dissipating pathways. Recently described dynamic interactions
of the flavoenzyme ferredoxin:NADP+ oxidoreductase (FNR) with protein TROL represent elegant
molecular switch that can partition electrons downstream of photosystem I. FNR-TROL bifurcation
can control energy transfer to either linear flow, which results in NADPH production, or to the
rapid electron sink that efficiently prevents reactive oxygen species propagation. Plant genome
editing of TROL represents an unexploited alley for improvement of plant stress and defense
responses, productivity, and eventually agricultural yield.

The most well-known and established function of plant flavoenzyme ferredoxin: NADP(H)
oxidoreductase (FNR) in photosynthetic energy conversion is the synthesis of NADPH (Forti
and Bracale, 1984; Carillo and Ceccarelli, 2003; Shin, 2004; Mulo, 2011). This enzymatic reaction
utilizes two molecules of reduced ferredoxin (Fd) to produce one molecule of NADPH (Arakaki
et al., 1997; Medina and Gómez-Moreno, 2004). This conversion is known as the last step in the
linear electron transfer (LET) chain (Allen, 2003; Rochaix, 2011). Generated NADPH is utilized
in numerous downstream biochemical reactions, both in chloroplast stroma and in the rest of the
cell (Rochaix, 2011; Scheibe and Dietz, 2012). Electron cycling from ferredoxin to NADPH only
occurs in the light. In the dark, as well as in non-photosynthetic organisms, the FNR primarily
works in reverse, utilizing NADPH to provide reduced ferredoxin for various metabolic pathways,
such as oxidative stress response, nitrogen fixation, terpenoid biosynthesis, steroid metabolism,
and iron–sulfur protein biogenesis (Aliverti et al., 2008). Thus, FNR links fundamental process
of light-to-chemical energy conversion with general plant metabolism (Foyer and Noctor, 2005).
The electron donor Fd is a small iron-sulfur protein that acts simultaneously as a hub, and as
a bottle neck for the distribution of electrons supplied by photosystem I (PSI) (Paul and Foyer,
2001; Hanke et al., 2004; Balmer et al., 2006; Joliot and Johnson, 2011). FNR binding to thylakoid
membranes of vascular plants has been proposed to take place via cytochrome b6/f complex
(Clark et al., 1984; Zhang et al., 2001), PSI-E subunit (Andersen et al., 1992), and in a complex
with NADPH dehydrogenase (Quiles and Cuello, 1998). However, in all these studies the exact
protein association domain responsible for FNR-binding has not been identified. Most recently,
the FNR interaction with photosynthetic membranes has also been demonstrated in organisms
other than vascular plants (Mosebach et al., 2017; Pini et al., 2019). In a number of essential
publications, it has been demonstrated that the distribution of FNR between soluble- and thylakoid-
bound states can have profound influence on FAD cofactor assembly (Miyake et al., 1998; Onda
and Hase, 2004), Fd-FNR interactions, FNR catalytic properties, oxidative and photo-oxidative
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stress tolerance, and the regulation of photosynthesis (Palatnik
et al., 1997; Rodriguez et al., 2007; Hanke et al., 2008; Peng et al.,
2008; Benz et al., 2009, 2010; Jurić et al., 2009; Alte et al., 2010;
Yacoby et al., 2011; Twachtmann et al., 2012; Vojta and Fulgosi,
2012; Vojta et al., 2012; Goss and Hanke, 2014; Lintala et al.,
2014). Particularly interesting, transgenic plants overexpressing
chloroplastic FNR acquire increased tolerance to oxidative stress,
while simultaneously displaying normal rates of photosynthesis
(Rodriguez et al., 2007). Further, FNR knock-down plants, which
have stunted growth and restricted photosynthetic activity, are
particularly susceptible to photo-oxidative damage (Hajirezaei
et al., 2002; Lintala et al., 2012). Perhaps the most intriguing
finding was that the release of FNR from thylakoid membranes
could be regulated by oxidative stress, in methyl viologen-
dependent fashion (Palatnik et al., 1997). Lastly, in tic62trol
double mutants no binding of FNR to thylakoid proteins could
be detected, whatsoever (Lintala et al., 2014).

The hypothesis describing additional functions and
physiological roles of chloroplastic FNR in vascular plants
has been proposed (Benz et al., 2010; Goss and Hanke, 2014).
This concepts rest on a series of publications mostly describing
binding and release of FNR from the soluble chloroplastic
protein Tic62 (Benz et al., 2009; Lintala et al., 2014). Tic62
(62 kDa component of the translocon at the inner envelope
of chloroplasts) has initially been discovered as a component
of chloroplast inner envelope protein translocation machinery
(Küchler et al., 2002), but has subsequently been associated
with at least two other compartments, chloroplast stroma,
and chloroplast photosynthetic membranes (Balsera et al.,
2007). The essential protein region recognized in Tic62 as
being responsible for the binding of FNR is present in multiple
repeats in many, but not all, Tic62 family members studied
(Balsera et al., 2007). The same motif was further identified at
the C-terminus of the thylakoid rhodanase-like protein TROL
(Jurić et al., 2009). This domain, dubbed membrane recruitment
motif (MRM), binds FNR with high efficiency. In Tic62, the
interaction was postulated to be light- and pH-dependent (Benz
et al., 2009). In 2010, Benz et al. proposed that the majority
of thylakoid-localized FNR is bound to the membrane via two
interaction partners, Tic62 and TROL (Benz et al., 2009). They
further postulate that soluble form of FNR is sufficient to sustain
photosynthetic energy conversion, while the thylakoid pool
largely performs other functions. Finally, they suggest that light-
and redox-states regulate the distribution of FNR. In the view
of that, FNR is stored at the membranes in the dark and during
morning hours, thus allowing advantageous flow of electrons to
various Fd-dependent pathways (Benz et al., 2009; Vojta et al.,
2012). Such scenario could assure proper metabolic adjustments
depending to environmental cues.

Soluble Tic62, however, does not contain MRM in all plant
species (Balsera et al., 2007), and its attachment points at the
thylakoids have yet to be determined. TROL, however, is bona
fide integral membrane protein with dual localization (Jurić
et al., 2009; Vojta et al., 2018). It is present in the mature
form in thylakoid membranes, and in the precursor form at the
inner chloroplast envelope. TROL is located near PSI, mostly in
non-appressed thylakoid regions (Jurić et al., 2009). All known

vascular plant TROL sequences contain FNR MRM (Jurić et al.,
2009). Additionally, a single MRM of TROL binds FNR with
several fold higher affinity then the Tic62 MRM (Jurić et al.,
2009). In Arabidopsis, TROL associated with FNR can be isolated
in the dynamic supramolecular complex of∼190 kDa (Jurić et al.,
2009).

The unique hallmark of TROL is the lumen-located
rhodanase-like domain (RHO), which is most likely inactive in a
sense of sulfur detoxification, as it contains the aspartate residue
instead of the conserved cysteine in the putative active site (Jurić
et al., 2009). RHO domains are intriguing due to their ancient
origin and structural identity with the catalytic domains of cell-
division-cycle (CDC25) dual-specificity phosphatases. Inactive
RHO domains are implicated in redox-sensing and were shown
to interact with quinolinediones (Brisson et al., 2005). Plant
sulfur-transferases and rhodanases have recently been reviewed
in two comprehensive papers (Moseler et al., 2019; Selles et al.,
2019).

Recently, alternative mechanism of FNR binding and release
from TROL, involving redox sensing by the RHO domain, has
been put forward (Vojta and Fulgosi, 2012, 2019). According
to this model, certain (redox) signal(s) of lumenal origin
can be sensed by the RHO and further transduced across
thylakoid membrane, resulting in differential FNR binding on
the stromal side (Vojta and Fulgosi, 2012). The role of the
proline-rich region of TROL, dubbed PEPE, which precedes
the MRM, has also been postulated (Jurić et al., 2009). Due
to a repeating sequence of turn-inducing proline residues,
PEPE might serve as molecular swivel, allowing free movement
of bound FNR, or even its alternative associations with
various supramolecular complexes, or membrane domains. Such
dynamic FNR recruitment might be responsible for alternative
partitioning of photosynthetic electrons, and/or prioritization of
Fd-dependent pathways. Further, it has been demonstrated that
chloroplasts of Arabidopsis trol mutants proliferate substantially
less superoxide anion radicals then the WT (Vojta et al., 2015).
This reduction can be recorded in trol chloroplast pre-acclimated
to dark and growth-light conditions. Even more remarkable, trol
chloroplast proliferate almost 40 percent less superoxide anion
radicals even in the presence of ROS-generating methyl viologen
(paraquat herbicide) (Vojta et al., 2015). These finding are in
line with the previously published observations and suggest that
FNR permanently detached from TROL can either efficiently
scavenge superoxide anion, or that electrons are very rapidly
partitioned into certain other pathways(s), different from the
LET. In fact, results suggest that LET is preferential only when
TROL-FNR association is established (Jurić et al., 2009; Vojta
et al., 2015). Alternatively, in the absence of TROL, electrons
rapidly flow to other sinks downstream of PSI donor site (Vojta
et al., 2015). Finally, it has been demonstrated that in the absence
of TROL light- and/or pH-dependent dynamic recruitment of
FNR to thylakoids is entirely abolished (Vojta and Fulgosi,
2016). Apparently, TROL-FNR interaction might be the most
prominent, if not exclusive, dynamic-type interaction of FNR
with photosynthetic membranes of vascular plants.

TROL-FNR interaction could be an entrance to crop
improvement via various modifications to the interaction itself,
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or to upstream and/or downstream reactions and pathways. For
example, TROL itself could be down- or up-regulated, or its FNR-
binding or regulatory domains could be modified by genome
engineering. FNR could also be a target of engineering, for
example by exchange of FNR enzymes from C4 to C3 plants or
vice versa. C4 FNR interacts with TROL ITEP domain with many
fold higher affinity than the C3 FNR (Rac and Fulgosi, 2019).
The increase of TROL levels by itself would not necessarily imply
an increase in photosynthetic efficiency, since the improvement
would depend on the availability of reduced ferredoxin and
the ability of the system to provide the necessary reduction
equivalents. However, alterations in the production of reduction
equivalents could affect the redox homeostasis of chloroplasts
and ultimately produce aberrations instead of plant benefit.

To conclude, we further iterate the concept of photosynthetic
membrane recruitment of FNR and emphasize the importance

of TROL-FNR dynamic interaction. We posit that TROL-FNR
interaction is an important and overlooked mechanism for
regulation and prioritization of energy-conserving and energy-
dissipating pathways in vascular plant photosynthesis. We
propose that TROL interaction with FNR is useful target for
genome editing of agriculturally important species, potentially
providing more stress-tolerant crops.
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