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Abstract: Atmospheric correction is one of the key parts of remote sensing preprocessing because it
can influence and change the final classification result. This research examines the impact of five
different atmospheric correction processing on land cover classification accuracy using Sentinel-2
satellite imagery. Those are surface reflectance (SREF), standardized surface reflectance (STDSREF),
Sentinel-2 atmospheric correction (S2AC), image correction for atmospheric effects (iCOR), dark
object subtraction (DOS) and top of the atmosphere (TOA) reflectance without any atmospheric
correction. Sentinel-2 images corrected with stated atmospheric corrections were classified using four
different machine learning classification techniques namely extreme gradient boosting (XGB), random
forests (RF), support vector machine (SVM) and catboost (CB). For classification, five different classes
were used: bare land, low vegetation, high vegetation, water and built-up area. SVM classification
provided the best overall result for twelve dates, for all atmospheric corrections. It was the best
method for both cases: when using Sentinel-2 bands and radiometric indices and when using just
spectral bands. The best atmospheric correction for classification with SVM using radiometric indices
is S2AC with the median value of 96.54% and the best correction without radiometric indices is
STDSREF with the median value of 96.83%.

Keywords: atmospheric correction; Sentinel-2; land cover classification; machine learning;
radiometric indices; SVM; Sen2cor; STDSREF

1. Introduction

Preprocessing of satellite data plays one of the key roles in result analysis. Atmospheric correction
is one of the most important preprocessing steps because it can affect the final result. The main
objective of atmospheric correction is to apply the correction of satellite image effects by determination
of the optical characteristics [1]. Numerous atmospheric correction methods exist nowdays, as most
satellite data providers distribute their own. The National Aeronautics and Space Administration
(NASA) provide LaSRC and LEDAPS corrections for the Landsat satellite mission, the European Space
Agency (ESA) provides Sentinel-2 atmospheric correction for the Sentinel-2 satellite mission, Planet, Inc.
provides their own atmospheric correction based on second simulation of a satellite signal in the solar
spectrum (6S) for PlanetScope satellite imagery. This can be confusing for end users when comparing
multiple sensors. The main disadvantage of different atmospheric correction for different sensors is
lack of result interpretability due to different models and parameter selection. One of the projects for
combining satellite data is The Harmonized Landsat and Sentinel-2 Project [2] which aims to produce
seamless products of Sentinel-2 and Landsat 8. However, this research is mainly used to harmonize
two specific sensors and there are many more. Two main categories of atmospheric correction are
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image-based methods and model-based methods. Image-based methods rely on image metadata
and statistical analysis of top of the atmosphere (TOA) reflectance. On the other hand, model-based
atmospheric corrections relies on radiative modeling and requires data about atmospheric optical
characteristics of image acquisition time [3].

Land cover/use classification methods evolved over the last few years. New satellites are launched
every few years with higher spatial resolution, or even more spectral bands. The Landsat satellite
mission was the first mission with freely globally available satellite imagery. This enabled testing
and modification of existing classification methods previously developed in other disciplines. With
the launch of Sentinel-2 satellites, spatial resolution was enhanced to 10 meters and the number of
bands increased. This enabled even further modification of machine learning algorithms and the
development of different deep learning methods as well as more detailed observation due to higher
spectral and spatial resolution. Today there are numerous classification methods developed especially
in machine learning. Some machine learning methods are present more than a decade and used for the
classification task. One of the most commonly used methods are support vector machine (SVM) and
random forests (RF) [4–7].

Research papers are often based on analysis of atmospheric correction influence on spectral
reflectance values like Liang et al. [8] and Rumora et al. [9], or on using just one classification method
like Vanonckelen et al. [10] or Lin et al. [11]. They used maximum likelihood classification to analyze
three atmospheric corrections and five topographic corrections. Other researchers used multiple
classification methods to classify land cover. Abdi [12] used SVM, RF, Extreme gradient boosting
(XGB) for classification of eight different classes, while Noi and Kappas [13] used RF, SVM and
K-nearest neighbor to classify six different land use/cover classes. Castro Gomez [14] researched
machine learning classification of the Sentinel-1 and Sentinel-2 dataset. In his research, he analyzed
the classification accuracy of RF classifier by using all 13 Sentinel-2 bands and by using all Sentinel-2
bands with additional four vegetation indices. Our research analyzed the classification accuracy
of Sentinel-2 bands without radiometric indices and Sentinel-2 bands with five radiometric indices
using four machine learning classifiers. Radiometric indices were used to analyze the change of
classification accuracy due to the addition of layers. Close et al. [15] analyzed Sentinel-2 imagery for
classification of land cover using LUCAS database. They used one atmospheric correction – S2AC and
classified five land cover classes: forest land, cropland, grassland, wetlands and settlements, using
maximum likelihood classification, RF, k-nearest neighbor and minimum distance classification. Our
research used Sentinel-2 imagery to classify five different land cover classes: water, built-up land, high
vegetation, low vegetation and bare land using RF, SVM, XGB and CatBoost (CB). Additionally, our
research analyzed the influence of five atmospheric corrections on classification results.

The main objective of this research was to investigate the influence of five different atmospheric
correction methods on machine learning classification algorithms using Sentinel-2 satellite imagery.
Atmospheric corrections used in this research are surface reflectance (SREF), standardized surface
reflectance (STDSREF), Sentinel-2 atmospheric correction (S2AC), image correction for atmospheric
effects (iCOR) and dark object subtraction (DOS). Further, TOA reflectance was also used to compare
classification with and without atmospheric correction. Those five atmospheric corrections are
commonly used in literature, but to the best of our knowledge, researchers did not examine the
influence of those atmospheric corrections on different classification algorithm accuracy.

The second aim of this research was to determine the best machine learning method for land-cover
mapping based on the used atmospheric correction. Machine learning algorithms are RF, XGB,
CB, and SVM. Researchers use those classification algorithms, but to the best of our knowledge,
they did not directly compare classification results of all four classification methods for different
atmospheric correction.

The third aim of this research was to analyze the influence of different radiometric indices on
classification accuracy using machine learning algorithms. First, Sentinel-2 images were classified
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using Sentinel-2 bands and secondly Sentinel-2 images were classified using bands and five different
radiometric indices.

2. Materials and Methods

This research can be divided into five phases: (1) study area and satellite data, (2) processing
workflow (3) application of atmospheric correction, (4) radiometric indices, and (5) land cover
classification methods.

2.1. Study Area and Satellite Data

The study area covers the wider urban area of Zagreb, the largest town in Croatia, including
part of Medvednica mountain on the north (Figure 1). The study area is approximately 35 × 21 km
with various land cover and land use areas from artificial objects, bare ground, water to low and
high vegetation.
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Figure 1. Study area location.

The research was conducted on freely available satellite imagery obtained using ESA Sentinel-2
satellite mission. Sentinel-2 satellite mission currently comprises two satellites: Sentinel-2A (S2A),
launched on 23 June 2015 and Sentinel-2B (S2B) launched on 7 March 2017. Their constellation provides
5 days’ revisit time. Both satellites have multispectral instrument (MSI) which collects 13 spectral
bands: coastal blue, blue, green, red, three vegetation red-edge (RE) bands, near-infrared (NIR), narrow
near-infrared, water vapor, shortwave infrared – cirrus and two shortwave infrared (SWIR) bands.
Sentinel mission provides two types of products: Level-1C which represents TOA reflectance; and
Level-2A which represents Bottom of the atmosphere (BOA) reflectance [3].

For this research, twelve Level-1C images are acquired, six in 2017 and six in 2018 (Table 1). Those
images were chosen to obtain unbiased information for classification for two years at similar day of the
year. Products and generated maps are projected in WGS84 UTM33 projection, while spatial resolution
of used bands was 10 and 20 m.
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Table 1. Satellite images used in this study.

Sensing Date Image ID Satellite

29.03.2017 N0204_R079_T33TWL Sentinel-2A
20.06.2017 N0205_R122_T33TWL Sentinel-2A
05.07.2017 N0205_R122_T33TWL Sentinel-2B
26.08.2017 N0205_R079_T33TWL Sentinel-2A
30.09.2017 N0205_R079_T33TWL Sentinel-2B
24.11.2017 N0206_R079_T33TWL Sentinel-2A
08.04.2018 N0206_R079_T33TWL Sentinel-2B
12.06.2018 N0206_R079_T33TWL Sentinel-2A
05.07.2018 N0206_R122_T33TWL Sentinel-2A
29.08.2018 N0206_R122_T33TWL Sentinel-2B
28.09.2018 N0206_R122_T33TWL Sentinel-2B
29.11.2018 N0207_R079_T33TWL Sentinel-2A

After the acquisition of 12 Sentinel-2 images, 10 bands frequently used in the land application:
blue, green, red, two NIR, three vegetation RE and two SWIR, were chosen for further investigation.
Additionally, those bands were chosen because of the spatial resolution of 10 meters (blue, green, red,
one NIR) and 20 meters (one NIR, two SWIR and three RE). They were further used in preprocessing and
classification. Preprocessing steps include TOA reflectance calculation, five atmospheric corrections,
resampling 20 m bands to 10 m resolution and calculation of radiometric indices (Figure 2).
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2.2. Processing Workflow

Sentinel-2 imagery processing workflow used in this research is displayed in Figure 2. The first
step is the division of twelve Sentinel-2 images with quantification value to obtain TOA reflectance
values. The second step is the atmospheric correction of TOA reflectance images using five different
atmospheric corrections, which results in 72 images. After atmospheric correction, spectral bands with
20 m resolution was resampled to 10 m. A further step was the calculation of five radiometric indices
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and the preparation of two datasets for classification. Two datasets, one with Sentinel-2 bands and
radiometric indices and one with Sentinel-2 bands, were classified using four classification methods.
Finally, classified maps were evaluated using overall and balanced accuracy.

2.3. Atmospheric Corrections

The first step in atmospheric correction procedure is the division of satellite image values with
quantification value of 1000 to obtain TOA reflectance [16]. TOA reflectance is the amount of reflectance
reflected off the surface which can be collected using a satellite sensor. It has an atmospheric effect
included in the measurement, so it is necessary to atmospherically correct this measurement [9].

Atmospheric correction is procedure for correcting satellite imagery from raw data to the bottom
of the atmosphere reflectance. This reflectance should be the same as reflectance measured at ground
level. There are numerous atmospheric corrections, and for this research, five different atmospheric
corrections were used: S2AC, iCOR, DOS, SREF and STDSREF. Atmospheric corrections were conducted
using Sen2Cor (v2.5.5) [17] and Atmospheric and Radiometric Correction of Satellite Imagery (ARCSI)
software (v3.2.2) [18]. Resampling was conducted using ESA SNAP software (v7.0.1) [19] using the S2
Resampling Processor.

2.3.1. S2AC

S2AC is an atmospheric correction algorithm for calculating the BOA using Sentinel-2 TOA
reflectance. S2AC is based on Atmospheric/Topographic Correction for Satellite Imagery (ATCOR)
algorithm which was developed in 2011 by Richter [20]. For the computation of atmospheric effects
such as solar and thermal radiation S2AC uses Libradtran radiative transfer model [21]. Radiative
transfer in Earth’s atmosphere is used for modeling S2AC using simple Lambert (isotropic) law [22]. In
this research we did not use Sentinel-2 L2A BOA products because when we processed images, BOA
products were not available for all dates. We wanted to have an identically processed dataset, so we
calculated the L2A product using the Sen2cor algorithm.

2.3.2. iCOR

iCOR atmospheric correction is a generic scene and sensor correction method for water and land
pixel correction. It uses image data and precalculated Look-up-tables (LUT) for deriving required
parameters for the method. It calculates correction in four steps: (1) identification and distinction
of land and water pixels; (2) calculation of Aerosol optical thickness (AOT) which is derived from
land pixels using an adapted version of method developed by Guanter [23], and extending to water
pixel assuming spatially homogenous atmosphere; (3) adjacency correction which is calculated using
similarity environment correction (SIMEC) [24] over water and over land targets user defines fixed
range [25]; (4) the radiative transfer equation calculation [26]. For computation time minimalization
MODTRAN LUT is used, while additional information for atmospheric correction is solar and viewing
zenith and azimuth angle and digital elevation model (DEM) [27].

2.3.3. DOS

DOS method is image-based atmospheric correction. DOS is a simple method that requires
relatively little inputs. It can be easily applied to all image data but does not produce the most reliable
and consistent results. It is, therefore, the method used when the other methods are not available. The
presumption of DOS correction is that there is an object in complete shadow and at the satellite, sensor
received radiance is due to atmospheric scattering [28].

2.3.4. SREF

SREF is calculated using 6S, which is a computer code for accurately simulating atmosphere
effects [29]. It accounts for target elevation and non-Lambertian surface conditions. For calculation,
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it needs six different inputs: the atmospheric profile, aerosol profile, ground reflectance, geometry,
altitude and sensor wavelength [30]. The atmospheric profile can be chosen from multiple predefined
profiles, or by using measured radiosonde measurement. Aerosol profile depends on the aerosol optical
depth and makes a significant difference to measured reflectance values. There are two different ground
surfaces that can be chosen to model the ground target: Lambertian and bidirectional reflectance
distribution function (BRDF). The next parameter is the geometry of selected sensor ie. date, month,
year and time of image acquisition and longitude and latitude of image center or solar and view
azimuth and zenith angles. The next parameter is the altitude of the sensor during image acquisition
and digital elevation model (DEM) for ground surface. The last parameter is the wavelength of the
used sensor [29,30]. Using those parameters, it is possible to correct images to the bottom of the
atmosphere reflectance.

2.3.5. STDSREF

STDSREF is surface reflectance product normalized for solar and sensor view angles and
topography. The atmospheric model along with DEM is used for diffuse illumination calculation
and incidence and exitance angles function for vegetation canopy reflectance calculation on terrain
slope. This algorithm works for images with a solar elevation between 50 and 70 degrees and spectral
range from 0.25 to 4.0 µm. The main advantage of this atmospheric correction is a correction for the
dependence of the vegetation reflectance on the slope along with illumination correction [30,31].

2.4. Radiometric Indices

After atmospheric corrections, spectral characteristics of atmospherically corrected images were
analyzed based on five land cover classes: bare land, water, low vegetation, built-up land and high
vegetation. After analysis radiometric indices were calculated.

Radiometric index is a joint name for vegetation, soil, water and built-up indices. Radiometric
indices are a quantitative measure used to measure different properties, such as biomass or vegetation
vigor for vegetation indices or built-up land with built-up indices. For this research we used five
different radiometric indices: Normalized difference vegetation index (NDVI) [32], Normalized
difference water index (NDWI) [33], Modified soil adjusted vegetation index (MSAVI) [34], Chlorophyll
index green (CIG) [35] and Normalized difference turbidity Index (NDTI) [36]. Those indices were
chosen due to their often used in research [37–39] and their applicability for water and land features.

2.5. Land Cover Classification Methods

After atmospheric correction, resampling and radiometric indices calculation, all satellite images
were standardized to range between zero and one. After standardization, images were classified
using four chosen machine learning methods: RF; XGB, CB, SVM. All aforementioned methods are
machine learning methods. Machine learning land cover classification methods are supervised learning
classification where the algorithm learns from the input dataset and uses learned data to predict and
classify new observation. Five different land cover classes, water, bare land, low vegetation, high
vegetation and built-up land, were chosen for image classification. Training and validation polygons
were chosen using orthophoto of Croatia [40] and Sentinel-2 satellite imagery for each date to correctly
identify changed land. Training and validation polygons for classification and accuracy assessment
were the same for all classification methods for the same date. The number of pixels used for training
and validation per layer is provided in Table 2. The number of pixels in Table 2 should be multiplied
by 10 or 15, which is the number of layers included in classification. For every classification algorithm,
70% of labeled data was used for training and 30% was used for accuracy assessment [41]. The land
cover classification was conducted using the R programming language (version 3.6.1).
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Table 2. Number of pixels per band for training and validation for all five land cover classes per date.

Sensing Date
Training and Validation Pixels Per Layer

Water Bare Soil High Vegetation Built-up Land Low Vegetation

29.03.2017 13413 20487 47400 7778 8843
20.06.2017 13413 13514 47400 4588 11251
05.07.2017 13413 18640 47400 7778 9218
26.08.2017 13413 18640 47400 7778 9107
30.09.2017 13413 20667 47400 4588 7891
24.11.2017 13413 14663 47400 7778 13530
08.04.2018 13413 20487 47400 7778 9043
12.06.2018 13413 20487 47400 7778 8843
05.07.2018 13413 8961 47400 7778 10089
29.08.2018 13413 10106 47400 4588 13207
28.09.2018 13413 16355 47400 4588 11719
29.11.2018 13413 27646 47400 4588 14998

2.5.1. RF

RF algorithm is a general term for ensemble learning method which operates using a combination
of tree-type classifier in such way that each classifier is generated using random vector which has same
distribution for all past random vectors, and it is sampled independently from the values of the input
vector. After the creation of the determined number of trees, they vote for the most popular class, so
the final output is determined by a majority of the vote [42]. For RF two parameters should be given:
the number of trees and the number of features in each split [13]. According to Liaw and Wiener [43], a
large number of trees provide a stable result. For selection measure for attribute impurity measure
with respect to classes, RF uses the Gini index [44]. RF is not sensitive to overfitting or overtraining
due to information that resampling is not based on weighting [45]. The package randomForest was
used for RF classification. After hyperparameters tuning, it was decided that default parameters for
RF classification give the best result.

2.5.2. XGB

XGB is a machine learning method based on gradient boosting. To generate an optimal model, it
uses gradient descent on the decision tree. It generates multiple models that are corrected using the
previously generated model and generates the final model [46]. It was developed to overcome the
limitation of previously developed gradient boosting algorithms, using a new regularization technique
for overfitting control. It is computationally very efficient and more robust during model tuning [47].
In this research, package xgboost was used for XGB classification. Several hyperparameters were
tuned to obtain the highest accuracy. For objective function, we used “multi:softmax” function, for a
step size of boosting step we used value 0.01, for maximum depth of tree we used value 10 and for the
number of rounds we used value 200.

2.5.3. CB

CB is a gradient boosting algorithm for handling categorical data using permutation techniques.
Random permutation and averaging label value for the example with the same category value are
performed on the dataset. This procedure reduces overfitting [48]. The first step of CB is randomly
divided dataset to subset, afterward labels are converted to integer numbers. The last step is the
transformation of categorical features to numerical [47]. The package catboost was used to classify
Sentinel-2 imagery using CB classification. Lost function, depth and number of iterations were change
to obtain the highest accuracy. Lost function was set to “MultiClass”, depth to value 5 and number of
iterations to number 200.
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2.5.4. SVM

SVM is a supervised machine learning method for classification using statistical learning theory It
is designed for finding optimal solutions for classification problems using hyperplane fitting which
provides the best separation between two classes in multidimensional feature space [49]. This is one
of the main advantages of SVM comparing to other machine learning classification algorithms [50].
Kernel is one of the SVM parameters that needs to be chosen. Users can choose between polynomial, the
radial basis function and the sigmoid [49]. Training SVM requires two parameters: C, which represents
regularization parameter which controls the trade-off between maximizing the margin and minimizing
the training error, and γ which represents kernel width which affects class-dividing hyperplane shape
smoothing. A large C value could lead to model overfitting, while a low C value could ignore outliers
in training data. On the other hand, increasing γ could affect classification accuracy with changing
class-dividing hyperplane shape [13,51]. To classify Sentinel-2 images using SVM classification, e1071
package was used. Several classifications with different C and gamma parameters were tested and the
parameters which provided the highest accuracy were chosen.C-classification was used as a type of
classification with radial kernel. Additionally, gamma and cost parameters were set to 1.

2.6. Accuracy Assessment

Accuracy assessment was based on the validation dataset, which was not included in the training.
Each calculated image was analyzed based on the validation dataset to gain overall accuracy for each
image and balanced accuracy for every land cover class. Overall accuracy is the number of correctly
classified pixels divided with the total number of items [52]. On the other hand, balanced accuracy can
be defined as average accuracy obtained in either class. If the balanced accuracy performs the same in
every class, then it represents conventional overall accuracy [53]. For validation, the same samples
per date were used for all four classification methods. Furthermore, accuracy for every class for all
dates and corrections was also calculated to determine the influence of calculated correction on specific
land cover classification class. Classification accuracy was conducted on data with radiometric indices
included and without radiometric indices included. Accuracy assessment was conducted using the R
programming language (version 3.6.1).

Afterward, all classification accuracies for the same date (24 accuracies per date) were ranked
from the highest accuracy, which was ranked as number one, to lowest accuracy, which was ranked as
number 24, accordingly. This procedure was repeated for twelve dates and finally summed for all
classification methods and atmospheric correction to obtain the best method with the highest accuracy
per atmospheric correction and classification method. The best summed result has the lowest number,
while the worst result has the highest number.

The last analysis was computational time analysis. The computational time was determined and
observed from the training classification algorithm to the end of prediction with obtained prediction
results. The computational time depends on the number of stacked layers, where classification time
without radiometric indices (10 layers/bands) included is lower than classification time with radiometric
indices included (15 layers/bands).

3. Results

A total of 12 Sentinel-2 images was analyzed. After atmospheric correction 72 images were
spectrally analyzed. Figure 3 represents spectral signatures of 6 atmospheric corrections for 6 Sentinel-2
images in 2017. The analysis was conducted on 5 different land cover classes: water, bare ground, high
vegetation, built-up land and low vegetation using mean value of all training and validation pixels
for each class. This resulted in a mean reflectance value for all classes at a specific wavelength. DOS
correction has the lowest values for almost all wavelengths and all dates. On the other hand, TOA has
the highest values for water class, while STDSREF has the highest value for the other four classes for
all dates in 2017.
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Figure 3. Sentinel-2 spectral signatures of five atmospheric corrections and top of the atmosphere
(TOA) on five land cover classes for the year 2017.

Figure 4 represents spectral signatures of 6 atmospheric corrections for 6 Sentinel-2 images in 2018.
The analysis was conducted the same as for 2017. DOS correction has the lowest values for almost all
wavelengths and all dates. On the other hand, TOA has the highest values for water class for visible
(red, green blue) and NIR spectrum, while for other bands STDSREF has the highest values. STDSREF
has the highest value for bare land, built-up land, high and low vegetation, for all dates in 2018.

After processing steps shown in Figure 2, a total of 576 classified images was calculated and
analyzed. Figure 5 shows overall classification accuracy per atmospheric correction method for all
twelve dates and four classification methods when using radiometric indices. Overall accuracy for all
dates and the atmospheric correction was higher than 89% for all classification methods. SVM has the
highest accuracies for all dates except for August 2018 where it is lower than RF classification by 0.04%
and for November 2018 where it is 0.28% lower than CB classification. Smallest difference between
classification methods is in June 2018 with 2.44% between the lowest and highest overall accuracy,
while the biggest margin is in August 2018 with an 8.24% difference. Regarding atmospheric correction,
DOS and TOA have similar values with an average difference of 0.40% for all dates. Surface reflectance
and Standardized reflectance also have similar values and distribution of values with differences
ranging from 0.05% to 1.06% depending on the observed date. S2AC having a similar distribution of
values as Surface reflectance and Standardized surface reflectance for almost all dates with differences
from 0.02% to 1.74% and 0.05% to 1.63% respectively. Median value for classification methods for all
twelve dates are 95.59% for CB, 95.60% for RF, 95.61% for XGB and 96.51% for SVM.
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Figure 4. Sentinel-2 spectral signatures of five atmospheric corrections and TOA on five land cover
classes for the year 2018.

Figure 6 displays classification accuracy of four different methods for images with only ten bands
without radiometric indices for twelve dates corrected with six different atmospheric corrections. All
classification accuracies for all methods and atmospheric correction are higher than 91%, except for
SVM classification of iCOR atmospheric correction for November 2017. The highest overall accuracy is
99.27% in August 2018 for XGB classification of the image with TOA reflectance and image corrected
with DOS correction. The lowest classification accuracy is 88.25% for SVM classification of iCOR
atmospheric correction in November 2017. Observing other months, SVM has the highest accuracy for
all dates except September 2017 and August 2018, where it has lower accuracy by 0.23% from CB and
0.05% from XGB respectively. Median value for classification methods for all twelve dates are 94.35%
for CB, 95.39% for XGB, 95.41% for RF and 96.61% for SVM.

Table 3 presents the ranking of each method with included vegetation indices per date (column)
from first place (highest accuracy) to twenty-fourth place (lowest accuracy). The last column of Table 3
represents the sum of all rankings for all twelve dates. Better results have lower values and are
shown in a darker green color. From Table 3, the SVM method has the lowest summed value for all
atmospheric corrections, which means that it is the most accurate classification method for this period.

Table 4 presents the ranking of each method without radiometric indices, per date (column) from
first place (highest accuracy) to twenty-fourth place (lowest accuracy). The last column of Table 4
represents the sum of all rankings for all twelve dates. Better results have lower values and are shown
in a darker green color. SVM method has the lowest summed value for all atmospheric corrections. All



ISPRS Int. J. Geo-Inf. 2020, 9, 277 11 of 23

classification for different atmospheric corrections has similar summed values between 52 and 66 for
SVM, 133 and 150 for RF, 185 and 208 for CB and 142 and 180 for XGB, while iCOR correction rank
stands out.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 11 of 24 
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Figure 6. Classification accuracy based on atmospheric correction and date without vegetation indices.
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Table 3. Ranking of method and correction by date with included radiometric indices. Ranking is
provided by place rank.

2017 2018

M
et

ho
d

Correction
Date 29

03
20
06

05
07

26
08

30
09
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DOS 2 23 11 4 5 22 3 5 6 21 8 5 115
iCOR 10 19 1 2 21 23 24 6 3 24 17 24 174
SREF 1 5 3 3 13 2 5 3 4 14 4 23 80

STDSREF 4 3 4 6 1 1 2 2 2 18 5 22 70
S2AC 22 1 8 5 4 3 1 1 1 2 1 2 51
TOA 3 24 2 1 6 24 3 3 5 23 9 16 119

R
F

DOS 6 10 9 10 3 7 16 11 18 7 18 18 133
iCOR 9 21 7 12 23 10 21 20 24 13 24 20 204
SREF 5 16 14 11 14 13 12 8 19 8 21 15 156

STDSREF 8 14 15 13 7 14 11 7 15 10 19 21 154
S2AC 19 6 16 14 11 19 10 9 22 1 22 8 157
TOA 7 11 10 9 2 4 15 10 16 3 20 19 126

C
B

DOS 13 2 5 15 9 8 17 12 21 11 15 6 134
iCOR 11 20 12 7 20 17 22 23 23 22 10 11 198
SREF 17 8 21 23 17 15 19 21 17 12 3 4 177

STDSREF 20 7 19 21 18 11 13 18 20 16 6 7 176
S2AC 23 12 23 19 10 20 6 14 14 6 2 1 150
TOA 15 4 17 17 12 5 8 16 13 15 14 10 146
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DOS 13 13 5 15 8 8 17 12 9 5 7 13 125
iCOR 11 22 12 7 24 17 22 23 11 20 23 14 206
SREF 17 17 21 23 22 15 19 21 10 17 12 9 203

STDSREF 20 18 19 21 16 11 13 18 7 19 13 12 187
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TOA 15 9 17 17 15 5 8 16 8 4 16 17 147

Table 4. Ranking of method and correction by date without radiometric indices. Ranking is provided
by place rank.

2017 2018
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Correction
Date 29
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07
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09

24
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DOS 7 2 5 5 15 3 4 6 6 6 2 5 66
iCOR 10 17 1 3 22 24 22 4 1 24 6 7 141
SREF 3 5 2 2 18 2 3 3 5 5 4 8 60

STDSREF 1 4 3 4 3 1 2 2 4 9 5 9 47
S2AC 21 1 7 6 8 5 1 1 3 4 1 1 59
TOA 4 3 4 1 14 4 5 5 2 3 3 4 52

R
F

DOS 5 7 8 9 12 8 11 20 14 8 17 14 133
iCOR 9 22 6 10 24 16 16 19 23 18 24 19 206
SREF 2 12 9 8 20 6 9 21 15 11 19 18 150

STDSREF 7 9 11 13 9 7 6 15 12 14 21 20 144
S2AC 14 6 18 15 17 10 7 13 16 7 15 3 141
TOA 6 8 10 7 13 9 12 22 13 10 22 12 144

C
B

DOS 17 19 20 14 5 21 23 10 19 15 9 13 185
iCOR 24 23 17 24 21 23 18 18 24 23 11 23 249
SREF 19 18 19 16 7 19 20 12 21 13 13 22 199

STDSREF 18 21 24 18 4 18 21 7 22 19 12 24 208
S2AC 23 20 23 12 1 22 19 8 18 17 23 6 192
TOA 20 15 21 16 6 20 24 9 20 16 9 15 191

X
G

B

DOS 12 10 14 22 10 14 13 14 7 1 14 11 142
iCOR 22 24 15 11 23 17 17 23 17 22 18 21 230
SREF 13 14 12 23 19 12 15 17 10 20 8 17 180

STDSREF 15 16 13 20 2 11 8 11 8 21 7 16 148
S2AC 16 13 22 19 16 13 10 24 11 12 20 2 178
TOA 11 10 16 21 11 14 14 15 9 1 16 10 148

Figure 7 presents box plots of classification accuracies for five different land cover classes without
using radiometric indices. Results are presented as combined values for all atmospheric corrections for
twelve dates. Water class does not have a dispersion of classification accuracy for all dates, as well
as high vegetation. More dispersed data shows the difference between the classification accuracy of
different atmospheric correction. Most differences are between built-up land, bare ground and low
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vegetation (the points in Figure 7 represent outliers). For March 2017 and April 2018 low vegetation
has lower accuracy and built-up land accuracy is dispersed between atmospheric corrections.
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Figure 7. Box-plot of balanced classification accuracies of land cover classes without radiometric indices
for combined atmospheric corrections for twelve dates.

Figure 8 presents box plots of classification accuracies for five different land cover classesusing
five radiometric indices. Results show similar trends as without radiometric indices that water and
high vegetation have low dispersion for all dates and all atmospheric correction. Additionally, low
vegetation and bare ground have low dispersion in July 2017, November 2017 and 2018, August 2017
and 2018, but high dispersion in classification accuracy between atmospheric correction in June 2017
and 2018, July 2018 and September 2017 and 2018.
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Figure 8. Box-plot of balanced classification accuracies of land cover classes with radiometric indices
for combined atmospheric corrections for twelve dates.

Visual assessments of land cover classification maps on TOA, five different atmospheric corrections:
DOS, STDSREF, SREF, iCOR, S2AC and four classification methods: XGB, RF, CB, SVM was conducted
on all 576 classified maps for all dates. Figure 9 represents classification maps for 12 June 2018. Figure 9
presents five different classification classes for four different classification methods and six different
atmospheric corrections without radiometric indices. Blue color represents water, red urban area, dark
green high vegetation, light green low vegetation and orange bare ground. The reference image for
visual assessment is orthophoto of Croatia for the year 2017 and Sentinel-2 false-color composite for
June 2018.

There are slight differences between classified images. The biggest difference is for images
classified with CB algorithm where the algorithm has problems with built-up land and artificial
land. XGB also has slight problems with the same two classification classes but on a much smaller
scale. Visually SVM provides the best image with a smoother transition between classes and the best
representation of the real world.
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The computational time depends on the number of stacked layers, where classification time
without radiometric indices included (10 layers) is lower than classification time with radiometric
indices included (15 layers). Difference without and with radiometric indices is ranging from 0.53 min
for CB classification to 4.71 minutes for SVM classification method. Comparing classification method,
CB is the fastest method with 1.69 min for classification with radiometric indices and 1.16 minutes
without, followed by XGB with 3.63 and 1.90 minutes respectively, the third method is RF with 8.26
and 7.23 minutes and the slowest method is SVM with 39.34 minutes for classification with radiometric
indices and 34.63 minutes without. All computational time includes training and prediction for all
classification methods (Figure 10).
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with and without vegetation indices included.

4. Discussion

The first step in this research was atmospheric correction using five different algorithms:
S2AC, iCOR, DOS, SREF and STDSREF. After atmospheric correction images were resampled to
10 meters resolution. This research did not examined the influence of resampling on classification
accuracy, because Hunt et al. [54] concluded that 10 m model has higher accuracy than 20 m model
when using Sentinel-2 data and RF regression for yield estimation. Furthermore, we used data
standardization because Shanker et al. [55] analyzed three data standardization techniques and their
results suggest that standardized data yields better general results but slows down computation in
terms of computation time.

The first analysis was the spectral analysis of reflectance values for ten Sentinel-2 bands used
in this research. The analysis was conducted on all twelve dates for five land cover classes used for
classification. From this analysis, it is clear that DOS correction has the lowest value for almost all the
wavelengths and all land cover classes. This is expected because DOS is the image-based method. On
the other hand, SREF, STDSREF; TOA, iCOR and S2AC have similar values. In 2017, TOA has the
highest value for all dates for all of the wavelengths except for SWIR bands. This is expected because
water almost has no reflectance in the SWIR band [56]. STDSREF has the highest reflectance value of
bare soil, high vegetation, low vegetation and built-up land for all dates in two NIR, three RE and
two SWIR bands, while TOA has highest values for blue, green and at certain dates for red. Spectral
plot shows that on March 2017 bare land and low vegetation have similar values, so that is one of
the reason for lower balanced accuracy. A similar thing happened in June 2017, where the high and
low vegetation have very similar spectral values and classifiers have slightly lower accuracy for those
classes. In June 2018 the bare land had similar spectral values as the built-up land, as well as low and
high vegetation respectively. This resulted in lower classification accuracy for all classes except water.
The spectral signature has high influence on classification accuracy and atmospheric correction have
impact on band spectral values
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Machine learning classification algorithms are influenced by atmospheric correction because
it changes surface reflectance values. The main difference in classification results using a machine
learning method is a different algorithm definition. Noi and Kappas [13] researched the influence of
imbalanced and balanced training dataset for land cover classification and concluded that SVM has the
highest accuracy, while RF often has lower accuracy for imbalanced dataset. They also determined that
RF performs differently for different satellite datasets. In this research, we concluded the same as Noi
and Kappas [13], that SVM has the highest accuracy and in our case, RF has a slightly lower accuracy
than SVM. Bhagwat and Shankar [57] analyzed the XGB performance of multilabel remote sensing
data and concluded that XGB performed better than RF on the imbalanced dataset. In our research, RF
performed better than XGB. A possible reason for the difference in machine learning algorithms could
be the choice of user-defined hyperparameters selection. Hyperparameter optimization for all machine
learning methods was based on iterative tuning without empirical examination of optimal values.

This research analyzed the influence of radiometric indices on classification accuracy. Castro
Gomez [14] analyzed the influence of NDVI, CIG, NDWI and Enhanced vegetation index 2 on
classification accuracy using RF classification and Sentinel-2 image. His result shows that Sentinel-2
results have higher accuracy using vegetation indices than results without them. Our results show
that on a single date, RF can have higher accuracy with radiometric indices than without them. But
when observing twelve dates, classification accuracy is higher without radiometric indices included.
The accuracy obtained in this research has higher accuracy ranging from 88.25% to 99.27% without
radiometric indices included and between 89.62% to 99.13% with radiometric indices. Close et al. [15]
researched the use of Sentinel-2 and LUCAS dataset for classification accuracy using maximum
likelihood, RF, k-nearest neighbor, and minimum distance classifier. They classified five different
classes: forest land, cropland, grassland, wetlands and settlements and achieved an overall accuracy of
91.1% using maximum likelihood classifier. Our research achieved an accuracy of 99.27% on water,
high and low vegetation, bare land and built-up land classes. This research has a similar conclusion
Abdi [12] who performed analysis and performance of three machine learning algorithms: SVM, RF,
XGB and deep learning algorithm in complex boreal landscapes. Abdi [12] achieved classification
accuracy ranging from 73.3% for deep learning to 75.8% for SVM. Our research also achieved the
highest accuracy with the SVM classification algorithm.

Vanonckelen et al. [10] evaluated the effect of coupled correction methods on land use/land
cover classification accuracy. They used three atmospheric and five topographic corrections for two
Landsat images. They used data without atmospheric correction, DOS object subtraction correction and
correction based on transmittance for atmospheric correction and data without topographic correction,
band rationing, cosine correction, pixel-based Minnaert and pixel-based C-correction topographic
corrections. This resulted in fifteen land cover maps which were statistically evaluated based on
two validation sets. They used the maximum likelihood classifier based on Gaussian distribution.
Their results indicate that atmospheric correction has a low influence on classification results between
two dates, which is expected due to small variation in atmospheric parameters. This conclusion is
similar to conclusion obtained in our research that some atmospheric correction has a low influence on
classification accuracy, but others, such has iCOR, can provide very different and lower classification
accuracy than other methods.

The result for classification with and without radiometric indices indicates that the SVM
classification method gives the best overall accuracy for all twelve dates in two years. SVM classification
has the best results for all atmospheric corrections for both cases (with and without radiometric indices).
Depending on the inclusion or exclusion of radiometric indices, the best result is obtained with
STDSREF and S2AC accordingly. This result was expected due to the fact that SVM provided the
best result in the research of Noi and Kappas [10]. SVM is designed for finding optimal solutions
for classification problems using hyperplane fitting which provides the best separation between two
classes in multidimensional feature space, which is one of the main advantages of SVM comparing to
other machine learning classification algorithms [49,50]. This advantage was confirmed in our research,
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with SVM having the highest accuracy and best distinction between land cover/use classes. Analyzing
CB, RF and XGB classification with radiometric indices included, it can be seen that CB has the best
overall accuracy for iCOR and S2AC atmospheric correction, RF has the best overall accuracy for
SREF, STDSREF and TOA corrections, while XGB has the best overall accuracy for DOS atmospheric
correction. Classification results without radiometric indices are quite different. RF classification
method has the best overall accuracy for all atmospheric corrections when compared to CB and XGB.
Furthermore, XGB is second best and CB is the worst for all atmospheric correction on twelve dates.
One of the reasons for CB performance is sensitivity to hyperparameters selection, which was not
fully analyzed in this research. Further, XGB performs better on a larger dataset, while RF performs
better for smaller datasets. This can lead to the conclusion that our dataset was too small for XGB
and it needs more data to perform better and achieve better overall accuracy. Another reason can be
mathematical structure of the algorithm which leads to RF being more regularized than XGB.

The ranking sum for SVM classification indicates that all values except S2AC are much lower
(better) for classification without radiometric indices than those with radiometric indices included.
This result is the same as Hunt et al. [54] who analyzed if calculation of separate vegetation indices
adds extra value for estimation model and concluded that radiometric indices do not add any extra
value to model, but can even lower the accuracy of certain classification techniques. The ranking sum
for RF, DOS correction has the same ranking with and without radiometric indices, while iCOR and
TOA have a slightly better rank for classification without radiometric indices. The ranking of XGB
classifier is better with radiometric indices for TOA, DOS, iCOR and S2AC atmospheric correction and
better without radiometric indices for SREF and STDSREF. The ranking of CB classifier on the other
hand, has a much better result when using radiometric indices, then without using radiometric indices.

All classification methods have the lowest ranking for iCOR atmospheric correction. One of the
reasons is that iCOR has been developed for land and water features correction. One of the algorithm
limitations is difficulty in the derivation of reliable aerosol model estimation and the assumption
that surface reflectance should be displayed as a linear combination of two pure green vegetation
and a bare soil endmember. Another limitation of iCOR is that it does not correct the image for sun
glint effects [26]. SREF and STDSREF perform well only with SVM classification with and without
radiometric indices and partially for XGB classification with STDSREF atmospheric correction. One of
the reasons is that SVM is using hyperplane fitting with the best distinction between classes. CB, RF
and XGB achieved best results for images with TOA reflectance and corrected using DOS correction
with and without radiometric indices included.

Low vegetation and bare ground are two land cover classes that influence the classification
accuracy the most. In spring months March 2017 and April 2018 low vegetation has the lowest
balanced accuracy and affects the overall classification accuracy the most. This is expected because
high vegetation is still not growing, while water and the built-up area do not change. Low vegetation
reflectance is higher because the phenology cycle starts earlier than the high vegetation cycle so the
classifiers can mix high and low vegetation. This can lead to the false classification which can lower
accuracy. This is the case for classification with radiometric indices and without it. Water, high
vegetation and built-up land have similar classification accuracy in July 2017 and 2018. In July 2018
bare ground has lower and more dispersed accuracy and low vegetation has higher accuracy than in
July 2017. Those differences are mainly due to different reflectance values because of different weather
conditions in 2017 and 2018. In July 2017 it was extremely hot and dry, while in 2018 it was a normal
condition for the Zagreb area. Another reason can be a lower number of samples for bare ground in
July 2018 which influence classification algorithms which can be seen on the dispersion of results in
July 2018. November 2017 and 2018 have very similar balanced accuracy for all classes with a slight
difference in low vegetation. In August 2018 differences are in bare land, low vegetation and built-up
land classes. All classes had very high accuracy in August 2018. In August 2017 it was extremely hot
and dry, while in 2018 it was extremely hot, but with normal rain conditions. In September 2017 and
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2018 the difference is in classes bare soil, high and low vegetation. One of the reasons could be different
weather which was cold and very rainy in September 2017 and very warm and dry in 2018.

The difference in the accuracy of classes without radiometric indices is in the same months as
with radiometric indices included, with one difference in June 2017 and 2018, where there is slightly
lower accuracy for built-up land in 2017 and for bare ground in 2018. One of the reasons is similar
spectral reflectance values that can occur and confuse the classification algorithm. Radiometric indices
have an impact on ranking, and respectively overall accuracy, of classification methods. By observing
classification for every date, the biggest difference in ranking between classification, which included
radiometric indices and without it, is in November 2017 and 2018.

Ranking by single date shows that radiometric indices or lack of those, influence different dates.
For SVM classification of DOS atmospheric correction with radiometric indices there are four dates
with ranking lower than 10. Those are 20. June 2017, 24 November 2017 and 29 August 2018. On the
other hand, classification without radiometric indices provides only one ranking lower than 10 on 30.
September 2017. This shows that algorithm performs differently with or without radiometric indices
which confirms previous researches that feature selection is very important [58–60] and there should
not be redundancy (feature correlation) in different layers [61].

Balanced classification accuracies of land cover classes are similar when classified with radiometric
indices and without them. The biggest difference is in April and September 2018. In April built-up land
has similar accuracy for all atmospheric correction with radiometric indices, while without radiometric
indices results are more dispersed. In September 2018, the difference is in bare ground class, where
balanced accuracies are sparse for classifications with radiometric indices included than without them.
Those differences are mostly due to, as previously stated, feature selection and feature correlation,
which influence classification results.

The area around Jarun lake in Zagreb was chosen for visual assessment because it has a
heterogeneous land cover. Orthophoto of Croatia for the year 2017 was used as the reference
image. Visually comparing images by atmospheric correction, it can be seen that CB classification
classified built-up land and low vegetation as bare land classes. XGB and RF also classified low
vegetation and built-up land as bare land but in a much smaller margin. All classifiers have problems
with lower vegetation, as part of low vegetation is classified as high vegetation, due to time of the
growing season, and part of the vegetation is classified as bare land.

Classification processing time is very different for all classification methods. SVM is the slowest
classification method almost 5 times slower than RF. RF is 4 times slower than XGB when radiometric
indices are included and 2 times slower without radiometric indices. CB is the fastest algorithm. It
is 1.5× faster than XGB without radiometric indices included and 2× faster with radiometric indices
included. If comparing accomplished accuracy and time of classification without radiometric indices
included, the fastest method has the lowest accuracy, while the slowest method has the highest
accuracy. The slowest classification method with radiometric indices is SVM, but it has the highest
overall accuracy. RF, as the second slowest method, has the second highest accuracy for TOA and two
atmospheric corrections: SREF and STDSREF. CB as the fastest method has the second-best classification
accuracy for two atmospheric corrections (S2AC and iCOR) and XGB has the best accuracy for just one
atmospheric correction method (DOS).

5. Conclusions

Influence of five atmospheric corrections, namely S2AC, iCOR, DOS, SREF, STDSREF, on five
machine learning classification algorithms, SVM, RF, XGB, CB was examined. SVM classification
method outperformed all other methods with radiometric indices included, but also without included
radiometric indices for all twelve dates. The overall accuracy of SVM was between 90.89% for iCOR
correction and 99.09% for S2AC with the median value of 96.51%, depending on a date with radiometric
indices included and between 88.25% for iCOR and 99.22% for TOA without radiometric indices
included. SVM classification was the best for all atmospheric correction. For classification with



ISPRS Int. J. Geo-Inf. 2020, 9, 277 20 of 23

radiometric indices included SVM performed the best for S2AC with the median value of 96.54%,
while for classification without radiometric indices SVM performed the best for STDSREF with median
value of 96.83%. The ranking is better without radiometric indices for SVM and RF but lower for XGB
and CB.

This study showed and verified that SVM is the best machine learning classifier for land cover/use
classification and outperformed RF, CB and XGB. On the other hand, SVM was the slowest algorithm
in means of computational time needed for classification, while RF and XGB were faster and CB the
fastest machine learning method. So, when the time is of the essence, this should be considered.
This research concluded that the selection of classifiers is the most important, while the selection of
atmospheric correction method is, apart from iCOR correction, is of minor importance although they
change spectral values of satellite images.

One of the most important aspects of this research is the fact that all the atmospheric correction
and machine learning classification methods are freely available, along with the Sentinel-2 dataset.

Our research was conducted on a specific study site of the City of Zagreb in 2017 and 2018, so
further work should consider including more atmospheric corrections, new study sites, different years
and multitemporal classification with all dates included.
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