
SOLVER PARAMETER INFLUENCE ON THE RESULTS OF MULTILAYER
PERCEPTRON FOR ESTIMATING POWER OUTPUT OF A COMBINED CYCLE

POWER PLANT

Prof. PhD. Prpić-Oršić Jasna1, PhD. Mrzljak Vedran1, PhD. Student Baressi Šegota Sandi1, PhD. Student Lorencin Ivan1
1Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia

E-mail: jasna.prpic-orsic@riteh.hr , vedran.mrzljak@riteh.hr, sbaressisegota@riteh.hr, ilorencin@riteh.hr

Abstract: Previous work has determined the ability of using the Multilayer Perceptron (MLP) type of Artificial Neural Network (ANN) to
estimate the power output of a Combined Cycle Power Plant (CCPP) in which optimization did not focus on the solver parameter optimization.
In previous work, the solvers used the default parameters. Possibility exists that optimizing solver parameters will net better results. Two solver
algorithm’s parameters are optimized: Stochastic Gradient Descent (SGD) and Adam, with 140 and 720 parameter combinations respectively.
Solutions are estimated through the use of Root Mean Square Error (RMSE). Lowest RMSE achieved is 4.275 [MW] for SGD and 4.259 [MW]
for Adam, achieved with parameters: 𝛼 = 0.05, 𝜇 = 0.02, and nesterov=True for SGD and with parameters 𝛼 = 0.001, 𝛽ଵ = 0.95, 𝛽ଶ = 0.99,
and amsgrad=False for Adam. Only a slight improvement is shown in comparison to previous results (RMSE=4.305 [MW]) which points
towards the fact that solver parameter optimization with the goal of improving results does not justify the extra time taken for training.

KEYWORDS: COMBINED CYCLE POWER PLANT, MULTILAYER PERCEPTRON, ARTIFICIAL NEURAL NETWORKS, STOCHASTIC
GRADIENT DESCENT, ADAM, SOLVER ALGORITHM

1. Introduction

 Gas Turbine (GT) power plants are common in such cases where
power along with heat production is acceptable. GTs are
characterized with a higher heat production, which is commonly
released into the atmosphere [1]. To avoid such losses, this heat can
be used for steam production, which is in turn used by a steam turbine
(ST) [2]. These turbines are used in various applications such as
power production and ship propulsion systems. Such systems, which
combine the use of GT and ST are commonly referred to as
Combined Cycle Power Plants (CCPP) [3]. Determining the total
power production of such complex systems is extremely complex,
leading to use of advanced techniques – such as artificial intelligence
(AI) methods for their determination [4, 5]. Regressive AI methods,
such as regression MLP ANN can be used to great effect in many
fields such as maritime sciences [6, 7], robotics [8, 9] and medicine
[10]. Previous work by Lorencin et al. in “Genetic Algorithm
Approach to Design of Multi-Layer Perceptron for Combined Cycle
Power Plant Electrical Power Output Estimation” shows the ability
of using Evolutionary Computing (EC) methods for optimization of
MLP ANN parameters. EC algorithms are another branch of AI
algorithms widely used for optimization [11]. In paper in question,
authors propose a solution that optimizes the parameters of the MLP
through the use of a genetic algorithm. Energy analyses like the one
performed here are extremely important in energetics with the goal
of predicting the satisfaction of energy needs and possible failures
[12-14]. The optimal architecture found by authors was one with five
hidden layers with 80, 25, 65, 75 and 80 neurons in each, with
Sigmoid, Tanh, ReLU, ReLU and ReLU activation function for each
respective layer and 13 epoch executions, and it achieved a RMSE of
4.305 [MW]. When it comes to the solvers used, authors have only
varied the algorithm used between SGD and Adam. As these
algorithms have the ability of setting various parameters, this paper
proposes use of grid search method in the attempt of finding a better
solution, with a smaller error. RMSE will be used to estimate quality
of solutions, with better solutions being ones with smaller error. Goal
of the paper is to achieve a smaller error than previously achieved
through adjusting the solver parameters.

2. Analyzed Power Plant and Dataset Description

 This chapter describes the powerplant dataset used in the
description, as well as the CCPP on which the measurements for
dataset creation were made.

2.1. Analyzed Combined Cycle Power Plant

 The CCPP used in this research consists of two GT and on ST. The
motion energy of the described turbines is transmitted to power

generators. The exhaust of GTs is connected to a heat recovery steam
generator (HRSG), consisting of high pressure (HP) and low pressure
(LP) ST. The schematic of the system is given on Figure 1.

Fig. 1. Schematic of the CCPP used in research [5]

(1 – LP super heater; 2 – LP evaporator; 3 – LP economizer; 4 –
HP super heater; 5 – HP evaporator; 6 – HP economizer)

 System consists of two 160 [MW] ABB 13E2 GTs and one 160
[MW] ABB ST. Power plant used in this research has a nominal
power generation capacity of 480 [MW].

2.2. Dataset Description

 Dataset consists of 9568 total samples. Each sample consists of
five parameters:

 temperature (T),
 ambient pressure (AP),
 relative humidity (RH),
 exhaust vacuum (V), and
 net hourly electrical energy output (EP).

 First four parameters (T, AP, RH, V) are used as inputs, while the
final (EP) is used as the output. T, AP and RH are measured as GT
air intake parameters, and V is measured as ST exhaust vacuum. EP
is measured at the electric power generators output. Ranges and units
of the parameters are defined in Table 1.

Table 1. Ranges of individual parameters

Parameter Minimum Maximum Unit
T 1.81 37.11 °C

AP 992.89 1033.3 mB
RH 25.56 100.16 %
V 25.36 81.56 cmHg
EP 420.26 495.76 MV

3. Multilayer Perceptron description

 MLP is a feed-forward ANN consisting of a single input layer, a
single output layer and one or more hidden layers. Each layer consists
of neurons, that are connected to neurons in previous and following
layers with connections. Input layer has a number of neurons equal
to the inputs in the dataset (four in this case), while the output layer
has a single neuron. Each connection connects the output of a neuron
to the input of the other. When discussing MLP, usually a fully
connected architecture is discussed. This denotes that each of the
neurons in one layer is connected to every neuron in the following
layer [15].
 Each neuron has a value, with value of the neuron in the output
layer being the output value of the ANN. Values of the input neurons
are the input values of the dataset. Value of the output and hidden
layer neurons is calculated as the weighted sum of inputs, passed to
the activation function as shown in [15]:

𝑓(𝑋௧) = ℱ(𝑋௧ ⋅ 𝛩) = ℱ(𝑥ଵ ⋅ 𝜃ଵ + 𝑥ଶ ⋅ 𝜃ଶ + ⋯ + 𝑥௡ ⋅ 𝜃௡) (1)

in which the activation function is a function which maps the input
of the neuron to the output. Basic activation functions are commonly
designed to keep the data within a wanted range (sigmoid, TanH), or
to eliminate the unwanted elements (ReLU); 𝑋௞ is the input vector –
vector containing each output value of neurons connected to the
neuron, with 𝑥ଵto 𝑥௡ being individual output values; and 𝛩 is a vector
of connection weights, with 𝜃ଵ to 𝜃୬ being the connection weight
values corresponding to each of the input values 𝑥ଵto 𝑥௡ [16].
ANNs are multi-stage algorithms, consisting of a training and testing
stage. First data is split into training and testing sets. In this research
7500 data points were used in the training set, with the remaining
2068 points being used in the testing set. Each iteration of the training
stage is split into two parts – so called forward and backward
propagation. First the initial weights of the MLP are set randomly.
During the forward propagation input data from each data point is set
as input to the neural network and propagated through the hidden
layers. Once the output is reached the real, expected value (known
from the dataset) is compared to the received value from the neural
network. The difference between the expected and received value is
used as the cost function (also known as Loss), defined as [15, 17]:

𝐽(𝛩) = 𝑀𝑆𝐸 =
∑௡

௜ୀ଴ (𝑦௜ − 𝑦ො௜)ଶ

2𝑛
, (2)

where cost function 𝐽(𝛩) is defined as a mean square error in which
𝑦௜ is the expected value of the ANN output, 𝑦ො௜ is the predicted value,
in other words the value calculated by the ANN, and 𝑛 being the total
number of data points in the set.
 We aim to lower this value to zero, and to achieve this the weights
need to be adjusted. This process is called backward propagation, in
which the error of the neural network is propagated from the output
to the input and each connection weight is adjusted. The amount of
adjustment depends on the size of the error – with larger errors
causing a larger weight adjustment. To determine the adjustment
necessary the gradient is used, calculated as the partial derivative of
the cost function by the current weight:

𝛩ᇱ =
𝜕𝐽(𝛩)

𝜕𝛩
. (3)

The connection weight is being updated using:

𝛩௡௘௪ = 𝛩௢௟ௗ −
𝛼

𝑛
⋅ 𝛩ᇱ, (4)

with the new weight value being denoted by 𝛩௡௘௪ , old value by 𝛩௢௟ௗ;
gradient 𝛩ᇱ is determined by equation (3), 𝑛 is a total number of
datapoints, and 𝛼 is the learning rate. Learning rate is a very
important hyperparameter of the neural networks. It determines the
speed at which the connection weights are updated. If set too low it
will cause the weights not to converge to a value necessary to lower

the cost function value to zero. If set to a too high of a value the ANN
will learn faster but this introduces the risk of the correct weight value
being skipped due to the adjustment not being fine enough to
converge to zero, which causes oscillations and divergence. The
weight update strategy does not necessarily have to be the same as
equation (4), but it is a commonly used description as most solver
algorithms use it or a slightly modified version [16].
 Once the entire training stage is finished, the trained neural
network is used in the training stage. Training stage consists only of
forward propagation. In this stage, the outputs of the dataset and the
neural network are compared, but no adjustments are made. This
stage determines the quality of the neural network – how correctly
does it predict the values stored in the dataset. This is used to
determine if the quality of the training was high, and if it was not
hyperparameter adjustment is necessary [15].

4. Solvers Description

 Solvers are one of the hyperparameters of the ANN. Solver is the
algorithm used in the process of backpropagation to calculate the
weights of the neural network. Because of them adjusting the weights
of the ANN these algorithms play an important role in the final result
of the ANN. If the neural network is trained badly, even with good
architecture, it will not be capable of determining the correct weights
needed to achieve low values of errors.
 First solver used in performed research is SGD. SGD is an
optimization algorithm designed for unconstrained optimization
problems. Unlike some other solvers, SGD approximates the gradient
of the neural networks for each individual training sample. The
update is weight update is performed based on the equation [18]:

𝛩௡௘௪ = 𝛩௢௟ௗ − 𝛼
𝜕𝐽(𝜃௜ ⋅ 𝑥௜)

𝜕𝜃௜
. (5)

Note the similarity to the equation (4), with the difference being that
SGD updates its value based on each individual sample’s cost
function (error). This provides a better adjustment of individual
weights. Two parameters can be adjusted: momentum, and whether
the so called Nesterov momentum modification will be applied.
Momentum is a value that further accelerates SGD in the relevant
direction (𝐽(𝛩) → 0). This works by adjusting the learning rate when
the goal condition of minimizing the value of cost function – when
𝐽(𝛩) value is large the momentum parameter increases the value of
learning rate and lowers it when value drops. This value helps with
lowering oscillations and faster weight convergence. It’s introduced
into the equation (5) as an additional component 𝑣 which adjusts the
gradient update depending on the overall ANN loss value, as shown
in [18]:

𝛩௡௘௪ = 𝛩௢௟ௗ − 𝛼
𝜕𝐽(𝜃௜ ⋅ 𝑥௜)

𝜕𝜃௜
+ 𝑣௧ . (6)

Where 𝑣௧ is determined by:

𝑣௧ = 𝜇 ⋅ 𝑣௧ିଵ − 𝛼∇𝐽(Θ), (7)

with parameter 𝜇 being the momentum parameter controlling the
influence of speed v. Starting speed, 𝑣଴ equals zero.
 Nesterov momentum (also known as Nesterov Accelerated
Gradient – NAG) is a technique that adjusts the based on the
intermediate position. The intermediate position is calculated based
on the current value of the parameter 𝜇, and the current loss is
calculated. The gradient is then further adjusted to achieve a lower
error. This method, while slower in each step, provides a more
accurate weight adjustment which can lead to a faster overall
convergence [19].
 Adam is a different optimization algorithm, optimized for
stochastic objective functions. It adaptively adjusts estimates of
lower-order momentums and is designed to be computationally
efficient. It adjusts the gradient in equation (4) in the similar manner

as SGD does – shown in equation (6), but it uses two momentums
and adjusts them differently. The weight in Adam algorithm are
updated through [20]:

𝛩௡௘௪ = 𝛩௢௟ௗ − 𝛼 ⋅
𝑚௧

ඥ𝑣௧ + 𝛩ᇱ
. (8)

The equation Adam uses to adjusts the momentums are given by:

𝑚௧ =
𝑚௧ିଵ

1 − 𝛽ଵ
௧ , (9)

and

𝑣௧ = (1 − 𝛽ଶ) ෍ 𝛽ଶ
௧ି௜ ⋅ 𝛩ᇱ

௧
ଶ

௧

௜ୀଵ
, (10)

with t being the current epoch (training iteration) – this means that
weights are adjusted using all historical gradient values. Parameters
𝛽ଵ, 𝛽ଶ ∈ [0, 1⟩ are constants with determine the exponential decay
of the momentum values, or – in simpler terms, determine the speed
of change for momentums 𝑚, 𝑣 respectively [20, 21].
 AMSGrad is an expansion of the Adam algorithm, in a similar way
to NAG for SGD. AMSGrad was designed to help with convergence
problems Adam exhibited in some cases, for example when
momentum 𝑣௧ is larger than the gradient Θᇱ. The difference between
standard Adam and AMSGrad is that it stores the maximum historical
average of the second momentum 𝑣௧ , up to the current step and uses
that value to normalize the gradient. With this, the learning rate
change is stopped from increasing which results in easier
convergence [21].
 Both algorithms have default parameters, which are commonly
used in research. Default SGD parameters are [22]: 𝛼 = 0.01, 𝜇 =
0.0, and NAG not used. The default parameters for Adam are [22]:
𝛼 = 0.001, 𝛽ଵ = 0.9, 𝛽ଶ = 0.99, and AMSGrad not used.

5. Parameter choice

 Hyperparameters of the neural network are those values that
determine its architecture. In presented research previously
determined parameters are shown in Table 2. Values for each hidden
layer (HL) are combined and written that the left most value is the
hidden layer nearest the input.

Table 2. Predefined hyperparameters of the used ANN.

Hyperparameter Value
Number of HL 5
Neuron per HL 80,65,25.75.80
Activations per HL Sigmoid, Tanh, ReLU, ReLU, ReLU
Epochs 13

These parameters are fixed and variations are introduced via a
modification of solver parameters. Parameters varied for each solver,
along with their possible values are presented in Table 3. for SGD
and Adam solver.

Table 3. Parameters used in the Grid Search for each of the
optimized solvers

Solver Parameter Possible Values Count
Both 𝛼 0.001, 0.005, 0.1,

0.01, 0.2, 0.02, 0.1,
0.5, 0.05, 0.5

10

SGD 𝜇 0.0, 0.02, 0.005,
0.1, 0.01, 0.5, 0.9

7

 NAG True, False 2
Adam 𝛽ଵ 0.9, 0.95, 0.85,

0.75, 0.8, 0.99
6

 𝛽ଶ 0.99, 0.95, 0.9, 0.8,
0.75, 0.85

6

 AMSGrad True, False 2

The technique used for testing out parameter combinations is grid
search. In grid search all the possible combinations of values are
created. For this paper, with the values listed in Table 3. the total
number of combinations for SGD solver is 140 and 720 for the Adam
solver.
 The quality of the trained neural networks is determined through
the use of root mean square error (RMSE), defined with:

𝑅𝑀𝑆𝐸 = ඨ
∑ (𝑦௜ − 𝑦పෝ)௡

௜ୀଵ

𝑛
. (11)

The solution with a lower RMSE is considered a better solution, due
to having a lower regression error compared to the solution with a
higher RMSE value. Each parameter combination is executed three
times, to avoid poor results in a single run due to randomization of
initial weights, and the best solutions are then executed 20 additional
times to achieve statistical significance.

6. Results

 SGD algorithm has achieved the best results with following
parameters:

 𝛼 = 0.05,
 𝜇 = 0.02, and
 NAG used.

Over the course of 20 runs the average RMSE for given parameters
was 4.275 [MW] with standard deviation of 0.08369.
 Adam algorithm has achieved the best results with the following
parameters:

 𝛼 = 0.001,
 𝛽ଵ = 0.95,
 𝛽ଶ = 0.99, and
 AMSGrad not used.

Over the course of 20 runs the average RMSE with given parameters
was 4.259 with the standard deviation of: 0.046395.
 The achieved results show the average improvement over the
results from the previous research of 0.03 [MW] for SGD and 0.046
[MW] for Adam.

7. Conclusion

 Obtained results show only the slight improvement over the results
previously obtained. While there is improvement, it is questionable
whether the solver parameter adjustment beyond the default values is
strictly necessary, considering the added complexity and the time
needed to test all the combinations. It is also apparent that the values
of best parameters are close to the default values for both algorithms.
Still, if higher precision is needed the results point towards the fact
that solver parameter adjustment can provide that. Further tests on
different datasets are necessary to test the effect of solver parameter
changes. Future work could also include the comparison between
various implementations of solver algorithms, as different
implementations could demonstrate different results (Keras
framework has been used in this research). Furthermore, the
difference in training times with different solver algorithms is
apparent and further research in optimizing the parameters with the
goal of faster training could be performed.

8. Acknowledgment

 This research has been supported by the Croatian Science
Foundation under the project IP-2018-01-3739, CEEPUS network
CIII-HR-0108, European Regional Development Fund under the
grant KK.01.1.1.01.0009 (DATACROSS), University of Rijeka
scientific grant uniri-tehnic-18-275-1447, University of Rijeka
scientific grant uniri-tehnic-18-18-1146 and University of Rijeka
scientific grant uniri-tehnic-18-14.

 Dataset used in research was obtained from the paper Tüfekci, P.
(2014) “Prediction of full load electrical power output of a base load
operated combined cycle power plant using machine learning
methods” [23].

9. Nomenclature

Abbreviations
CCPP Combined Cycle Power Plant

GT Gas Turbine
ST Steam Turbine
LP Low Pressure
HP High Pressure
AI Artificial Intelligence

MLP Multilayer Perceptron
ANN Artificial Neural Network
EC Evolutionary Computing

SGD Stochastic Gradient Descent
NAG Nesterov Adaptive Gradient

RMSE Root Mean Square Error
HL Hidden Layer

Latin Symbols 𝑚௧ Adam momentum 1
𝑥 Individual input 𝑣௧ Adam momentum 2
𝑦 Expected ANN output Greek Symbols
 𝑦ො Actual ANN output 𝜇 SGD v parameter
𝑋 Input Vector 𝛽ଵ 𝑚௧ decay
𝑡 Epoch 𝛽ଶ 𝑣௧ decay
𝑛 Number of samples Θ Weights vector
𝐽 Cost Function/Loss 𝜃 Individual weight
ℱ Activation Function Θ′ Gradient
𝑣 SGD momentum 𝛼 Learning Rate

10. References

[1] Mrzljak, V., Poljak, I., Orović, J., & Prpić-Oršić, J. (2019,
January). Numerical analysis of real open cycle gas turbine. In
INTERNATIONAL SCIENTIFIC CONFERENCE HIGH
TECHNOLOGIES. BUSINESS. SOCIETY 2019.

[2] Mrzljak, V., Anđelić, N., Lorencin, I., & Car, Z. (2019). Analysis
of Gas Turbine Operation before and after Major Maintenance.
Pomorski zbornik, 57(1), 57-70.

[3] Glazar, V., Mrzljak, V., & Gubic, T., (2019) Thermodynamic
Analysis of Combined Cycle Power Plant. 14th International
Conference Heat Transfer, Fluid Mechanics and Thermodynamics,
355-341

[4] Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2019). Genetic
Algorithm Approach to Design of Multi-Layer Perceptron for
Combined Cycle Power Plant Electrical Power Output Estimation.
Energies, 12(22), 4352.

[5] Lorencin I., Car Z., Kudlaček J., Mrzljak V., Anđelić N, &
Blažević S. (2019). Estimation of Combined Cycle Power Plant
Power Output Using Multilayer Perceptron Variations, 10th
International Technical Conference - Technological Forum 2019 –
Proceedings, 94-98

[6] Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2019). Marine
Objects Recognition Using Convolutional Neural Networks. NAŠE
MORE: znanstveno-stručni časopis za more i pomorstvo, 66(3), 112-
119.

[7] Baressi Šegota, S., Anđelić, N., Kudláček, J., & Čep, R. (2019).
Artificial neural network for predicting values of residuary resistance
per unit weight of displacement. Pomorski zbornik, 57(1), 9-22.

[8] Anđelić, N., Blažević, S., & Car, Z. (2018, January). Trajectroy
Planning Using Genetic Algorithm For Three Joints Robot
Manipulator. In International Conference on Innovative
Technologies, IN-TECH 2018.

[9] Blažević, S., Anđelić, N., & Car, Z. (2017, January). Research of
Unstable Behavior of Iterative Path Planning Algorithm for Robot
Manipulator. In IN-TECH 2017 International Conference on
Innovative Technologies.

[10] Lorencin, I., Anđelić, N., Španjol, J., & Car, Z. (2020). Using
multi-layer perceptron with Laplacian edge detector for bladder
cancer diagnosis. Artificial Intelligence in Medicine, 102, 101746.

[11] Baressi Šegota, S., Lorencin, I., Ohkura, K., & Car, Z. (2019).
On the Traveling Salesman Problem in Nautical Environments: an
Evolutionary Computing Approach to Optimization of Tourist Route
Paths in Medulin, Croatia. Pomorski zbornik, 57(1), 71-87.

[12] Mrzljak, V., Blecich, P., Anđelić, N., & Lorencin, I. (2019).
Energy and Exergy Analyses of Forced Draft Fan for Marine Steam
Propulsion System during Load Change. Journal of Marine Science
and Engineering, 7(11), 381.

[13] Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2019). Exergy
analysis of marine steam turbine labyrinth (gland) seals. Pomorstvo,
33(1), 76-83.

[14] Mrzljak, V., Car, Z., Kudláček, J., Anđelić, N., Lorencin, I., &
Blažević, S. (2019) Analysis of Two Methods For Steam Turbine
Developed Power Calculation In Industry 4.0. 10th International
Technical Conference - Technological Forum 2019 – Proceedings,
103-110

[15] Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements
of statistical learning (Vol. 1, No. 10). New York: Springer series in
statistics.

[16] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep
learning. MIT press.

[17] Bishop, C. M. (2006). Pattern recognition and machine
learning. springer.

[18] Bottou, L. (2010). Large-scale machine learning with stochastic
gradient descent. In Proceedings of COMPSTAT'2010 (pp. 177-186).
Physica-Verlag HD.

[19] Dozat, Timothy. Incorporating nesterov momentum into adam.
(2016). In Proceedings of 2016 International Conference of Learning
Representations (pp. 1-4)

[20] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

[21] Reddi, S. J., Kale, S., & Kumar, S. (2019). On the convergence
of adam and beyond. arXiv preprint arXiv:1904.09237.

[22] Géron, A. (2019). Hands-On Machine Learning with Scikit-
Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to
Build Intelligent Systems. O'Reilly Media.

[23] Tüfekci, P. (2014). Prediction of full load electrical power output
of a base load operated combined cycle power plant using machine
learning methods. International Journal of Electrical Power &
Energy Systems, 60, 126-140.

