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Abstract: Previous work has determined the ability of using the Multilayer Perceptron (MLP) type of Artificial Neural Network (ANN) to 
estimate the power output of a Combined Cycle Power Plant (CCPP) in which optimization did not focus on the solver parameter optimization.  
In previous work, the solvers used the default parameters. Possibility exists that optimizing solver parameters will net better results. Two solver 
algorithm’s parameters are optimized: Stochastic Gradient Descent (SGD) and Adam, with 140 and 720 parameter combinations respectively. 
Solutions are estimated through the use of Root Mean Square Error (RMSE). Lowest RMSE achieved is 4.275 [MW] for SGD and 4.259 [MW] 
for Adam, achieved with parameters: 𝛼 = 0.05, 𝜇 = 0.02, and nesterov=True for SGD and with parameters 𝛼 = 0.001, 𝛽ଵ = 0.95, 𝛽ଶ = 0.99, 
and amsgrad=False for Adam. Only a slight improvement is shown in comparison to previous results (RMSE=4.305 [MW]) which points 
towards the fact that solver parameter optimization with the goal of improving results does not justify the extra time taken for training.  
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1. Introduction 
 
    Gas Turbine (GT) power plants are common in such cases where 
power along with heat production is acceptable. GTs are 
characterized with a higher heat production, which is commonly 
released into the atmosphere [1]. To avoid such losses, this heat can 
be used for steam production, which is in turn used by a steam turbine 
(ST) [2]. These turbines are used in various applications such as 
power production and ship propulsion systems. Such systems, which 
combine the use of GT and ST are commonly referred to as 
Combined Cycle Power Plants (CCPP) [3]. Determining the total 
power production of such complex systems is extremely complex, 
leading to use of advanced techniques – such as artificial intelligence 
(AI) methods for their determination [4, 5]. Regressive AI methods, 
such as regression MLP ANN can be used to great effect in many 
fields such as maritime sciences [6, 7], robotics [8, 9] and medicine 
[10]. Previous work by Lorencin et al. in “Genetic Algorithm 
Approach to Design of Multi-Layer Perceptron for Combined Cycle 
Power Plant Electrical Power Output Estimation” shows the ability 
of using Evolutionary Computing (EC) methods for optimization of 
MLP ANN parameters. EC algorithms are another branch of AI 
algorithms widely used for optimization [11]. In paper in question, 
authors propose a solution that optimizes the parameters of the MLP 
through the use of a genetic algorithm. Energy analyses like the one 
performed here are extremely important in energetics with the goal 
of predicting the satisfaction of energy needs and possible failures 
[12-14]. The optimal architecture found by authors was one with five 
hidden layers with 80, 25, 65, 75 and 80 neurons in each, with 
Sigmoid, Tanh, ReLU, ReLU and ReLU activation function for each 
respective layer and 13 epoch executions, and it achieved a RMSE of 
4.305 [MW]. When it comes to the solvers used, authors have only 
varied the algorithm used between SGD and Adam. As these 
algorithms have the ability of setting various parameters, this paper 
proposes use of grid search method in the attempt of finding a better 
solution, with a smaller error. RMSE will be used to estimate quality 
of solutions, with better solutions being ones with smaller error. Goal 
of the paper is to achieve a smaller error than previously achieved 
through adjusting the solver parameters.  
 
2. Analyzed Power Plant and Dataset Description 
 
    This chapter describes the powerplant dataset used in the 
description, as well as the CCPP on which the measurements for 
dataset creation were made. 
 
2.1. Analyzed Combined Cycle Power Plant  
 
    The CCPP used in this research consists of two GT and on ST. The 
motion energy of the described turbines is transmitted to power 

generators. The exhaust of GTs is connected to a heat recovery steam 
generator (HRSG), consisting of high pressure (HP) and low pressure 
(LP) ST. The schematic of the system is given on Figure 1.  
 

 
Fig. 1. Schematic of the CCPP used in research [5] 

(1 – LP super heater; 2 – LP evaporator; 3 – LP economizer; 4 – 
HP super heater; 5 – HP evaporator; 6 – HP economizer) 

 

    System consists of two 160 [MW] ABB 13E2 GTs and one 160 
[MW] ABB ST. Power plant used in this research has a nominal 
power generation capacity of 480 [MW]. 
 
2.2. Dataset Description 
 
    Dataset consists of 9568 total samples. Each sample consists of 
five parameters: 

 temperature (T), 
 ambient pressure (AP), 
 relative humidity (RH), 
 exhaust vacuum (V), and 
 net hourly electrical energy output (EP). 

 
    First four parameters (T, AP, RH, V) are used as inputs, while the 
final (EP) is used as the output. T, AP and RH are measured as GT 
air intake parameters, and V is measured as ST exhaust vacuum. EP 
is measured at the electric power generators output. Ranges and units 
of the parameters are defined in Table 1.  
 

Table 1. Ranges of individual parameters 
 

Parameter Minimum Maximum Unit 
T 1.81 37.11 °C 

AP 992.89 1033.3 mB 
RH 25.56  100.16 % 
V 25.36 81.56 cmHg 
EP 420.26 495.76 MV 



3. Multilayer Perceptron description 
 
    MLP is a feed-forward ANN consisting of a single input layer, a 
single output layer and one or more hidden layers. Each layer consists 
of neurons, that are connected to neurons in previous and following 
layers with connections. Input layer has a number of neurons equal 
to the inputs in the dataset (four in this case), while the output layer 
has a single neuron. Each connection connects the output of a neuron 
to the input of the other. When discussing MLP, usually a fully 
connected architecture is discussed. This denotes that each of the 
neurons in one layer is connected to every neuron in the following 
layer [15].  
    Each neuron has a value, with value of the neuron in the output 
layer being the output value of the ANN. Values of the input neurons 
are the input values of the dataset. Value of the output and hidden 
layer neurons is calculated as the weighted sum of inputs, passed to 
the activation function as shown in [15]: 
 

𝑓(𝑋௧) = ℱ(𝑋௧ ⋅ 𝛩) = ℱ(𝑥ଵ ⋅ 𝜃ଵ + 𝑥ଶ ⋅ 𝜃ଶ + ⋯ + 𝑥௡ ⋅ 𝜃௡) (1) 
 
in which the activation function is a function which maps the input 
of the neuron to the output. Basic activation functions are commonly 
designed to keep the data within a wanted range (sigmoid, TanH), or 
to eliminate the unwanted elements (ReLU); 𝑋௞ is the input vector – 
vector containing each output value of neurons connected to the 
neuron, with 𝑥ଵto 𝑥௡ being individual output values; and 𝛩 is a vector 
of connection weights, with 𝜃ଵ to 𝜃୬ being the connection weight 
values corresponding to each of the input values 𝑥ଵto 𝑥௡ [16]. 
ANNs are multi-stage algorithms, consisting of a training and testing 
stage. First data is split into training and testing sets. In this research 
7500 data points were used in the training set, with the remaining 
2068 points being used in the testing set. Each iteration of the training 
stage is split into two parts – so called forward and backward 
propagation. First the initial weights of the MLP are set randomly. 
During the forward propagation input data from each data point is set 
as input to the neural network and propagated through the hidden 
layers. Once the output is reached the real, expected value (known 
from the dataset) is compared to the received value from the neural 
network. The difference between the expected and received value is 
used as the cost function (also known as Loss), defined as [15, 17]: 
 

𝐽(𝛩) = 𝑀𝑆𝐸 =
∑௡

௜ୀ଴ (𝑦௜ − 𝑦ො௜)ଶ

2𝑛
, (2) 

 
where cost function 𝐽(𝛩) is defined as a mean square error in which 
𝑦௜  is the expected value of the ANN output, 𝑦ො௜ is the predicted value, 
in other words the value calculated by the ANN, and 𝑛 being the total 
number of data points in the set.  
    We aim to lower this value to zero, and to achieve this the weights 
need to be adjusted. This process is called backward propagation, in 
which the error of the neural network is propagated from the output 
to the input and each connection weight is adjusted. The amount of 
adjustment depends on the size of the error – with larger errors 
causing a larger weight adjustment. To determine the adjustment 
necessary the gradient is used, calculated as the partial derivative of 
the cost function by the current weight: 
 

𝛩ᇱ =
𝜕𝐽(𝛩)

𝜕𝛩
. (3) 

 
The connection weight is being updated using: 
 

𝛩௡௘௪ = 𝛩௢௟ௗ −
𝛼

𝑛
⋅ 𝛩ᇱ, (4) 

 
with the new weight value being denoted by 𝛩௡௘௪ , old value by 𝛩௢௟ௗ; 
gradient 𝛩ᇱ is determined by equation (3), 𝑛 is a total number of 
datapoints, and 𝛼 is the learning rate. Learning rate is a very 
important hyperparameter of the neural networks. It determines the 
speed at which the connection weights are updated. If set too low it 
will cause the weights not to converge to a value necessary to lower 

the cost function value to zero. If set to a too high of a value the ANN 
will learn faster but this introduces the risk of the correct weight value 
being skipped due to the adjustment not being fine enough to 
converge to zero, which causes oscillations and divergence. The 
weight update strategy does not necessarily have to be the same as 
equation (4), but it is a commonly used description as most solver 
algorithms use it or a slightly modified version [16]. 
    Once the entire training stage is finished, the trained neural 
network is used in the training stage. Training stage consists only of 
forward propagation. In this stage, the outputs of the dataset and the 
neural network are compared, but no adjustments are made. This 
stage determines the quality of the neural network – how correctly 
does it predict the values stored in the dataset. This is used to 
determine if the quality of the training was high, and if it was not 
hyperparameter adjustment is necessary [15].  
 
4. Solvers Description 
 
    Solvers are one of the hyperparameters of the ANN. Solver is the 
algorithm used in the process of backpropagation to calculate the 
weights of the neural network. Because of them adjusting the weights 
of the ANN these algorithms play an important role in the final result 
of the ANN. If the neural network is trained badly, even with good 
architecture, it will not be capable of determining the correct weights 
needed to achieve low values of errors. 
    First solver used in performed research is SGD. SGD is an 
optimization algorithm designed for unconstrained optimization 
problems. Unlike some other solvers, SGD approximates the gradient 
of the neural networks for each individual training sample. The 
update is weight update is performed based on the equation [18]: 
 

𝛩௡௘௪ = 𝛩௢௟ௗ − 𝛼
𝜕𝐽(𝜃௜  ⋅ 𝑥௜)

𝜕𝜃௜
. (5) 

 
Note the similarity to the equation (4), with the difference being that 
SGD updates its value based on each individual sample’s cost 
function (error). This provides a better adjustment of individual 
weights. Two parameters can be adjusted: momentum, and whether 
the so called Nesterov momentum modification will be applied. 
Momentum is a value that further accelerates SGD in the relevant 
direction (𝐽(𝛩) → 0). This works by adjusting the learning rate when 
the goal condition of minimizing the value of cost function – when 
𝐽(𝛩) value is large the momentum parameter increases the value of 
learning rate and lowers it when value drops. This value helps with 
lowering oscillations and faster weight convergence. It’s introduced 
into the equation (5) as an additional component 𝑣 which adjusts the 
gradient update depending on the overall ANN loss value, as shown 
in [18]: 
 

𝛩௡௘௪ = 𝛩௢௟ௗ − 𝛼
𝜕𝐽(𝜃௜  ⋅ 𝑥௜)

𝜕𝜃௜
+ 𝑣௧ . (6) 

 
Where 𝑣௧ is determined by: 
 

𝑣௧ = 𝜇 ⋅ 𝑣௧ିଵ − 𝛼∇𝐽(Θ), (7) 
 
with parameter 𝜇 being the momentum parameter controlling the 
influence of speed v. Starting speed, 𝑣଴ equals zero.  
    Nesterov momentum (also known as Nesterov Accelerated 
Gradient – NAG) is a technique that adjusts the based on the 
intermediate position. The intermediate position is calculated based 
on the current value of the parameter 𝜇, and the current loss is 
calculated. The gradient is then further adjusted to achieve a lower 
error. This method, while slower in each step, provides a more 
accurate weight adjustment which can lead to a faster overall 
convergence [19]. 
    Adam is a different optimization algorithm, optimized for 
stochastic objective functions. It adaptively adjusts estimates of 
lower-order momentums and is designed to be computationally 
efficient. It adjusts the gradient in equation (4) in the similar manner 



as SGD does – shown in equation (6), but it uses two momentums 
and adjusts them differently. The weight in Adam algorithm are 
updated through [20]: 
 

𝛩௡௘௪ = 𝛩௢௟ௗ − 𝛼 ⋅
𝑚௧

ඥ𝑣௧ + 𝛩ᇱ
. (8) 

 
The equation Adam uses to adjusts the momentums are given by: 
 

𝑚௧ =
𝑚௧ିଵ 

1 − 𝛽ଵ
௧ , (9) 

and 

𝑣௧ = (1 − 𝛽ଶ) ෍ 𝛽ଶ
௧ି௜ ⋅ 𝛩ᇱ

௧
ଶ

௧

௜ୀଵ
, (10) 

 
with t being the current epoch (training iteration) – this means that 
weights are adjusted using all historical gradient values. Parameters 
𝛽ଵ, 𝛽ଶ ∈ [0, 1⟩  are constants with determine the exponential decay 
of the momentum values, or – in simpler terms, determine the speed 
of change for momentums 𝑚, 𝑣 respectively [20, 21].  
    AMSGrad is an expansion of the Adam algorithm, in a similar way 
to NAG for SGD. AMSGrad was designed to help with convergence 
problems Adam exhibited in some cases, for example when 
momentum 𝑣௧ is larger than the gradient Θᇱ. The difference between 
standard Adam and AMSGrad is that it stores the maximum historical 
average of the second momentum 𝑣௧ , up to the current step and uses 
that value to normalize the gradient. With this, the learning rate 
change is stopped from increasing which results in easier 
convergence [21]. 
    Both algorithms have default parameters, which are commonly 
used in research. Default SGD parameters are [22]: 𝛼 = 0.01, 𝜇 =
0.0, and NAG not used. The default parameters for Adam are [22]: 
𝛼 = 0.001, 𝛽ଵ = 0.9, 𝛽ଶ = 0.99, and AMSGrad not used. 
 
5. Parameter choice 
 
    Hyperparameters of the neural network are those values that 
determine its architecture. In presented research previously 
determined parameters are shown in Table 2. Values for each hidden 
layer (HL) are combined and written that the left most value is the 
hidden layer nearest the input. 
 
Table 2. Predefined hyperparameters of the used ANN. 
 

Hyperparameter Value 
Number of HL 5 
Neuron per HL 80,65,25.75.80 
Activations per HL Sigmoid, Tanh, ReLU, ReLU, ReLU 
Epochs 13 

 
These parameters are fixed and variations are introduced via a 
modification of solver parameters. Parameters varied for each solver, 
along with their possible values are presented in Table 3. for SGD 
and Adam solver. 
 
Table 3. Parameters used in the Grid Search for each of the 
optimized solvers 
 

Solver Parameter Possible Values Count 
Both 𝛼 0.001, 0.005, 0.1, 

0.01, 0.2, 0.02, 0.1, 
0.5, 0.05, 0.5 

10 

SGD 𝜇 0.0, 0.02, 0.005, 
0.1, 0.01, 0.5, 0.9 

7 

 NAG True, False 2 
Adam 𝛽ଵ 0.9, 0.95, 0.85, 

0.75, 0.8, 0.99 
6 

 𝛽ଶ 0.99, 0.95, 0.9, 0.8, 
0.75, 0.85 

6 

 AMSGrad True, False 2 

The technique used for testing out parameter combinations is grid 
search. In grid search all the possible combinations of values are 
created. For this paper, with the values listed in Table 3. the total 
number of combinations for SGD solver is 140 and 720 for the Adam 
solver.  
    The quality of the trained neural networks is determined through 
the use of root mean square error (RMSE), defined with: 
 

𝑅𝑀𝑆𝐸 =  ඨ
∑ (𝑦௜ − 𝑦పෝ)௡

௜ୀଵ

𝑛
. (11) 

 
The solution with a lower RMSE is considered a better solution, due 
to having a lower regression error compared to the solution with a 
higher RMSE value. Each parameter combination is executed three 
times, to avoid poor results in a single run due to randomization of 
initial weights, and the best solutions are then executed 20 additional 
times to achieve statistical significance. 
 
6. Results 
 
    SGD algorithm has achieved the best results with following 
parameters:  

 𝛼 = 0.05,  
 𝜇 = 0.02, and  
 NAG used.  

Over the course of 20 runs the average RMSE for given parameters 
was 4.275 [MW] with standard deviation of 0.08369. 
    Adam algorithm has achieved the best results with the following 
parameters:  

 𝛼 = 0.001,  
 𝛽ଵ = 0.95,  
 𝛽ଶ = 0.99, and  
 AMSGrad not used.  

Over the course of 20 runs the average RMSE with given parameters 
was 4.259 with the standard deviation of: 0.046395. 
    The achieved results show the average improvement over the 
results from the previous research of 0.03 [MW] for SGD and 0.046 
[MW] for Adam. 
 
7. Conclusion 
 
    Obtained results show only the slight improvement over the results 
previously obtained. While there is improvement, it is questionable 
whether the solver parameter adjustment beyond the default values is 
strictly necessary, considering the added complexity and the time 
needed to test all the combinations. It is also apparent that the values 
of best parameters are close to the default values for both algorithms. 
Still, if higher precision is needed the results point towards the fact 
that solver parameter adjustment can provide that. Further tests on 
different datasets are necessary to test the effect of solver parameter 
changes. Future work could also include the comparison between 
various implementations of solver algorithms, as different 
implementations could demonstrate different results (Keras 
framework has been used in this research). Furthermore, the 
difference in training times with different solver algorithms is 
apparent and further research in optimizing the parameters with the 
goal of faster training could be performed. 
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    Dataset used in research was obtained from the paper Tüfekci, P. 
(2014) “Prediction of full load electrical power output of a base load 
operated combined cycle power plant using machine learning 
methods” [23]. 
 
9. Nomenclature 
 

Abbreviations 
CCPP Combined Cycle  Power Plant 

GT Gas Turbine 
ST Steam Turbine 
LP Low Pressure 
HP High Pressure 
AI Artificial Intelligence 

MLP Multilayer Perceptron 
ANN Artificial Neural Network 
EC Evolutionary Computing 

SGD Stochastic Gradient Descent 
NAG Nesterov Adaptive Gradient 

RMSE Root Mean Square Error 
HL Hidden Layer 

 
Latin Symbols 𝑚௧ Adam momentum 1 
𝑥 Individual input 𝑣௧ Adam momentum 2 
𝑦 Expected ANN output Greek Symbols 
 𝑦ො Actual ANN output 𝜇 SGD v parameter 
𝑋 Input Vector 𝛽ଵ 𝑚௧ decay 
𝑡 Epoch 𝛽ଶ 𝑣௧ decay 
𝑛 Number of samples Θ Weights vector 
𝐽 Cost Function/Loss 𝜃 Individual weight 
ℱ Activation Function Θ′ Gradient 
𝑣 SGD momentum 𝛼 Learning Rate 
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