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Abstract

Automatically designing new dispatching rules (DRs) by genetic programming
has become an increasingly researched topic. Such an approach enables that
DRs can be designed efficiently for various scheduling problems. Furthermore,
most automatically designed DRs outperform existing manually designed DRs.
Most research focused solely on designing priority functions that were used
to determine the order in which jobs should be scheduled. However, in some
scheduling environments, besides only determining the order of the jobs, one has
to additionally determine the allocation of jobs to machines. For that purpose,
a schedule generation scheme (SGS), which constructs the schedule, has to be
applied. Until now the influence of different choices in the design of the SGS
has not been extensively researched, which could lead to the application of a
SGS which would obtain inferior results. The main goal of this paper is to
perform an analysis of different SGS variants. For that purpose, three SGS
variants are tested, two of which are proposed in this paper. They are tested
in several variations which differ in details like whether they insert idle times in
the schedule, or if they select the job with the highest or lowest priority values.
The obtained results demonstrate that the automatically designed DRs with the
tested SGS variants perform better than manually designed DRs, but also that
there is a significant difference in the performance between the different SGS
types and variants. The best DRs are analysed and show that the main reason
that they performed well was due to the more sophisticated decisions they made
when selecting the appropriate machine for a job. The results suggest that it is
best to apply SGS variants which use the evolved priority functions to choose
both the next job and the appropriate machine for that job.
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1. Introduction

Scheduling problems have been extensively researched in the literature due to
their complexity and applicability in different areas. In general, scheduling is de-
fined as the process in which a certain set of jobs (activities) has to be scheduled
on a scarce set of machines (resources) to optimise some user-specified criteria
[1]. Scheduling problems are quite widespread and have applications in different
areas from the medical sector [2, 3], workforce scheduling [4], biopharmaceutical
companies [5], and many others. Since most scheduling problems are NP-hard,
the majority of researchers focused on either designing new problem-specific
heuristic methods or applying existing metaheuristic methods. However, the
type of methods that can be applied depends on the conditions under which the
schedule has to be constructed. For example, if all the information about the
schedule is known beforehand, then the entire schedule can first be constructed
and then executed. In such static conditions, it is possible to use a great number
of heuristic and metaheuristic methods to construct the schedules [6, 7, 8].

Metaheuristics have become one of the most popular methods used for solv-
ing not only scheduling but also other continuous or combinatorial optimisation
problems. Among them the most prevalently used are some of the older and
most acclaimed methods like genetic algorithms [9], particle swarm optimisation
[10], ant colony optimisation [11]. However, in recent years a plethora of new
metaheuristic methods, which usually mimic various natural phenomena or ani-
mal behaviour, have been designed by different researchers. Some of these newer
metaheuristic algorithms include the sine-cosine optimisation method [12], grey
wolf optimisation [13], whale inspired optimisation algorithms [14, 15], moth
flame algorithm [16], salp chain optimisation methods [17, 18], and many oth-
ers.

Aside from the aforementioned methods that search for the optimal solution
of only one problem instance, methods like genetic programming (GP) [19], gene
expression programming (GEP) [20], Cartesian genetic programming (CGP) [21]
and others, have also been proposed. These methods differ in the sense that
they can actually be used to evolve a strategy or heuristic that can solve a set of
problems, rather than only one problem instance. GP has not only demonstrated
the ability to obtain good solutions for many different problems [22, 23], but
also that it is highly appropriate of being applied as a hyperheuristic method,
i.e. a method the for automatic design of novel heuristics [24, 25, 26, 27, 28, 29].
In recent years, GP and similar methods were applied for automatic generation
of heuristics for various problems like the capacitated arch routing problem
[30, 31, 32], timetabling problems [33, 34, 35], vehicle routing problems [36],
design of pipeline networks [37], and multidimensional knapsack problem [38].

In the case when scheduling is performed under dynamic conditions, the
number of methods that can be used to construct the schedule is limited. This
is because the characteristics of jobs become available during the execution of the
system and are not known at the beginning. Thus, algorithms which search the
solution space, as most metaheuristics do, cannot be applied to these problems
without modifications, since they would not have all the necessary information
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to construct valid solutions. Such scheduling problems are usually solved by
using constructive heuristics, which iteratively construct the schedule during
the execution of the system. Constructive heuristics are most often designed in
the form of dispatching rules (DRs), which rank all the jobs by a certain priority
calculated based on selected job and system parameters, and then schedule the
job with the highest priority [39, 40, 41]. Therefore, DRs do not need all the
information about the problem, but rather use only the information that is
currently available to construct the schedule. However, DRs are problem-specific
heuristics, which means that different DRs need to be designed for optimising
different criteria and solving different kinds of scheduling problems. Designing
DRs is not a trivial task, and a lot of domain knowledge and experience is
necessary to design effective DRs. This is a serious drawback since it would
mean that DRs would need to be manually designed for all possible scheduling
problems that could appear, which is not feasible.

Figure 1 illustrates how a DR could schedule a certain set of jobs in a simple
scheduling problem. In this example, six jobs need to be scheduled on three
available machines starting from a certain time point t0. The DR is invoked
each time a machine is free and decides which job to schedule on which machine.
At the start of the system, the DR selects and schedules one job on each of the
machines as all three machines are free at the start. Based on the properties
of jobs, the DR ranks all the jobs and selects the best one, which would in this
case be job J4. The DR then schedules this job on one of the machines that
are free. In this case it would schedule the job on machine M1 as denoted in
Subfigure 1a. Since some machines are still available, the remaining jobs are
ranked again and the best job is selected and scheduled on a free machine. This
is illustrated in Subfigure 1b where job J1 is selected and scheduled on machine
M3. Machine M2 is still available, therefore the entire procedure is repeated
once again, after which job 5 is selected and scheduled on machine M2. At this
point, there are no free machines and the system executes those jobs that are
currently scheduled on the machines until a certain machine becomes available
again. This happens at time moment t1, when machine M2 finishes executing
its job. At that point the DR is invoked again, and it determines that job J2
should be executed on that machine. This is shown in Subfigure 1d. After this,
the machines continue executing until machine M3 becomes available at time
moment t2. The entire procedure is repeated, and the DR selects and schedules
job J6 on the machine M3, as show in Subfigure 1e. Finally, the DR is invoked
one last time at moment t3 when machine M3 becomes available once again.
Since only job J3 is left the DR selects it and schedules it on machine M3, as
illustrated in Subfigure 1f.

In recent years, a great deal of research focused on applying GP and sim-
ilar methods for the automatic creation of DRs. In this approach, the DR is
decomposed into two parts, a priority function (PF) used to calculate the pri-
orities of jobs, and a schedule generation scheme (SGS) which uses the PF to
construct the schedule. Such an approach of designing DRs has demonstrated
to be quite efficient, not only because new DRs can be designed in a smaller
amount of time, but also since the automatically designed DRs perform equally
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(a) First step of the DR (b) Second step of the DR

(c) Third step of the DR (d) Fourth step of the DR

(e) Fifth step of the DR (f) Sixth step of the DR

Figure 1: Scheduling strategy of a DR

well or even better than existing manually designed DRs. As a consequence,
the topic became extensively researched [42, 43]. However, the entirety of re-
search focused almost exclusively on designing PFs, while the SGS part did not
receive a lot of attention. One of the main reasons for this is that most research
focused on the job shop environment, in which the only decision that had to
be made was the ordering of jobs. Therefore, the SGS only had to rank all the
jobs by using the PF and then schedule them in that order. However, research
in different scheduling environments has already demonstrated that even subtle

4



differences in the design of the SGS can lead to a significant difference in the
obtained results [44]. Therefore, in environments in which ordering the jobs is
not the sole decision that has to be made, the SGS also has a more significant
influence on the quality of the constructed schedule. For example, in some envi-
ronments, it is additionally required to determine to which machine the selected
job will be allocated, like in the parallel machines environment. Therefore, the
SGS does not only have to rank the jobs but also in a certain way determine
how to allocate them to different machines. Thus, they are required to perform
an additional decision that can have a significant effect on the quality of the
constructed schedules. Even though DRs have already been generated for the
unrelated machines environment, the design and choice of an appropriate SGS
have still not received much attention, and thus it is not known whether better
results could be obtained by performing different design choices.

Because of the above reasons, the goal of this paper is to analyse how different
designs of the SGS can affect the performance of automatically generated DRs in
the unrelated machines environment. Therefore, in addition to the existing SGS
used in the literature for the unrelated machines environment, two additional
schemes are proposed. One proposed SGS is modelled to more closely resemble
the schemes used in manually designed DRs. By using this scheme it will be
possible to determine if the existing manually designed DRs already present the
best that can be obtained or whether it is possible to fine-tune the PF even
further. The second SGS is modelled with the motivation to separate the choice
of selecting the next job and the machine it will execute on into two independent
PFs, which was not the case until now. This division should hopefully lead to
the design of more interpretable PFs. Furthermore, the paper also analyses the
influence of several design choices, like selecting whether to schedule jobs with
the smallest or largest priority value, or whether to take the absolute value of the
priorities, which have also not been considered until now. The influence of using
an SGS which allows idle times or not will also be analysed, as in the unrelated
machines environment this decision largely affects the construction process of
the schedule. Although it is intuitively expected that using idle times should
lead to better schedules, we were unable to find any research in designing DRs
to support this claim. A detailed analysis of the evolved DRs is also performed,
both based on the interpretability of the evolved PFs, and the decision process
performed by the different DRs. The analysis shows that the main reason for
the superior performance of the automatically designed DRs lies in their ability
to evolve the strategy by which to allocate jobs on machines. This observation
can influence how DRs are designed, especially the manually designed ones, as
it demonstrates the significance of the decision of allocating jobs to machine,
and the limitation of the scheme used by manually designed DRs. Therefore,
instead of putting most focus on designing the PF which ranks the jobs, equal
attention should be placed also on designing better schemes for allocating jobs
on machines. The contributions of the paper can be summarised through the
following points:

1. Comparison of three SGS variants for the unrelated machines environment,
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two of which are proposed in this paper
2. Analysis of the influence of selecting jobs with highest or lowest priorities,

taking absolute values of priorities, and inserting idle times in the schedule
3. A detailed analysis of the scheduling decisions performed by the SGS vari-

ants showing that a superior performance can be obtained by those SGS
variants which also use a PF for the allocation of jobs to machines

The rest of the paper is organised as follows. Section 2 gives a short overview
of the existing researched performed in the area of automatic design of DRs by
GP. Section 3 provides background information about scheduling in the unre-
lated machines environment and designing new DRs with GP. The SGS types
and their variants are described in Section 4. Section 5 describes the exper-
imental design and outlines the selected parameter values for performing the
experiments. The results obtained from the performed experiments are pre-
sented in Section 6. Section 7 provides an analysis of several PFs that were
designed for different SGS variants. The discussion about the obtained results
and the performed analysis is given in Section 8. Finally, the conclusion and
directions for further research are given in Section 9.

2. Literature overview

The topic of automatically designing DRs for various scheduling problems
has become quite extensively researched in the literature. In the first attempts,
GP was applied to generate DRs for the single machine and job shop environ-
ments [45, 46]. Even in those first studies, it became evident that GP holds
great potential for the automated design of DRs. Further research on this area
has focused on many different topics, mostly to improve the results of the gener-
ated DRs, or to apply them to new and specialised scheduling problems, like the
flexible job shop environment [47]. In subsequent studies scheduling problems
with various additional criteria like setup times [48], precedence constraints [48],
and machine breakdowns [49, 50] have also been considered. Furthermore, a lot
of research has focused on using different methods for constructing the DRs like
gene expression programming [51, 52], artificial neural networks [53], and differ-
ent rule representations in GP [54]. An alternative representation for DRs was
proposed in [55]. The proposed representation can effectively select the relevant
attributes, which leads to simpler and more interpretable expressions. Gener-
ating DRs that are appropriate for generating schedules which optimise several
criteria simultaneously has also been researched for the job shop [56, 57, 58, 59],
and unrelated machines environments [60]. The great potential of GP for auto-
matic construction of entire scheduling policies was demonstrated in [61], where
GP was used to design due date assignment rules. This study demonstrated
that these automatically designed scheduling policies perform better than many
of the tested manually designed ones. In [62] the authors proposed a feature
selection method which obtains better feature subsets and determines the most
important features which should be used when constructing the DR. In [63] the
authors propose an adaptive search strategy which uses the information on the
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frequency of features obtained in good DRs to guide the search to promising
areas in the search space. Feature construction was also investigated in [64]
to improve the performance of the designed rules. The ability to evolve both
the sequencing and routing rules simultaneously has been investigated in [65],
where a multi-tree representation was applied for that purpose. The proposed
representation demonstrated that it performs better than the cooperative co-
evolution procedure when simultaneously evolving both sequencing and routing
rules. Another representation that considers the contributions of the different
features and combines them in a more sophisticated way is studied in [66].

Another researched area is to perform scheduling under uncertainties [67, 68,
69] which means that some parameters, like processing times, are not completely
known when creating schedules, but rather just estimated and their values be-
come known only after the schedule has completed with its execution. In [70]
the authors propose a two-stage approach for scheduling in a work centre. In
this study, GP is used to design novel DRs, while an evolutionary algorithm
is applied to assign the evolved rules to different work centres. To increase
the performance of the generated DRs, several studies used various ensemble
learning methods with great success. Some of the methods that were applied
or proposed for constructing ensembles of DRs include cooperative cooevolu-
tion [71], NELLI-GP [72], SEC [73], BoostGP and BagGP [41]. Additionally,
in [74] the authors have investigated several ensemble combination schemes,
and demonstrate that the linear combination scheme obtains the best results.
The generation of DRs has proven to be a computationally intensive process,
due to the reason that a lot of problem instances have to be used for train-
ing to ensure that rules with good generalisation properties are obtained. As
a consequence various surrogate models [75, 76], or directions for constructing
smaller problem instances [77] have been proposed to improve the evolution
speed and obtain better results with the same or smaller computational effort.
Since the underlying evolution of DRs is quite difficult to follow, new methods
for better visualisation and understanding of the evolutionary process have been
proposed and applied for the job shop scheduling problem [78]. The work in the
aforementioned study is expanded in [79] by using surrogate models to allow
decision-makers to interact and guide the evolution process. In [80] the authors
consider a method that guides GP to unexplored areas by using the growing
neural gas method. To additionally improve the quality of the obtained DRs, in
[81] a new strategy is proposed for selecting subtrees in crossover and mutation,
where the probability of selecting the subtree is based on its importance and the
type of the operators. The topic of selecting the appropriate problem instances
to evolve DRs is considered in [82]. The study proposes an active sampling
method that selects good instances during the evolutionary process. Another
recent research direction is directed towards evolving DRs for the single machine
environment with variable capacity [83]. Since the initial results demonstrated
that for this variant of problem automatically evolved DRs obtained better re-
sults than manually designed rules, the authors further improved the results by
using ensemble methods to construct DRs [84, 85]. In [86] it was demonstrated
that automatically designed DRs can also be applied to initialise the starting
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population of a genetic algorithm, which significantly improves its performance.
Although it is evident that most of the research has focused predominantly

on the generation of PFs, in some studies new SGS variants have been defined,
although usually with the intent of adapting DRs to some special conditions.
One of the earliest studies where some kind of SGS was used was in [87], where
a GP method that evolved three separate expressions was used. In this case,
one expression represented a decision function that decided which of the other
two evolved PFs to use for scheduling based on the current system parameters.
Therefore, the general SGS had to be slightly adapted to conform to this new
scheduling logic. Another example where a new SGS for DRs was defined was
when trying to generate iterative DRs that are specialised for static scheduling
conditions [88]. In this SGS the schedule is constructed several times and each
time the schedule is reconstructed additional information is used from previously
constructed schedules. An area in which the design of different SGS variants was
studied in more detail is the order acceptance and scheduling problem (OAS)
in which it is not only required to schedule the job, but also to decide which
jobs to select for scheduling, since now there is a possibility that jobs do not
have to be accepted if deemed that they could not bring enough profit [89, 90].
Since in this problem it is required to perform two decisions, it was required to
specify an appropriate SGS. In these studies, several SGS variants were tested,
most notably a variant in which a single PF performs both decisions, and a
variant where the acceptance decision is performed by one PF and the scheduling
decision is performed by another PF. Although a bit surprising, the results
showed that the variant in which the PF performs both decisions obtains better
results. In [44] an analysis of different SGS variants for the resource constrained
scheduling problem was performed. In this study, it was also demonstrated
that the selection of different SGS variants can influence the performance of the
generated DRs. These few studies demonstrate the importance of designing a
good SGS, since the have a significant influence on the results.

Several studies focused on generating DRs for the unrelated and parallel
machines environment [91, 92, 60, 41, 73], in which a single SGS was used,
but none of them has investigated the design of appropriate SGS variants and
their influence on the performance of the generated DRs. Therefore, there still
exists a large gap in this area, and many open questions, which have not been
answered, still remain. Furthermore, the design choices of the existing SGS have
not been explained and thus the question remains whether different SGS types
or variants could possibly lead to a better performance of the automatically
designed DRs. Since the studies dealing with SGS variants for other scheduling
problems demonstrated that different choices in the design of SGS variants can
have a significant influence on the obtained results, it is likely that the situation
would be similar for the unrelated machines environment as well.

A more detailed overview of the research that has been done in the area of
automated design of DRs is presented in [42, 43, 93].

8



3. Background

3.1. Unrelated machines environment
The unrelated machines environment is a scheduling environment in which

several machines are executing in parallel that can process jobs. This environ-
ment belongs to the class of single stage environments, which means that each
job needs to be executed on a single machine to be completed. The unrelated
machines environment is a specialised type of the parallel machine environment,
in which each job has a different execution time on each of the machines. These
execution times are completely provisional, which means that it is not possible to
determine relations between different machines (for example that one machine
executes all of the jobs two times faster than another machine). Scheduling
in the unrelated machines environment can be found in many practical real-
world examples, such as in multiprocessor computers, landing lanes in airports,
semiconductor manufacturing, painting and plastic industries [94, 95, 96, 1].

The unrelated machines scheduling problem consists of n jobs that have to
be allocated to one of the m available machines. In the standard definition
of the problem each machine can execute only a single job at each moment in
time, and once a machine starts executing a job it has to execute it until the
end before it can start executing another job. A job in the problem is usually
denoted with the index j, while a concrete machine is denoted with the index
i. For each job in the problem instance several properties are defined, which
are used to calculate values of different scheduling criteria. The first and most
important property is the processing time of job j on machine i which is denoted
as pij . Jobs are usually not available from the start of system execution but are
rather released during the execution of the system. The release times of jobs are
denoted as rj . Furthermore, not all jobs have the same importance. Usually,
some jobs are more important since they will either lead to a larger profit if
finished sooner, or cause a larger penalty if not completed on time. This is
modelled by defining a weight wj for each job, which has a value between 0 and
1. A larger value of this parameter denotes that the job has higher importance.
Finally, jobs usually also have a due date dj defined, which is the time until jobs
should be completed or otherwise a certain penalty will be caused. Based on the
aforementioned properties the schedule is constructed in a way that a certain
criterion is optimised, which can be the total duration of the schedule, the
number of late jobs, the maximum lateness of a job, and similar criteria. This
paper will focus on minimising the total weighted tardiness (TWT) criterion,
which is defined as TWT =

∑
j wjTj , where Tj denotes the tardiness of job j.

The tardiness of job j is defined as Tj = max{Cj − dj , 0} where Cj denotes the
completion time of job j. In this criterion jobs that are completed after their due
date incur a certain penalty or loss, which has to be minimised. The considered
problem can also be more formally defined using a mixed integer programming
formulation [97]. In this formulation the time horizon is discretized into time
periods 1, . . . , l, where l denotes the largest completion time of all jobs. The
binary variable χt

ij is equal to 1 if job j ∈ J starts executing on machine i ∈M
at time t, otherwise the variable is equal to 0.
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min
∑

j

wjTj (1)

s.t.
∑
i∈M

l∑
t=0

χt
ij = 1 j ∈ J (2)

∑
j∈J

i−1∑
h=max(0,t−pij)

χh
ij ≤ 1 i ∈M, t = 1, . . . , l (3)

∑
i∈M

rj−1∑
t=0

χt
ij = 0 j ∈ J (4)

Cj ≥
∑
i∈M

l−1∑
t=0

(t+ pij)χt
ij j ∈ J (5)

Tj ≥ Cj − dj j ∈ J (6)

Constraint (2) ensures that each job starts processing on only one machine
at only one point in time. Constraint (3) allows for only a single job to be
processed at any time on any of the machines. That no job starts executing
prior its release time is ensured by constraint (4). Constraints (5) and (6)
represent the constraints imposed on the completion time Cj and tardiness Tj

of job j.
The final part which needs to be specified for scheduling problems is whether

they are solved under static or dynamic conditions. This paper focuses on
dynamic conditions, which means that jobs are released into the system during
its execution and that no job properties are known before the job is released
into the system (not even the release time). Under such conditions, DRs are
the most appropriate methods to solve scheduling problems. As described in
the introduction, DRs consist of a PF and an SGS. For example, a PF can
be defined as 1

pij
, which would mean that the priorities of jobs are inversely

proportional to their processing times. The SGS then needs to define how it
will schedule jobs to machines by using the PF. For example, the SGS can be
defined so that it will select the job with the highest priority value and schedule
it. However, the SGS still needs to determine to which machine the selected job
will be allocated. One way to determine this would be to allocate the job to the
machine on which it would be completed the soonest. As can be seen from the
example, both the PF and the SGS are of great importance when constructing
the schedule. Thus, both parts of the DR need to be designed carefully to ensure
that it will perform well.

3.2. Designing dispatching rules with genetic programming
Designing a DR automatically can be viewed as a hyper-heuristic optimisa-

tion problem in which, by using a metaheuristic method, a heuristic that can
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be used to solve various scheduling problems can be obtained. Formally, this
problem could be defined as [98]:

F (h∗|h∗ → s∗, h∗ ∈ H)← f(s∗, s∗ ∈ S) = min(f(s), s ∈ S),

where h represents a heuristic, in this case a DR, from the heuristic space H, s
represents a solution, in this case a schedule, in the solution space S for some
scheduling problem under consideration, and f(s) the function for evaluating
the quality of solution s which is mapped to the function F (h) which evaluates
the quality of the obtained heuristic. The quality of the heuristic h is evaluated
by executing it on a certain problem and generating the solution s which is
then evaluated using the function f(s). In other words, we are searching for
a DR which obtains the best results for the considered problem. As denoted
previously, the DR consist out of a PF and an SGS. Leaving GP to evolve the
entire DR would be too difficult, as the SGS needs to have a certain structure
to create feasible schedules. Therefore, this part is designed manually, and
the evolution of PFs is left to GP. This entire process is also illustrated in
Figure 2. The flowchart shows that the DR consists out of the SGS and PF.
As illustrated, the GP is used to automatically design a new PF which is used
in synergy with a manually designed SGS to construct a schedule for a given
scheduling problem. Based on the input parameters of the scheduling problem,
which represent various job and machine properties (like the processing times
or due dates), the PF calculates the priorities for jobs and the DR constructs
the schedule for that problem.

For GP to evolve new PFs, the set of primitive nodes needs to be defined. The
nodes which will be used depend largely on the machine environment, optimised
criteria, and additional constraints imposed on the schedule. Therefore, the set
of primitive nodes has to be adapted depending on the concrete problem. For
the unrelated machine environment the terminal set denoted in Table 1 has been
found to work best in previous studies and will also be used in this study [92].
The terminals are divided into three groups depending on whether their values
will be different for various jobs, machines, or the combination of both. The set
of function nodes is even smaller consisting only of the addition, subtraction,
multiplication, protected division (returns 1 if the denominator is close to 0),
and positive operator (POS(a) = max(a, 0)). With these primitive nodes, GP
constructs the PF of the DR. The PF evolved by GP is used by a manually
designed SGS to construct the schedule for a certain problem instance.

The benefit of this approach is that DRs can be designed for various criteria,
and also that it is possible to design DRs that are specifically tailored for solving
a certain kind of scheduling problem. As a consequence, they can perform much
better than manually designed DRs, which are often tailored to be very general.
However, this methodology also has certain drawbacks. To design new DRs it
is required to evolve a new PF, which can take some time depending on the
algorithm parameters and training instances. Furthermore, the quality of the
evolved PFs depends on the problems that were used to evolve them. Thus,
if the evolved DRs are used for solving problems that differ significantly from
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Figure 2: Structure of automatically generated DRs

those on which the GP trained them, the DRs will likely obtain poor results.
An additional thing that needs to be outlined is that the approach needs to
be adapted when additional different conditions are considered, by providing
more terminal nodes to GP and also adapting the SGS to prevent the DR from
creating unfeasible schedules.

Aside from GP, there are also other alternatives that can be used to design
PFs. For example, one could simply use a weighted sum of different job and
system properties, and then by using a genetic algorithm, or other metaheuristic
methods, evolve the weights for each property [53]. However, this method has
demonstrated to be quite limited and when compared to others it did not achieve
competitive results. Another alternative is to use neural networks to design
PFs [53]. Although such DRs can achieve almost equal performance as those
designed by GP, they suffer from a different problem. Namely, such PFs are
not interpretable, and thus no knowledge can be extracted from them, and
neither can their decision process be explained. Another model that was used
for generating PFs was GEP [99, 100], which is similar to GP and achieved
competitive results when compared to it.

Since the PF is used in synergy with the SGS to represent the DR, this
means that the design choices that are made in the SGS will also affect the
evolutionary process of GP. Even though GP evolves the PF and tries to obtain
those which are close to optimal, the quality of the entire DR is also restricted

12



Table 1: Terminal nodes used by GP

Terminal Description
Job dependent terminals

w weight of the job (wj)
pmin the minimal job processing time on all machines: mini(pij)
age the time that the job spent in the system: time− rj

dd due date (dj)
pavg the average processing time on all machines
Machine dependent terminals

MR the amount of time until the current machine becomes available
Job and machine dependent terminals

pt processing time of job j on the machine i (pij)
SL positive slack: max(dj − pij − time, 0)
PAT the amount of time until the machine with the minimal pro-

cessing time for the current job will be available

by the SGS. Therefore, even if GP obtains the optimal PF, the entire DR might
still perform poorly due to a bad SGS design. As the SGS is designed manually,
the designer needs to ensure that the choices performed in the design will not
negatively affect the entire DR. Instead of focusing only on techniques which
improve the quality of the evolved PF, it is also required to improve the SGS
as much as possible. Therefore, one could say that the SGS also has to be
optimised to a certain degree, albeit manually by considering the influences of
different design decisions in the SGS. Only when both parts of the DRs, namely
the SGS and PF, are optimised can we be sure that a good DR was obtained,
and not just a suboptimal DR limited by the poor design of either the PF or
SGS. The next section outlines different SGS variants that can be used for the
unrelated scheduling problem and outlines various decision which can be made
during the design process.

4. Schedule generation schemes

This section gives details about some variants of SGS that can be defined
for the unrelated machines environment.

4.1. Variants of SGS
For the unrelated machines environment it is possible to use various SGS

variants, depending on how the schedule should be constructed by using the
generated PF. The first type, denoted as simple SGS, is shown in Algorithm
1. The reasoning behind this SGS is to use a single PF to determine both
the sequence of jobs and their allocation to machines. The evolved PF is first
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applied to determine the best machine for each available job. This is performed
so that for each job the machine with the best PF value is associated with it.
Then, out of all job-machine associations, the one for which the PF achieves the
best value is selected and the job is allocated to its associated machine. In this
way, both the sequencing and scheduling decisions are performed by a single
PF, which is a benefit since only one PF needs to be evolved. On the other
hand, it might be difficult for GP to design a PF that performs both of these
decisions at the same time.

Algorithm 1 Simple SGS

1: while unscheduled jobs are available do
2: Wait until at least one job and one machine are available
3: for all jobs where rj < currentT ime and each machine i in m
4: Obtain the priority πij of scheduling job j on machine i
5: end for
6: for all available jobs
7: Determine the best machine (the one with the best πij value)
8: end for
9: while jobs whose best machine is available exist do
10: Determine the best priority of all such jobs
11: Schedule the job with best priority
12: end while
13: end while

Most of the manually designed DRs in the unrelated machines environment
do not use a single PF to also determine the allocation of jobs to machines.
The main reason for this is that PFs could easily cause unbalanced schedules
where most jobs would be allocated to only a few machines. To avoid such a
problem, the allocation of jobs to machines is usually performed independently
of the PF. The most common way is to allocate the job on the machine on
which the job would be completed the soonest (taking into account the time
when the machine will become available). In that way, it is easier to ensure
that jobs are allocated more evenly across all the machines. Based on that
idea, an SGS that selects jobs based on the PF and allocates them using some
kind of a predefined heuristic is proposed, and will be called the heuristic SGS.
Algorithm 2 represents such an SGS. In this SGS, the priority value is calculated
for all released jobs, and the one with the best priority value is selected. For the
selected job the completion times on each of the machines are calculated, as the
sum between the processing time of job j on machine i and the maximum value
between the release time of the job and the time when the selected machine
becomes available. The job is allocated to the machine on which it has the
smallest completion time. In that way, GP is tasked only with obtaining a good
PF for selecting the jobs, while their allocation to machines is left for the SGS
to decide.

It is also important to note that there are two variants in which the priority
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values can be calculated. The first one is that the PF calculates the priorities for
jobs by also taking into account the machines, which means that it uses terminal
nodes that depend on the machine on which the job would be scheduled. The
SGS variant that works in that way will be denoted as heuristic1. However,
these priority values are only used to select the job, and the allocation to the
machine is still done based on the minimum completion time of the job. The
motivation for this variant is to see whether considering information about the
machines can lead the DR to select the appropriate job since in that case, it can
have a better overview of the entire problem.

Since the PF is not used to make any decisions about the allocation to a
concrete machine, it could be possible that using information about machines
could be misleading. Therefore, the second variant of this SGS uses the PF
to calculate priority values for jobs based solely on job properties, meaning
that the PF does not use any terminals that depend on a concrete machine
like the pt, MR, and SL nodes. However, since the SL node which represents
the slack of the job is quite important, it has been redefined in this case as
max(dj − pavg − time, 0). In that way, it is at least possible to approximate
the slack time of the job based the average processing time of the job on all
machines. The motivation for this variant is to analyse whether constraining
the information that is used only to the information about jobs can improve
the performance of the generated DRs. This SGS variant will be denoted as
heuristic2.

Algorithm 2 Heuristic SGS

1: while unscheduled jobs are available do
2: Wait until at least one job and one machine are available
3: for all jobs where rj < currentT ime
4: Calculate priority πj for job j
5: end for
6: Determine job j with the best πj value
7: Determine the machine on which job j would be completed the soonest
8: Schedule job j on the selected machine
9: end while

The previous SGS variants use only a single PF, which is applied just for
selecting the job that should be scheduled (in the heuristic SGS), or for both
selecting the job and the machine on which it should be scheduled (in the simple
SGS). Another way to create the schedule would be to use two independent PFs,
one to determine which job should be selected, and the other for allocating the
selected job to a concrete machine. Algorithm 3 represents the SGS which
uses two priority functions to construct the schedule. The proposed SGS first
calculates the priority values for all available jobs by using one PF. It selects
the job with the best priority value and then by using another PF it calculates
priority values for all machines and schedules the selected job on the machine
with the best priority value. In this case it is evident that GP has to evolve
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two PFs. However, each PF is only tasked with selecting either only jobs or
machines, which could possibly lead to better results and maybe simpler and
more interpretable PF. This SGS variant will be denoted as twotrees. Since
this SGS uses two PFs, for each one of them it is required to define which
terminals are used to construct them. The PF used to select the job uses the
same terminals as the heuristic2 SGS, since it does not consider the machines
in the calculation of priorities. However, the PF that is used to determine
the appropriate machine for the selected job has to take into account both the
information about the job and the machine, which means that all the terminals
will be used just like for the PFs generated for the simple and heuristic1 SGS
variants.

Algorithm 3 Twotrees SGS

1: while unscheduled jobs are available do
2: Wait until at least one job and one machine are available
3: for all jobs where rj < currentT ime
4: Calculate the priority πj of job j by using the first PF
5: end for
6: Determine job j with the best priority value
7: for each machine i in m
8: Calculate the priority πij for allocating job j on machine i, by using

the second PF
9: end for
10: Schedule job j on machine i
11: end while

4.2. Priority calculation
In the previous section, only the main logic of each SGS was defined. How-

ever, there are still details concerning the PFs which were not specified. One
such detail is in which way the SGS variants will use the PF to select jobs and
machines. The value of the PF is used to determine the priorities of individual
jobs. This means that it is possible to define two variants, one in which the job
or machine with the highest PF value has the largest priority ("best priority" in
the algorithm denotes the largest value), and one in which the job and machine
with the lowest PF value have the largest priority ("best priority" in the algo-
rithm denotes the lowest value). Therefore, the PF value can be interpreted in
different ways to determine which job or machine has the highest priority dur-
ing scheduling and has to be scheduled first. Although it might seem strange to
prioritise a job with the lowest priority value, the reason why this is examined
is to analyse whether any of the SGS variants has a bias towards any of the two
ways of prioritising jobs and machines. Knowing if such a bias exists could then
help to improve the performance of GP by including this knowledge into the
algorithm. Most often researchers opted for the variant in which the element
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with the highest priority value was selected. In parts of the previous three al-
gorithms, it was only specified that the job or machine with the "best" priority
should be selected. Thus, in all those places it is possible to either select the
element with the highest or lowest priority value. This means that in the case of
the simple and twotrees SGS one element may be selected based on the lowest
priority, while the other is selected based on the highest priority of the same PF.
Therefore, these two variants will also be tested in the experiments. However,
it must be noted that this choice can also be delegated to GP by introducing a
function node that would simply perform a negation of a subtree.

Finally, one additional thing which can be considered with the PFs is whether
it makes sense to just use their absolute values. In that way, the GP could
completely ignore the sign of the expression and focus on evolving an expression
which achieves either the highest or the lowest value for the jobs it should
schedule first. This variant of PFs will also be tested to see whether it affects
the results.

4.3. Idle times
An important part in the construction of schedules and thus in each SGS is

the choice whether it is allowed to insert idle times on machines, even though
there are jobs in the system waiting to be scheduled. Although it might seem
that inserting idle times in the schedule might have a negative effect on the
optimised criteria, not having idle times can have a much larger impact, es-
pecially in the unrelated machines environment. The reason for this is that if
no idle times would be used, it would mean that jobs have to be immediately
scheduled on machines. However, at later stages, when only a small number of
machines are free, this can have a negative effect on the schedule. The reason
for this is that a job could be scheduled on a machine which is completely in-
appropriate for executing it. This would mean that the job would be executed
for a longer period, which would, in turn, affect the entirety of the remaining
schedule. However, if idle times could be inserted, then it could be determined
that the machine is not appropriate for scheduling the job, and the machine
could remain idle until another job enters the system. In that way, the DR can
try to schedule jobs on the machines which are more appropriate for them.

All the proposed SGS variants are by default defined to introduce idle times
similarly. For example, when a job is selected, the priority or minimum comple-
tion time of scheduling that job on all machines, whether they are free or not, is
calculated. If the machine with the best priority value or minimum completion
time is free, then the job is scheduled immediately on it. However, if the selected
machine is currently executing another job, then the job is not scheduled to any
machine, and its scheduling will be postponed to the next decision point. In
that way, it is possible to postpone scheduling certain jobs if it is determined
that the appropriate machine is not free. To analyse the importance of idle
times, all SGS variants are also adapted to create schedules without using idle
times. In this case the logic of the SGS remains the same, except for the point
that now they would only consider free machines when calculating the priority
values or minimum completion times. In that way, if there are free machines,
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Table 2: Time and space complexity of the proposed SGS methods

Simple Heuristic1 Heuristic2 Twotrees
Time (one iteration) O(nm) O(nm) O(n) O(n+m)
Time (total) O(n2m) O(n2m) O(n2) O(n2 + nm)
Space (naive) O(nm) O(nm) O(n) O(n+m)
Space (best) O(1) O(1) O(1) O(1)

the job will necessarily be scheduled on one of those machines. Both variants of
SGS will be tested in the experiments.

4.4. Time and space complexity
The time and space complexity of the applied SGS variants is denoted in

Table 2 using the big O notation. Only the worst-case scenario is considered in
which it is presumed that all jobs are available from the start of execution. In
one iteration it can be presumed that n jobs need to be allocated onmmachines.
The time complexity of the SGS is mostly tied to the number of evaluations of
the PF that have to be performed in each iteration. Since the complexity of
the PF is always the same, its complexity can be considered constant for each
evaluation, thus its complexity is O(1). The simple and heuristic1 SGS variants
calculate the priority for each combination of a job and machine. Therefore they
will perform nm evaluations of the PF function, and thus the time complexity of
one iteration is O(nm). The heuristics2 SGS needs to evaluate the PF only for
each job, thus making the complexity of each iteration equal to O(n). Finally,
the twotrees SGS first calculates the PF for each job, and then for the job with
the best priority it calculates the PF for each machine, which in total makes
the complexity equal to O(n+m).

The aforementioned complexities are only for one iteration of the SGS. It
is impossible to estimate the number of iterations the DR will perform since
in some iterations no job might be scheduled, while in others more than one
job can be scheduled (especially in the beginning when the system is empty).
However, suppose that one job is scheduled per iteration then the number of
iterations would be equal to n. It is possible to calculate the total number of
PF evaluations for jobs during the execution for the entire system as n + n −
1 + n− 2 + . . .+ 2 + 1, as in each subsequent iteration there would be one job
less to schedule. This sum is equal to n(n+1)

2 , or rather to O(n2) in the big O
notation. Therefore, it can be seen that the complexity of all methods would
be larger by the order of n in comparison the complexity in one iteration.

Regarding the space complexity, it depends heavily on the implementation
details. In the naive implementation, which would also represent the worst-case
scenario, each calculation of the PF in an iteration would be stored separately.
Thus, the space required would be equal to the number of calculations that are
required in one iteration, which is then equal to the time complexity of one
iteration. However, it is never required to keep track of all values obtained by
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the PF, since only the one with the best PF value is scheduled. Therefore, it is
only required to store the best PF value so far, and the currently calculated PF
so that they can be compared and the best one updated if necessary. In that way
the space complexity can be considered constant since only a constant number
of values need to be stored regardless of the number of jobs and machines.

5. Parameters and experimental setup

For the PF design, the standard GP algorithm based on the steady state
tournament selection process is used. The outline of this algorithm is denoted
by the flowchart in Figure 3. At the start, the algorithm randomly initialises the
population of individuals. After that the algorithm randomly selects 3 individ-
uals from the population which form the tournament. The two best individuals
in the tournament are selected to participate in the crossover. Since several
crossover operators can be available, one of them is randomly selected in each
iteration and applied on the two individuals to generate the child individual.
The child individual is mutated by using one randomly selected mutation op-
erator from the set of available operators. The mutation operator is performed
with the given probability, thus it will not be performed in each iteration. After
the genetic operators were performed, the child individual is evaluated. The
worst individual that was selected in the tournament is removed from the pop-
ulation, and the child individual is inserted in the population. The algorithm
checks whether a predefined number of iterations were performed, and if not the
entire process of selection, crossover and mutation is repeated. On the other
hand, if the predefined number of function iterations were performed, then the
algorithm stops with execution and returns the best evolved individual as the
final solution.

The parameters of GP used for evolving the DRs are given in Table 3.
The values for these parameters were set during preliminary experiments on
a separate problem instance set [92]. The parameter fine tuning was done in a
way that for each parameter several values were tested, while the values of the
remaining parameters were fixed. The population was set to 1000 individuals
since the fine tuning process demonstrated that by using smaller population
sizes the results deteriorated, whereas using a larger population size did not
improve the overall results and as such it does not bring any advantage to use a
larger population. The mutation probability was set to 0.3, as for this value GP
obtained the best results. For both, smaller and larger mutation values that were
tested, the results slightly deteriorated. The termination criterion was optimised
by setting a large number of iterations and monitoring the value of the fitness
function of the best individual on a separate validation set. After around 80 000
iterations it was noticed that the fitness of the best individual started to stagnate
on the validation set, and even started to worsen after a while. Therefore, it
was concluded that at around this point the algorithm started to overfit on the
training set. Therefore it was decided to set the termination criterion to 80
000 iterations, which gives the algorithm enough time to obtain good solutions,
but prevents it from overfitting. The tree depth parameter is one of the most
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Table 3: Parameters for GP

Parameter name Parameter value
Population size 1000 individuals
Termination criterion 80 000 iterations
Selection Steady state tournament GP
Tournament size Three individuals
Initialisation Ramped half-and-half
Maximum tree depth 5
Crossover operators Subtree, uniform, context-preserving, size-fair
Mutation operators Subtree, Gauss, hoist, node complement, node re-

placement, permutation, shrink
Mutation probability 0.3

important parameters, as it influences the complexity of the evolved PFs and the
size of the search space. Therefore, several three depths ranging from 3 until 15
were tested. The results demonstrated that the tree depth of 5 lead to the best
results. Smaller tree depths do not allow GP to evolve complex enough DRs,
whereas for the larger tree depths the search space is too large and it is more
difficult for GP to obtain good PFs. Since several genetic operators are used
for crossover and mutation, in each iteration a random operator is selected and
applied to recombine the parents and mutate the child. The best set of genetic
operators used in GP was also determined in a previous study by testing out the
effectiveness of different genetic operator combinations [92]. This was done in a
way that the set of genetic operators is constructed from scratch by adding those
operators that increase the performance of the generated DRs. The operators
were added until no performance increase was observed. Detailed descriptions
of the applied genetic operators can be found in [19]. For the primitive set, the
nodes described in Section 3.2 were used, but the concrete nodes that will be
selected depend on the SGS that is applied in the DR to construct the schedule.
Since the twotrees SGS uses two PFs to construct the schedule, GP evolves
two PFs simultaneously. This is done in a way that each individual in GP
consists out of two independent expression trees where one represents the PF
for ordering jobs while the other denotes the PF used for selecting the machine.
Genetic operators are performed independently on each of the two expressions.
The two trees contained in the individual are evaluated together to determine
how well they work when used for constructing the schedule with the twotrees
SGS.

To test the performance of the proposed SGS variants, GP is used for the
generation of PFs for each SGS variant. GP evolves the PFs using a training set
consisting of 60 problem instances, in which the number of jobs ranges from 12
to 100, while the number of machines ranges from 3 to 10 [92]. After the ter-
mination criterion is satisfied, the best individual obtained during the evolution
on the training set is saved. The obtained DR is tested on an independent test
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Figure 3: Flowchart of the applied GP algorithm
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set, which also contains 60 problem instances. The rule is evaluated on the set
by independently solving each problem instance in it. The total performance of
the DR is calculated as the sum of the criterion values, in this case, the TWT
values, for each of the problem instances in the set. Due to the different sizes
and characteristics of the problem instances, the criterion values are normalised
to ensure that each instance has a similar influence [92]. For each experiment
30 independent runs are performed to obtain statistically relevant results. The
best individual in each of these 30 runs is saved, and based on their perfor-
mance on the test set the minimum, median, average, maximum, and standard
deviation values of the results are calculated, which will be denoted as min,
med, avg, max and std in the tables displaying the results. When comparing
different types and variants of SGS, the Kruskal-Wallis rank sum statistical test
was used to determine whether there is a significant difference between the two
experiments. The difference are considered significant if the obtained p-value
is less than 0.05. Furthermore, for additional post hoc analysis, the Canover
method further adjusted with the Benjamini-Hochberger false discovery rate
method was used.

To further test the performance of the considered SGS variants, they will also
be compared to three manually designed DRs which obtained the best results
for the TWT criterion. The DRs that will be used are the ATC, COVERT,
and EDD [41]. The reason why these three DRs were selected as baselines is
because out of the 26 manually designed DRs that were tested, those three rules
obtained the best results on the training set. The k parameter for the ATC rule
is set to 0.5, and that of COVERT to 0.2, based on preliminary experiments on
the training set.

Furthermore, to reduce the amount of text in figures, tables, and paragraphs
when referring to the different tested variants of SGS, the notation denoted in
Table 4 will be used.

The source code that was used in the experiments can be obtained via
the web site of the ECF framework available at http://ecf.zemris.fer.
hr/, whereas the problem instances and additional descriptions about them,
can be obtained from the project site available at http://gp.zemris.fer.hr/
scheduling/.

6. Experimental results

The results for all the tested SGS variants that use idle times are collected in
Table 5, with the best results denoted in bold for each SGS. The priority columns
denote whether the maximum or minimum value of the PF is used for selecting
machines and jobs. Furthermore, the results for the three previously outlined
manually designed DRs are also included in the table. Since all three DRs are
deterministic, only a single value is denoted for them. It can immediately be
seen that all the proposed SGS variants achieve a better median value than any
of the manually designed DRs. The magnitude of the improvements over the
best manually designed DR, namely the ATC rule, depends on the SGS that
was used, but ranges from around 2% to 6%. However, the best DRs which
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Table 4: Notations for the variants of SGS

SGS Priority Notation
job machine

Simple

min min s-mm
min max s-mx
max min s-xm
max max s-xx

Heuristic1 min - h1-m
max - h1-x

Heuristic2 min - h2-m
max - h2-x

Twotrees

min min t-mm
min max t-mx
max min t-xm
max max t-xx

were evolved by GP can achieve an improvement of up to 16%, which shows
the superiority of automatically generated DRs over manually generated DRs.
When compared to other DRs, the improvements are even more evident.

To determine whether significant differences exist between the SGS variants,
the Kruskal-Wallis test was performed, and the p-value of 9.5 ∗ 10−8 was ob-
tained. This means that the null hypothesis, which was that all the results are
from the same distribution, must be rejected. The p-values of the post hoc
analysis (using the Canover method) are represented in Table 6. The values
which denote that a statistically significant difference exists between the SGS
variants denoted in the row and column are presented in bold. The results in
Table 5 show that out of the three types of SGS, the heuristic SGS obtained the
worst median values. The statistical tests prove that the results obtained by the
heuristic SGS are significantly worse than the results of all other SGS variants
(except for t-mx). From these results it is clear that restricting the choices that
are delegated to the PF also limits the quality of the evolved DRs. Even though
it might be harder for GP to evolve DRs which consider both the sequencing
and allocation of jobs, allowing it to consider both decisions enables it to evolve
PFs with a better synergy, which easily outperform the heuristic SGS. Neverthe-
less, the DRs generated by using the heuristic SGS still achieve a better median
performance than the manually designed DRs. Since most manually designed
DRs allocate jobs to machines using the same strategy as the heuristic SGS,
this means that the PFs used in those DRs can be further improved. However,
the results could be enhanced further by designing a better allocation scheme
of jobs to machine, as by automatically designing this part has lead to signifi-
cantly better results. Therefore, one can conclude that the allocation of jobs to
machines used in the manually designed DRs could in many cases represent the
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Table 5: Results of different SGS variants (with idle times allowed)

SGS Priority Min Avg Med Max Stdjob machine
ATC max - - 13.73 - - -
COVERT max - - 14.20 - - -
EDD max - - 14.53 - - -

Simple

min min 12.31 13.08 12.99 14.14 0.428
min max 11.75 12.77 12.86 14.15 0.594
max min 12.11 12.99 13.00 14.20 0.586
max max 11.43 13.11 13.15 14.07 0.667

Heuristic1 min - 13.06 13.49 13.45 14.47 0.281
max - 13.11 13.43 13.38 14.13 0.233

Heuristic2 min - 12.89 13.41 13.46 13.88 0.274
max - 12.86 13.41 13.48 14.08 0.327

Twotrees

min min 12.12 13.18 13.25 14.85 0.646
min max 12.09 13.31 13.19 14.40 0.647
max min 12.06 13.10 12.98 14.87 0.716
max max 11.80 13.16 13.05 15.90 0.966

bottleneck which limits the performance of the DRs. Between the two variants
of the heuristic SGS, it can be seen that the heuristic1 variant, which calculates
the priority values for jobs by additionally using machine properties, achieves
a slightly better median value. However, the statistical tests show that there is
no significant difference between the two variants of this SGS. Furthermore, the
results show that there is no significant difference when selecting the job with
the highest or lowest priority. Although the heuristic SGS achieves significantly
worse results when compared to the other two variants, it still does have cer-
tain benefits. One benefit can be seen from the box plot representation of the
results in Figure 4a, from which it is evident that out of all SGS variants this
one obtains the least dispersed results. This means that the method is quite
stable and that upon several invocations of GP one is very likely to obtain a
DR which will perform quite similarly.

The DRs that use the simple SGS obtain the best median and minimum
values out of all three tested SGS variants. However, the results show that the
performance of the SGS also depends to a certain degree on whether elements
with the minimum or maximum value are selected. The simple SGS achieves the
worst median values when both the job and machine with the highest priorities
are selected for scheduling (s-xx). On the other hand, the best median value
is obtained when the job with the lowest priority and the machine with the
highest priority value is selected (s-mx). The statistical tests show that the
s-mx variant achieves significantly better results only when compared to the
variant which selects jobs and machines with the maximum priority value. In
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Table 6: Statistical tests for the different variants of SGS

s-mm s-mx s-xm s-xx h1-m h1-x h2-m h2-x t-mm t-mx t-xm t-xx
s-mm - 0.15 0.94 0.54 0.00 0.01 0.01 0.01 0.94 0.49 0.77 0.77
s-mx 0.15 - 0.20 0.03 0.00 0.00 0.00 0.00 0.04 0.00 0.06 0.06
s-xm 0.94 0.20 - 0.47 0.00 0.01 0.01 0.01 0.54 0.10 0.72 0.72
s-xx 0.54 0.03 0.47 - 0.02 0.04 0.05 0.06 0.94 0.49 0.77 0.77
h1-m 0.00 0.00 0.00 0.02 - 0.76 0.72 0.68 0.01 0.11 0.01 0.01
h1-x 0.01 0.00 0.01 0.04 0.76 - 0.96 0.94 0.04 0.27 0.02 0.02
h2-m 0.01 0.00 0.01 0.05 0.72 0.96 - 0.96 0.04 0.29 0.02 0.02
h2-x 0.01 0.00 0.01 0.06 0.68 0.94 0.96 - 0.04 0.33 0.03 0.03
t-mm 0.94 0.04 0.54 0.94 0.01 0.04 0.04 0.04 - 0.42 0.85 0.85
t-mx 0.49 0.00 0.10 0.49 0.11 0.27 0.29 0.33 0.42 - 0.27 0.27
t-xm 0.77 0.06 0.72 0.77 0.01 0.02 0.01 0.03 0.85 0.27 - 0.99
t-xx 0.77 0.06 0.72 0.77 0.01 0.02 0.02 0.03 0.85 0.27 0.99 -

addition, from the box plot it is evident that this variant obtained the best
distribution of the solutions. In all other cases there is no significant difference
between the tested variants. Therefore, although it cannot be stated that this
variant achieves significantly better results than the other three, it still seems
to perform slightly better. Such behaviour is very interesting, but it seems that
using the PF differently for selecting jobs and machines allows GP to better
design it. This could be because the logic of the PF when selecting jobs and
machines is to a certain degree inverted, and thus it works better by selecting
jobs in one way and the machines in another. Although the benefit of this SGS
is that only a single PF needs to be evolved, this also has a downside in that the
PF will probably be much harder to interpret since it is tasked with determining
the priorities for both jobs and machines. When compared to the twotrees SGS,
it is evident that the simple SGS usually achieves slightly better median values.
However, the statistical tests demonstrate that there is no significant difference
between these two SGS variants in most cases.

As previously outlined, the twotrees SGS achieves median values that are
usually slightly worse than those of the simple SGS, but better than the heuristic
SGS. The statistical tests show that there is no significant difference in the
results obtained by the different twootrees SGS variants. Nevertheless, it is still
evident that this SGS also has a bias towards certain ways of selecting jobs and
machines. In this case, the SGS prefers to select the jobs by highest priority,
while the way in which the machines are selected does not seem to have that
much of an influence. Dividing the responsibility of selecting jobs and machines
into two PFs can be beneficial since each PF now has to concern with a smaller
problem and should also be more understandable and interpretable.

An additional thing to observe about the tested variants of SGS is the dif-
ference in the time that is required to evolve PFs for each of them, and the time
required to construct the schedule. Table 7 represents the minimum, average,
median, maximum and standard deviation of the times required to evolve and
execute a PF for each SGS based on 30 executions. The results demonstrate
that in both cases the heuristic2 SGS is the most time-efficient. The reason why
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Table 7: Training and execution times of each SGS

Training time (minutes) Execution time (miliseconds)
min avg med max std min avg med max std

Simple 72 85 85 103 7.1 56 72 68 109 13.2
Heuristic1 57 70 70 84 7.3 42 54 55 68 6.6
Heuristic2 11 13 13 15 1.0 11 15 13 33 5.1
Twotrees 75 94 92 128 14 44 65 64 92 10.6

this SGS is so efficient is because it calculates the priorities only for jobs, which
means that it calculates the priorities the least number of times. The heuristic1
SGS, although significantly slower than the heuristic2 SGS, is still slightly faster
than the other two SGS variants. The twotrees SGS has the slowest training
time, which is expected since it consists out of two trees that need to be evalu-
ated and evolved. However, the execution time is in the end similar to the one
of the simple SGS, which demonstrates that using an additional PF to calculate
the priority values does not have a negative effect on the execution time.

To test the effects of using only the absolute value of the PFs, all SGS vari-
ants were additionally tested in a way that the absolute value of the evolved
PF is used to select jobs and machines. Table 8 and Figure 4b represents the
results obtained for this PF version. The table includes an additional column
denoted as "delta" which represents the difference of the median value obtained
by the SGS when taking the absolute value of all PFs, and the median value of
the same SGS from Table 5. The results show that in most cases the difference
of median values with and without absolute values is almost negligible for most
SGS variants, although the results slightly deteriorate when using the absolute
values of PFs. Nevertheless, even when taking absolute values of PFs the me-
dian values of automatically generated DRs are still better than by the three
best manually designed DRs. Another thing which is evident from Figure 4b is
that the obtained results are more dispersed and contain much more outliers.
Because of these reasons taking the absolute values of PFs does not seem to
bring any evident benefit to the SGS, and thus should probably not be used.
When comparing the variants of SGS which use the absolute value against the
ones which do not, the statistical tests demonstrated that there is no signifi-
cant difference in their performance except for s-mx where the variant with the
absolute value obtained significantly worse results.

In all the tests until now the SGS variants were allowed to insert idle times
when creating schedules. In the next experiment, all the SGS variants are
executed again but this time without being allowed to insert idle times in the
schedule. The results of SGS variants without using idle times are shown in
Table 9. The three DRs that were used in previous comparisons were also
adapted to also construct schedules without idle times. This was done in the
same way as for automatically designed DRs, meaning that when selecting to
which machine a job should be allocated, only the machines which currently do
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Table 8: Results of different SGS variants when taking absolute values of PFs

SGS Priority Min Avg Med Max Std Deltajob machine

Simple

min min 12.33 13.37 13.20 16.17 0.696 0.21
min max 12.30 13.62 13.56 15.38 0.871 0.70
max min 12.02 13.38 13.26 15.80 0.865 0.26
max max 12.63 13.30 13.33 14.40 0.420 0.18

heuristic1 min - 12.87 13.47 13.55 14.13 0.339 0.13
max - 12.79 13.43 13.49 14.08 0.266 0.11

heuristic2 min - 12.80 13.46 13.44 14.21 0.395 -0.02
max - 12.83 13.46 13.40 14.21 0.373 -0.08

twotrees

min min 12.37 13.39 13.32 14.93 0.531 0.07
min max 12.06 13.28 13.22 14.36 0.542 0.03
max min 12.13 13.46 13.26 15.63 0.878 0.28
max max 12.10 13.04 13.03 15.29 0.613 -0.02

not execute any job are considered. The parameter values for these adapted
DRs were optimised again, and this time the parameter value of 1.2 is used for
ATC and 5.9 for COVERT.

The results in Table 9 and Figure 4c show that by not allowing idle times
in the schedule the value for the TWT criterion deteriorated significantly. For
example, the value of the criterion increased by around 2.5 times when compared
to the results obtained when allowing the insertion of idle times. This shows that
allowing DRs to insert idle times into the schedule, and having the possibility
of postponing the scheduling of jobs is important when constructing schedules.
The statistical tests clearly demonstrated that this variant is significantly worse
than the one which uses idle times. Therefore, the results obtained when not
using idle times will not be discussed further, since it is clear that no benefit
can be achieved by not using them.

7. Result analysis

7.1. Analysis of the generated PFs
In this section, the different PFs which were generated by GP for the tested

SGS variants are analysed to gain knowledge about their behaviour and mutual
differences. For each SGS the corresponding PF with the best performance on
the test set were selected. All the PFs were additionally simplified by removing
parts which do not significantly influence the performance of the DR (meaning
that the performance of the DR in question did not change more than by 1%
on the entire test set), so that the analysis is easier.

The first PF that will be analysed is the one obtained for the s-xx SGS, which
means that the job and machine with the highest priority values are selected.
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Table 9: Results of different SGS variants without allowing idle times

SGS Priority Min Abs Med Max Stdjob machine
ATC max - - 36.07 36.07 - -
COVERT max - - 38.24 38.24 - -
EDD max - - 148.5 148.5 - -

Simple

min min 29.76 32.01 31.59 36.37 1.694
min max 29.55 36.56 36.35 42.19 2.786
max min 29.90 36.95 36.77 45.89 3.835
max max 28.67 31.80 31.79 36.99 1.705

heuristic1 min - 28.82 31.35 31.72 33.41 1.204
max - 28.52 30.91 30.73 33.48 1.264

heuristic2 min - 33.87 36.43 36.41 39.76 1.271
max - 32.96 36.26 36.28 40.06 1.472

twotrees

min min 35.11 39.33 38.70 47.20 3.117
min max 33.33 38.88 38.31 46.77 3.004
max min 34.06 39.24 39.57 44.14 2.554
max max 34.55 38.17 37.93 46.12 2.538

The evolved PF is defined with the following expression

SL ∗ dd

MR
∗ dd+ pt

MR
− (dd−PAT ) ∗ (dd+ pt)− dd+MR+ pt

dd ∗ w + pt
MR

∗ dd ∗ (MR+ pt).

The PF can be seen to consist out of three parts which are summed up. The first
part focuses on selecting jobs and machines which would cause a larger slack and
processing time. This is because the expression contains both SL and pt in the
nominator, and thus the value of the expression increases with the increate of
the processing times and slack of jobs. Furthermore, the importance of this part
increases as the machine becomes available sooner, since theMR value is located
in the denominator. This part seems very unintuitive since if used only by itself
it would cause a lot of jobs to be tardy. However, the rest of the expression tries
to reduce the influence of this element, thus the PF balances between jobs with
a higher and lower slack and processing time values. The second subexpression,
namely −(dd−PAT )∗(dd+pt), selects those jobs which have a smaller due date
and processing time values, which is due to the negative sign that appears in
front of it. The final and third part of the PF is quite complicated and difficult
to interpret. Still, it seems that the main focus of this part is to select jobs with
a smaller processing time and machines which become available sooner, since
the pt and MR values appear in the nominator of the expression several times,
and thus have the main influence in this subexpression. Additionally, jobs with
a smaller weight are preferred, due to the expression dd ∗ w which appears in
the denominator. Since the entire subexpression needs to be minimised (due to
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the negative sign before it), the denominator needs to be as large as possible,
which happens for jobs with larger priority values. In the end, the PF tries to
balance among the first expression in the PF and the other two to determine
which job and machine should be selected. However, for this PF it has proven
to be quite difficult to understand its underlying logic in more detail.

For the simple SGS, the PF which selects the job with the lowest and the
machine with the highest priority value will also be analysed. The PF evolved
for this SGS is defined by the following expression

2 ∗ SL

MR
+ PAT

w
+ 2 ∗ SL+ pavg

MR
+ pmin− pt−MR+ pmin

w
.

It is immediately evident that this PF is much simpler than the last one, and thus
easier to interpret. When selecting the appropriate machine for a job, the most
relevant part of the PF is 2∗SL

MR + 2 ∗SL− pt−MR. Since the machine with the
maximum priority value is selected, this means that this part of the PF would
favour machines with a larger slack value for the job, due to the SL variable
appearing two times in the expression. In addition, it also favours machines for
which the selected job has a smaller execution time, as a consequence of the
−pt part that appears. Finally, machines which become available sooner are
also preferred, since the MR variable appears both in the denominator part of
the subexpression and also with a negative sign, which means that a lower value
of MR will increase the value of the overall expression. The reason why the
PF selects machines on which the job would have a higher slack is that a zero
slack value would mean that the job cannot finish in time on the given machine
since it is already tardy. Nevertheless, selecting the machine for which the job
would have the largest slack does not seem like a good decision, because that
job could likely be scheduled at a later moment without causing an additional
penalty. However, once a machine is selected for every job, the PF is used
to select the job where this part of the PF is now minimised instead of being
maximised. This means that amongst all the jobs the one with the smallest
slack, but the largest processing time is preferred. In that way, the SGS tries to
schedule jobs with smaller slack values so that they finish as soon as possible.
In addition, the P AT

w + pavg
MR + pmin + pmin

w part forces the PF to select jobs
with a smaller minimum and average processing time values, as the pmin and
pavg variables appear several times in the expression. Additionally, since the w
variable is located in the denominator several times, the value of the expression
will be larger for jobs with a higher weight. The value of the subexpression
becomes larger as the value of the PAT variable increases. This means that
the PF will select those hobs whose machine on which they would execute the
fastest becomes available the latests. The reason why those jobs are preferred
is because it might be better to schedule those jobs on an alternative machine
which might not be the best choice for them, rather than to wait a long time for
the appropriate machine to become available. When the machine is fixed the
MR variable is constant and thus does not have an influence on the value of the
subexpression. This example demonstrated that constructing PFs in this way
does have its benefits since the logic for selecting jobs and machines is slightly
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inverted. Thus, the same parts of the expression are useful both for selecting
jobs and machines, which in turn leads to more simple expressions. Therefore
the PF constructed for this SGS variant is much easier to interpret than the
one which was constructed for the variant in which both the machines and jobs
with the highest priorities were selected.

The best PF evolved for the heuristic SGS which calculates the priorities for
jobs by taking into account machines is defined as

2 ∗ pt− pavg + dd+ pavg

PAT
+ pt

dd
∗ w ∗ SL ∗ PAT.

The job with the lowest priority value is selected and scheduled on the machine
with the earliest completion time. Most of the PF consists out of terminals like
pt, dd, SL, and PAT , which are summed up or multiplied. Since all of them
appear with a positive sign or in the nominators of the expression, the PF focuses
on selecting the job with the smallest processing time and slack values. This is
expected since the TWT criterion needs to be optimised. However, the pavg
terminal appears with a negative sign, while some other terminals like PAT and
dd appear as denominators, which means that the priority value will be smaller
when these terminals have a larger value. Therefore, these two terminals appear
in the expression in places where they need to be both maximised nad minimised.
As such, these terminals are probably included in the PF to avoid selecting the
jobs with the smallest due dates and average processing time values, but rather
to find a balance between jobs with higher and lower due dates and average
processing times. In such a way, the PF avoids a bias towards jobs with with
the smallest processing times, and gives a chance to also select other jobs as
well. A significant benefit of this PF is that is not only quite simple but it
is also easy to interpret its behaviour since it consists of a smaller number of
elements.

The PF for the heuristic SGS which does not consider machines when se-
lecting the job is given with the following expression

age ∗ pmin
w

+ dd ∗ SL+ pmin

w
+ pavg ∗ w ∗

(
PAT + SL

w

)
∗ (pavg + pmin).

This SGS selects the job which has the smallest priority value. Since this SGS
uses only terminals that represent job characteristics, it has to make its decision
solely by using that information. This PF bases its decision mostly on the
minimum processing time of the job, its slack value, and the weight, as the
terminals denoting these values appear most often in the expression. Since the
w terminal appears quite often in the denominator parts of the expression, it
can be concluded that this rule puts a heavy emphasis on selecting jobs with
a higher weight. All other terminals appear with a positive sign or in the
nominator parts of the expression. The most common terminals that appear in
the expression are pmin, SL, and pavg. This means that the PF prioritises those
jobs which are tardy or near tardy and have smaller processing times. It tries
to reduce the number of tardy jobs but also selects those which are more likely
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to be executed faster. Although the PF did not use any information about
the machines, it nevertheless obtained a similar performance as the variant
which also used information about the machines. Therefore, it seems that not
using information about the jobs can lead to slightly better median values, since
including machine properties might be misleading due to the fact that the PF
does not influence the selection of the machine on which the job will be executed
in the end.

Finally, the PFs constructed for the twotrees SGS will also be analysed. The
SGS uses the PF in a way that it selects the job and machine which obtain the
smallest priority value. The PF used to rank the jobs is defined as

pavg + dd

w
∗
(
pmin+ SL

w

)
+
(
SL

pavg
∗ pmin ∗ age+ SL ∗ pmin

w ∗ w
− pavg ∗ pavg

)
,

while the PF used to select the machine is defined as

2 ∗ pt+ 2 ∗MR− pmin ∗ SL ∗ pavg
pt ∗MR

.

From the first expression it can be seen that when calculating the priority for
jobs the PF prioritises jobs with a larger weight, since the w terminal appears
several times in the denominator parts of the expression. Additionally, the ex-
pression mostly consists out of the pmin, pavg and SL terminals, all of which
appear in the nominator part. Thus, the PF tries to schedule those jobs that
are already tardy or close to being tardy and have a smaller processing time.
The PF can also be seen to use the pavg terminal to prioritise jobs with higher
average processing times. In that way, the PF selects jobs with a smaller mini-
mum processing time, but that have a larger average value of processing times,
since this means that there is a high imbalance between the processing times
on different machines. This means that if such a job would be allocated to
an inappropriate machine its execution could be significantly prolonged, which
would affect other jobs as well. As a result, the PF prioritises such jobs. The
dd and age terminals also appear in the expression, which means that the PF
prioritises jobs with closer due dates and jobs which have not been too long in
the system. However, as those two nodes appear only once, they have a smaller
influence on the the entire expression.

The PF used for selecting the machine on which the job has to be scheduled
is quite easy to interpret. From the expression, it is evident that the PF gives
a greater priority to machines that become available sooner and execute the
selected job faster, which is evident from the expression 2∗pt2∗MR. This part
of the PF would allocate the jobs in the same way as the heuristic SGS, meaning
it would schedule the job on the machine on which it would be completed the
soonest. It is interesting to note how GP was able to learn the very same rule
which was defined by human experts to select the machine on which to schedule
a job. However, GP expanded this rule with additional terminals to further
enhance it. The additional expression which is used to select the machines is
−pmin∗SL∗pavg

pt∗MR . As can be seen, in this part the machine with a larger slack is
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Table 10: Details of the problem instance used for analysis

Job j index 0 1 2 3 4 5 6 7 8 9 10 11
rj 68 85 79 42 12 66 44 68 62 43 0 51
ddj 114 114 115 88 60 94 52 103 91 65 70 64
wj 0.97 0.65 0.24 0.26 0.58 0.26 0.56 0.87 0.15 0.95 0.40 0.73
p0j 68 95 23 65 54 45 38 42 17 43 41 49
p1j 100 4 34 42 69 63 60 30 36 89 43 47
p2j 36 12 74 12 48 58 24 79 91 7 65 6

preferred (due to the minus sign of the entire expression), which means that the
PF tries to select the machine on which the job will not miss its due date. The
slack is additionally divided with the pt and MR terminals, which makes the
slack more important when the job has a smaller execution time and the machine
becomes available sooner, otherwise the slack has less influence in the expression.
In that way, instead of relying solely on the completion time of the jobs, the PF
uses additional information to allocate the job to the most appropriate machine.
However, even such small additions lead to good improvements in the results,
which additionally seems to prove that allocating jobs to machines only by using
the completion times seems to be very limiting and has a significant influence
on the performance of the SGS.

7.2. Analysis of scheduling decisions
To better understand how the proposed variants of SGS work and to outline

their similarities and differences, a small scheduling problem will be solved with
three selected DRs for the following three variants: s-mm, h1-m, t-mm. For
each SGS the DR which achieved the best results on the test set was selected
and used to construct the solution for the considered scheduling problem. The
properties of that problem are denoted in table 10.

Figure 5 shows the schedules that were generated by the three selected DRs.
From the figure it is evident that at the start of the schedule all three DRs
performed the same decisions. This can best be seen from the fact that they all
scheduled the first five jobs that are released (jobs 10, 6, 4, 9, and 11) in the
same way. With a closer look, one can see that each of these jobs is scheduled
on the machine on which it would complete the soonest. Thus, the DRs which
use the standard and twotrees variants work in the same way as the heuristic
SGS at this first part of the schedule. This means that the strategies which the
GP learned in the PFs are similar to the minimum completion time strategy
that is used by different manually designed DRs.

The first difference between the DRs occurs at the time moment 62, at which
the DR with the heuristic SGS schedules job 8, whereas the other two DRs do
not schedule any job at this moment. Here, the fundamental difference between
the heuristic SGS and the other two can be described. At this moment, the DR
with the heuristic SGS has no other choice than to schedule job 8 on machine
1. The reason is that on this machine the job would complete the soonest, at
the moment 98, in comparison to moments 99 and 156 if it were scheduled on
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0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

M0 10 6 8 2

M1 7 1 5

M2 4 9 11 0 3

(a) The schedule generated by the DR which uses the standard SGS
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

M0 10 6 2 5

M1 8 1 7

M2 4 9 11 0 3

(b) The schedule generated by the DR which uses the heuristic SGS
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

M0 10 6 2 8 5

M1 7 1

M2 4 9 11 0 3

(c) The schedule generated by the DR which uses the twotrees SGS

Figure 5: Schedules generated by the different SGS variants

machines 0 or 2 respectively. The other two DRs do not perform this decision,
but rather determine that at this moment it would be better to schedule job
8 on machine 0. This is due to the reason that the other two variants of SGS
can use some additional information when selecting the appropriate machine.
In this case, those DRs determined that it would be better to schedule job 8
on machine 0 since it has a much shorter execution time on that machine. As
a result, machine 1 remained free and job 7, which was released next, could
immediately have been scheduled on that machine. In the end, this decision
has demonstrated to be beneficial since job 7 has a higher weight, and by not
scheduling job 8 on machine 1, it was possible to complete job 7 before its due
date.

The next point in which the DRs disagree is whether to schedule job 2 or
8 first on machine 0. This decision mostly depends on the generated PF, since
it needs to determine which of the two jobs it would be better to schedule
first. The DR with the simple SGS decided to schedule job 8 first, which in
the end did lead to a slightly smaller TWT value. Finally, some DRs also
disagree on the placement of job 5. For the DR with the heuristic SGS it is
clear why it scheduled this job on machine 0, because job 7 already started with
its execution on machine 1. However, the situation is not as evident for the
DR with the twotrees SGS. The question is why this DR did not schedule job 5
on machine 1 after job 1 finished with its execution, just like the DR with the
simple SGS did. The reason is that at the moment when job 1 finished with
its execution, the DR obtained the best priority for scheduling jobs 8 and 5 on
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machine 0. However, only one of those jobs can be scheduled at that moment,
and the other one will have to wait. In this case, job 8 had a better priority
value and was scheduled at the moment when job 2 finished with its execution.
At that moment, the DR also tried to see whether it would be better to schedule
job 5 on machine 1 instead, but the rule determined that it would once again be
better to wait and schedule it on machine 0. Therefore, the situation happened
because the DR considers each job individually, and did not take into account
that another job would be scheduled on the considered machine and thus that
job 5 could not be scheduled on machine 0 at the next possible time. However,
such scheduling strategy also has its benefits since it tries to not schedule jobs
too greedily, which could cause a problem if quite soon other jobs with large
weights would be released into the system.

In general, the largest difference occurs between the DR using the heuristic
SGS and the other two DRs. The difference is a result of the fact that the
heuristic SGS has a fixed strategy of allocating jobs to machines, while the other
two evolve such a strategy. The schedules show that these two SGS variants also
evolved strategies that work similarly as the strategy of the heuristic SGS since
these DRs also tended to schedule jobs on the machines on which they would
complete the soonest. Between the DRs which use the simple and twotrees
variants, the difference is only in the PFs they evaluate, and not so much in the
SGS. The generated schedules also show that at the start of the schedule all
the DRs did perform the same decisions, which shows that in the case of low
utilisation all DRs work similarly. However, the real differences start to appear
later in the schedule as more jobs are released and fewer machines are available.
In those cases, the DRs heavily depend on the PF to determine which job needs
to be scheduled and as a consequence more differences start to appear.

8. Discussion

The experimental results and analysis which were presented in the previous
two sections show that the performance of the generated DRs significantly de-
pends on the variant of the SGS that is used. Out of the three tested variants of
SGS, the heuristic SGS has achieved the worst results, while the twotrees and
simple SGS achieved similar results, with the simple SGS being usually slightly
better. The general conclusion which can be made based on these results is
that it seems that the main strength of automatically designed DRs comes from
the fact that they can design more efficient strategies of selecting the appro-
priate machine. Although the heuristic SGS did improve the results over the
manually designed DRs, which means that job selection still leaves room for
improvement, the largest improvements over the manually designed DRs were
achieved by the other two variants of SGS which allow GP to also design the
strategy of selecting the machines. This just demonstrates that the selection of
the appropriate machine in the unrelated machines environment represents an
equally important decision as selecting the appropriate job since it has a signif-
icant influence on the obtained results. A deeper analysis of the DRs showed
that the automatically generated DRs did schedule the jobs on machines in
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a similar manner as the manually designed DRs at the start of the schedule.
An additional evidence of this is the fact that the PF which was analysed for
the twotrees SGS did include a subexpression that would select the machines
in the same way as the manually designed DRs would. This is an important
proof which shows that the minimum completion time strategy is a good base-
line for selecting machines. However, the automatically generated DRs also did
use some other element based on which they selected the appropriate machine.
These elements have resulted in better decisions in situations when more jobs
were available for scheduling and less there were fewer available machines. In
those situations the twotrees and simple SGS started to make better selections
of machines thanks to additional properties.

The experiments which tested the different ways of selecting jobs and ma-
chines using either the highest or lowest values showed some interesting results.
For the heuristic SGS, both ways of selecting jobs did not significantly influence
the obtained results. For the twotrees SGS this choice had more influence on the
obtained results since in some cases the DRs achieved slightly lower minimum
fitness values than in others. However, the statistical tests did not show that
there is any significant difference between the two variants, therefore it is not
possible to claim that this would generally be true. The most interesting situa-
tion happened for the simple SGS, where it was demonstrated that by selecting
jobs with the lowest and machines with the highest priority function value did
lead to results that are significantly better than most of the other variants. In
this case, where only one PF is used for selecting both jobs and machines, it
seems to be more beneficial to use the PF in different ways for selecting jobs
and machines. This was demonstrated also though the analysis of two selected
DRs which use the simple SGS, in which one selected both job and machines
with the highest value, and the other which selected the job with the lowest and
machine with the highest values. The analysis showed that the first DR was
quite complicated and included a sophisticated logic to select jobs and machines.
On the other hand, the second DR was much simpler, and it was demonstrated
that the logic in which jobs and machines are selected is inverted. This means
that when selecting a machine it is preferred that parts of the PF are higher,
but when selecting the jobs these parts have to be minimised. However, when
both jobs and machines are selected with either the highest or lowest priority,
then this complicates the PF and the logic it encapsulates.

The variant which used absolute values of PFs to select jobs and machines did
not lead to improved results, rather it even leads to significantly worse results
in several cases. Therefore, it seems that for GP it is easier to develop good
PFs if they can have negative values. Furthermore, the additional experiment
with idle times also demonstrated that introducing idle times in the schedule is
invaluable. The reason for this is that in that way the developed DRs act less
greedy, and allow machines to remain free in case that in the future important
jobs enter the system.
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9. Conclusion

This paper analysed several SGS variants for the automatic generation of
DRs in the unrelated machines environment. The proposed SGS variants were
tested in different variants for optimising the TWT criterion. Generally, it was
demonstrated that the SGS in which the PF is used to only select the jobs, while
the machine on which it will be executed is selected by a predefined heuristic,
achieves the worst performance out of the tested SGS variants. The other two
SGS variants achieved a similar performance, although the one which uses the
same PF for selecting jobs and machines does achieve slightly, although not
significantly, better results. All the variants of SGS achieved better results than
any of the existing DRs. Furthermore, the results also prove that the logic
of choosing elements of either the highest or lowest priority value can have a
significant influence on the result, and thus also has to be carefully selected. An
especially interesting observation that was made is that the best overall results
obtained by any of the tested DRs were achieved when using an SGS variant in
which the job with the smallest priority value, and the machine with the highest
priority value are selected. The presented analysis showed that using the PF in
such a way is beneficial since in that way the PF can more easily balance between
the jobs and machines that it wants to select. Finally, it was also demonstrated
that allowing the SGS variants to insert idle times in the schedule is extremely
important and that without it the schedules that are generated are significantly
worse. Based on all the outlined conclusions it is evident that the choices made
in the design of the SGS can have a significant influence on the performance of
the generated DRs.

In future studies, it is planned to extend the research further on the topic of
designing SGS variants. One possible future research would be to analyse SGS
variants for problems with additional constraints, like setup times or precedence
constraints. Here it would be interesting to analyse whether the inclusion of such
constraints has an influence on which of the SGS variants performs best, or
even if it would be better to design specialised SGS variants for such problems.
Another topic that has not been extensively examined is whether it would be
possible to automatically generate an SGS similarly as the PF is generated.
This would make it possible to automatically design the entire DR and not just
the PF. An additional topic would also be to analyse if certain expert knowledge
could be inserted into GP before the evolution process, based on which GP could
evolve better DRs, but also take less time to evolve them. Finally, as it was
seen that the evolved PFs can sometimes be hard to interpret, one of the next
steps would also be to analyse and include some simplification procedures, both
exact and inexact, which could simplify the expressions during the evolution of
PFs.
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Appendix A. Analysis of different PFs generated for the SGS vari-
ants

Since the process of designing DRs is of stochastic nature, this section will
outline the differences in schedules that can occur between different PFs designed
for a certain SGS. This section will thus illustrate how for the same SGS different
PFs can have an influence on the quality of the schedule. For each SGS variant,
three PFs were selected and used to construct the the schedules. In addition to
the PFs that were used in Section 7.2, the PFs which lead to the best and worst
result for the considered problem instance were additionally used to construct
schedules.

Figure A.6 shows three schedules obtained for the s-m SGS variant, denoted
as S1, S2, and S3. The fitness values denote that there is a quite big difference
in the quality of the 3 sample schedules, however, the median value of all the 30
schedules constructed by the evolved DRs is equal to 0.798, which demonstrates
that most DRs did not perform well on this problem instance. The figure shows
that in all three schedules jobs 4, 10, 7, and 1, are placed in the same positions.
Between the two better schedules, S1 and S2, there are only slight differences at
the end of the schedule. The first difference is in the placement of jobs 2 and 5,
namely which of these two jobs should be scheduled when machine M0 becomes
free after executing job 8. DR2 that created schedule S2 selected that job 5
should be scheduled due to it already being tardy, and having a slightly larger
priority value. This has proven to be a better choice since job 5 was completed
much sooner than in schedule S2. Although job 2 did take much more time to
finish than in schedule S1, it caused a smaller weighted tardiness penalty. The
second difference appears in the order of jobs 11 and 9 on machine M2. The
better schedule S2 scheduled job 11 first, since it would sooner become tardy.
However, this was a worse choice than the one in S1 where job 9 was scheduled
first, since job 9 has a higher priority value and thus causes a larger weighed
tardiness value if not scheduled first. However, this decision is quite hard to
make, as both jobs have a short execution time and a close due date. The third
difference is whether to schedule job 0 or 3 first on machineM2. DR2 performed
a better decision by selecting job 3 first as it can finish it before its due date,
and it will make job 0 miss its due date only slightly. On the other hand, by
selecting job 0 first in S1 job 0 could finish before its due date, but this resulted
in job 3 missing its due date by a large amount of time, which lead to a large
weighted tardiness.

Schedule S3 is the worst one out of all the schedules that were obtained for
the s-m SGS variant. Although this schedule has many similarities to the best
schedule S2, one poor decision by the DR was enough to construct a schedule
with a poor quality. This decision was not to schedule job 6 on machine M0
as was the case in the other two schedules. This was due to the fact that job
6 executes the fastest on machine M2 so DR3 decided to not schedule it on
any other machine. This allowed jobs 8 and 2 to finish sooner. However, job 6
was not executed immediately after executing job 4, since the other jobs that
were released in the meantime had a larger priority value due to their shorter
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execution times. When these jobs finished executing, job 6 was finally executed
and after it job 0. This resulted in a high weighted tardiness value as both
jobs ended up being quite late, but also had high priority values, especially job
0. The problem with the DR that created this schedule was that it focused
too much on the execution times of the jobs, and tried to schedule jobs on the
machines on which they have the shortest execution time. However, as can be
seen, this has proven to be quite a bad strategy.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

M0 10 6 8 2

M1 7 1 5

M2 4 9 11 0 3

(a) Schedule S1 generated by the first DR (DR1), with fitness value of 0.523
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

M0 10 6 8 5

M1 7 1 2

M2 4 11 9 3 0

(b) Schedule S2 generated by the second DR (DR2), with fitness value of 0.496
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

M0 10 8 2 5

M1 7 1

M2 4 9 11 3 6 0

(c) Schedule S3 generated by the third DR (DR3), with fitness value of 0.804

Figure A.6: Schedules generated by DRs using the s-m SGS variant

Figure A.7 shows the three schedules created by three different DRs which
use the h1-m SGS variant. The fitness values denote that all the differences
between the best schedule S1 and the worst schedule S3 are quite small. This
shows that the variance between the different DRs was smaller compared to the
standard or twotrees SGS variants. The median value of all 30 rules that were
generated was equal to 0.804, which shows that most DRs did not perform well
for this problem. Although schedules S1 and S2 have a similar fitness, there
are several key differences between them. DR2 which constructed schedule S2
decided that job 6 should not be scheduled immediately on machine M0, but
rather wanted to schedule it on another machine later on. However, as other new
jobs were released into the system that were more appropriate to be scheduled
on other machines, the DR eventually scheduled the job on machine M0 after
job 8 finished with its execution. Additionally DR1 scheduled job 8 on M1
rather than on M0, as it would have sooner executed on that machine than if
it would wait for job 6 to finish on machine M0. Therefore, once again a poor
decision for job 6 lead to a deterioration of the results. Although this difference
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was quite small between schedules S1 and S2, as DR2 did manage to make some
good choices when creating schedule S2. However, this cannot be said for S3,
which is almost completely the same as S3 that was created using the s-m SGS
variant. The only difference is that the positions of jobs 11 and 9 are switched,
which leads to an even worse result.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

M0 10 6 2 5

M1 8 1 7

M2 4 9 11 0 3

(a) Schedule S1 generated by the first DR (DR1), with fitness value of 0.717
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

M0 10 8 6 5

M1 7 1 2

M2 4 9 11 0 3

(b) Schedule S2 generated by the first DR (DR2), with fitness value of 0.727
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

M0 10 8 2 5

M1 7 1

M2 4 11 9 3 6 0

(c) Schedule S3 generated by the first DR (DR3), with fitness value of 0.810

Figure A.7: Schedules generated by DRs using the h1-m SGS variant

Finally, Figure A.8 shows the schedules generated by the DRs that use the
t-mm SGS. The fitness values of the three outlined schedules show that it was
possible to obtain DRs which perform quite differently, however, the median
value of all the 30 DRs was 0.792, which is due to the fact that most generated
DRs did not perform well on this instance. Schedule S2 achieved the overall
best performance. It is the same as the schedule S2 generated by the S-m SGS
variant, except that it reversed the position of jobs 9 and 11 and thus slightly
improved the quality of the schedule. In comparison to S2, schedule S1 has
several key differences. Namely when constructing this schedule the DR tried
to execute jobs 2 and 0 sooner. The reason why the DR did this is that both
jobs have a larger weight than the jobs 3 and 8 that were also considered at that
time. And although it might seem like a logical decision to reduce the tardiness
of those jobs that have a larger weight, in this situation it was a poor decision as
jobs 3 and 8 had a much closer due date than the other two jobs. Therefore, by
postponing the scheduling of those two jobs to a later moment caused had a large
influence on the weighted tardiness of the schedule, regardless of their weight.
The worst schedule S3 for this SGS also incorporates the problem with the poor
scheduling decision for job 6. However, in this case the only improvement was
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that job 6 was scheduled prior to job 3, which in the end did lead to a slight
improvement in the fitness, but still the quality of this schedule is poor when
compared to others.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

M0 10 6 2 8 5

M1 7 1

M2 4 9 11 0 3

(a) Schedule S1 generated by the first DR (DR1), with fitness value of 0.553
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

M0 10 6 8 5

M1 7 1 2

M2 4 9 11 3 0

(b) Schedule S2 generated by the first DR (DR2), with fitness value of 0.490
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

M0 10 8 2 5

M1 7 1

M2 4 11 9 6 3 0

(c) Schedule S3 generated by the first DR (DR3), with fitness value of 0.798

Figure A.8: The schedule generated by the DR which uses the t-mm SGS
variant

Based on the performed analysis it is evident that the simple and twotrees
SGS variants have similar expressiveness, as they can obtain good DRs for the
considered problem instance, both of which perform almost equally well. On
the other hand, the performance of the heuristic SGS variant is more limited
due to the way in which the jobs are allocated to the machines. Because of
that, the DRs using the heuristic SGS variant are unable to perform some good
decisions as those DRs that use the other two SGS variants.
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