UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 2028

BASEBAND SIGNAL PROCESSING CHAIN FOR A
SATELLITEDIGITAL TRANSMITTER

Mario Simunié

Zagreb, June 2020

UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 2028

BASEBAND SIGNAL PROCESSING CHAIN FOR A
SATELLITEDIGITAL TRANSMITTER

Mario Simunié

Zagreb, June 2020

UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Zagreb, 13 March 2020

MASTER THESIS ASSIGNMENT No. 2028

Student: Mario Simunié (2401028282)

Study: Electrical Engineering and Information Technology

Profile: Electronic and Computer Engineering

Mentor: prof. Davor Petrinovi¢

Title: Baseband Signal Processing Chain for a Satellite Digital Transmitter
Description:

It is necessary to describe and simulate the digital signal processing chain for use in a digital satellite
transmitter for transmission rates of up to 16 Mbps and BPSK, QPSK and O-QPSK modulations together
with the transmitter filter. The carrier signal frequency is 10.45 GHz. The input to the system is a 16 bit (or
less) parallel data stream. Show under what conditions, and with respect to the sampling frequency,
amplitude resolution, number of filter states and memory size, unwanted emissions outside the transmission
band of less than -40 dBc can be achieved. Define a digital-to-analog converter (specify and select the chip)
whose output will be IQ signals representing the input of the modulator in the next stage of the transmitter.
The processing chain shall be implemented in the Matlab software environment, to evaluate the
computational complexity of signal processing and its feasibility on the STM32 or Zyng-7000 platform. By
simulation, estimate the bit error rate for a given noise power at the receiver.

Submission date: 30 June 2020

SVEUCILISTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE | RACUNARSTVA

Zagreb, 13. ozujka 2020.

DIPLOMSKI ZADATAK br. 2028

Pristupnik: Mario Simunié¢ (2401028282)

Studij: Elektrotehnika i informacijska tehnologija

Profil: Elektronicko i racunalno inZzenjerstvo

Mentor: prof. dr. sc. Davor Petrinovi¢

Zadatak: Lanac za obradu signhala u osnovnom pojasu u satelitskom digitalnom
predajniku

Opis zadatka:

Potrebno je opisati i simulirati lanac digitalne obrade signala za primjenu u digitalnom satelitskom predajniku
za brzine predaje do 16 Mbps i modulacijske postupke BPSK, QPSK i O-QPSK te odasiljacki filtar. Signal
nosioc je frekvencije 10.45 GHz. Ulaz u sustav je paralelni podatkovni tok Sirine 16 bita (ili manje). Pokazati
pod kojim uvjetima, a s obzirom na frekvenciju o&itavanja, amplitudnu rezoluciju, broj stanja filtra i veli€inu
memorije, se mogu ostvariti nezeljene emisije izvan pojasa propustanja manje od -40 dBc. Definirati digitalno
analogni pretvornik (specificirati i odabrati €ip) na Cijem izlazu ée biti 1Q signali koji predstavljaju ulaz
modulatora u sljede¢em stupnju predajnika. Lanac je potrebno implementirati u programskom sustavu
Matlab, procijeniti raCunalnu sloZzenost obrade signala te izvodivost na platformi STM32 ili Zyng-7000.
Simulacijom estimirati vjerojatnost pogreske bita u prijenosu (engl. bit error rate) za zadanu snagu Suma na
prijemniku.

Rok za predaju rada: 30. lipnja 2020.

UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND
COMPUTING

MASTER THESIS no. 2028

Baseband Signal processing
Chain for a Satellite Digital
Transmitter

Mario Simunié

Zagreb, September 2020.

Hvala

mentoru prof. dr. sc. Davoru Petrinovicu

na iznimnom strpljenju i povjerenju

prof. dr. sc. Dubravku Babic¢u na podrsci i
motivaciji.

Ovaj rad posvecujem voljenoj Evi

koja mi je tako mnogo pomogla.

il

CONTENTS

List of Figures
List of Tables
1. Introduction

2. Digital Communications Theory Overview
2.1. Continuous and discrete time signals
2.1.1. Modulation and complex envelope of bandpass signal
2.2. Digital modulation formats L Lo L
2.2.1. BPSKmodulation
222, QPSKmodulation
2.2.3. Offset QPSK (O-QPSK) modulation
2.3. Nyquist filter and pulse shaping
2.4. Peak to Average Power Ratio(PAPR)

3. Proposed system architecture
3.1. Systemrequirements

3.2. Digital modulator architecture

4. Matlab simulation
4.1. Pseudo-random Bit-Stream generator.
4.2. PRBS program implementation,
43. Symbolmapping
44. Raised Cosinefilter
45. Pulseshaping

5. Simulation results

5.1. LongRCfilter spanresults

vi

viii

[c<BEE NN N I O

10

11
13

15
15
16

17
17
18
20
22
23

27
27

Y

5.1.1. BPSKresults 27

5.1.2. QPSKresults 28

51.3. O-QPSKresults., 28

5.2. Shortening the RC filterspan 29
5.3. Further shortening the RC filterspan 31

6. Conclusion 33
Bibliography 34

A. Spectral emission limits for Radio-Amater Band in X-Band radio frequen-

cies 37
B. Source code 39
B.1. Source code of main Matlab simulation script 39
B.2. Source code of PRBS generator 54
B.3. Source code of symbol mapper 57
B.4. Source code of filterdesigno 63

LIST OF FIGURES

2.1.
2.2.
2.3.
24.
2.5.
2.6.
2.7.
2.8.
2.9.
2.10.
2.11.
2.12.
2.13.
2.14.

2.15.

2.16.

2.17.

2.18.

3.1.

4.1.
4.2.
4.3.
4.4.

d[n — %] signal
Spectrum of d[n — %] signal
Single rectangular pulse signal
Spectrum of rectangularpulse
Sine wave signal L
Spectrum of sine wave signal L Lo L
Block diagram of modulation 000 L
Basic block diagram of direct conversion modulator
Message signal pulses representing binary "1" and "0"
BPSK - modulated symbols "1" and "0"
BPSKsignal spaceo
QPSKsignalspace
Rectangular function - frequency response of a brick-wall filter
Graph of the normalized sinc function - impulse response of a brick
wall filter

Frequency response of raised-cosine filter with various roll-off factors

Impulse response of raised-cosine filter with various roll-off factors /3

[1] . o e e

Envelope of QPSK modulation with ideal rectangular pulses

Envelope of QPSK modulation with RC shaped pulses
Block diagram of digital system for baseband signal processing

LFSR architecture [2]
LFSR polynomials [3]
PRBS and sequence periodicity [1]
BPSK maped symbol pulses

O 0 0 9 O Lt L L U e W

—_—
N O

12

13

14
14
14

16

17
18
18

vi

4.5.
4.6.
4.7.
4.8.
4.9.
4.10.
4.11.
4.12.
4.13.

5.1.
5.2.
5.3.
54.
5.5.
5.6.
5.7.
5.8.
5.9.
5.10.
5.11.
5.12.
5.13.
5.14.
5.15.

A.l.

QPSK and O-QPSK maped symbol pulses 20
Impulse response samples of the designed RC filter 23
Magnitude and Phase response of the designed RC filter 23
BPSK upsampled symbol pulses 24
QPSK uppsampled symbol pulses 24
O-QPSK uppsampled symbol pulses 25
BPSK filtered and shaped I and Q impulses 25
QPSK filtered and shaped I and Q impulses 26
0O-QPSK filtered and shaped and Q impulses 26
BPSK signal trasnition in signal space 27
Enevlope of the BPSK'signal 27
BPSK signal spectrum L. 28
QPSK signal trasnition in signal space 28
Enevlope of the QPSK'signal 28
QPSKsignal spectrum 29
0O-QPSK signal trasnition in signal space 29
Enevlope of the O-QPSK'signal 29
O-QPSK signal spectrum 30

Magnitude response of 257 tap RC filter, span 16 symbols, L=16, a=0.22 30
Magnitude response of 257 tap RC filter, span 16 symbols, L=16, «=0.30 31

BPSK spectrum using 257 tap RC filter 31
QPSK spectrum using 257 tap RC filter 31
BPSK spectrum using 129 tap RC filter 32
QPSK spectrum using 129 tap RC filter 32

Spectral emission limits for 10 MHz amateur RF channel in X-Band

using single channel communication and digital phase modulation . . 38

vii

LLIST OF TABLES

viii

1. Introduction

Satellites are man made objects, ie. technical systems which orbits our planet. Es-
sentially, there are four types of orbits: high Earth orbit (HEO), medium Earth orbit
(MEO), and low Earth orbit (LEO). Many weather and some communications satellites
tend to have a high Earth orbit, farthest away from the planet surface. Most scientific
satellites, including NASA’s Earth Observing System fleet, have a low Earth orbit [4].
Over last twenty years LEO have become increasingly interesting for academic satellite
projects. Hundreds of nano-satellites, called Cubesat, with weight about one kilogram
and volume of one liter are launched in LEO space over last ten years.

FERSat is academic project with objective to build own nano-satellite and launch it
into LEO at about 600 km altitude. Nano-satellites such as FERSat have a few subsys-
tems and one of them is Communications subsystem. Sensor and imaging data will be
transferred over a high-bandwidth digital radio-frequency (RF) link. For that purpose
FERSat need to have high-bandwidth digital RF transmitter onboard.

To achieve FERSat objective of building own RF transmitter subsystem it is necessary
to understand practical limits of the signal processing communications system.

First part of this Thesis focuses on defining digital signal processing chain for M-
PSK modulator. Simulation of 2-PSK (BPSK), 4-PSK (QPSK) and Offset-QPSK (O-
QPSK) modulator is made in Matlab. Simulations gives an answer to question what
is lower limits of processing complexity under which requirements are still satisfied.
Simulation results of In-phase and Quadrature signal spectrum for a few different trans-
fer rates will be compared. Second part of Thesis focuses on effects of limited digital
word length, ie. limited memory register width.

Next chapters gives phase modulation and pulse transmission theory overview, dissem-
inated modulator requirements and constraints, chosen modulator arhitecture, simula-

tion explaination and results comparison.

2. Digital Communications Theory

Overview

In digital communications information is represented using binary coded words. This
means that information or data in a computer is represented as discrete states of binary
bits stored in memory registers. In digital computers, time and signals are discrete.
Signals which are discrete in time and amplitude are called digital signals. During
transmission of information trough communication channel, information need to be
represented with kind of signals suited for particular communication channel.

The need to transfer information from eg. satellite to earth station computer basically
involves series of data transformation. First of all, communication channel is analog
RF signal, which means continuous-amplitude and continuous-time signal. In order to
transmit digital signals, representing data, trough analog communications channel they
need to be converted into continuous time signals. During transmission it is necessary
to conform regulations. Radio-frequency bandwidth is very constrained and limited
good. One of the most important parameters of RF transmitter is RF bandwidth used

for transmission.

2.1. Continuous and discrete time signals

Continuous-time signal u(t) can be represented with it’s spectrum U(w). Connection
between continuous-time signal and it’s spectrum is given by Continuous-Time Fourier
Transform (CTFT) [5].

+oo
CTFT[u(t)] =U(w) = / u(t)e 7% dt (2.1)
Inverse Continuous-time Fourier Transformation is given by:

ICTFT[U(w)] = u(?) ! / - U(w)e™ dw (2.2)

T o

—00

Digital signal u[n], a series of data points describing time evolution of a real world
phenomena, is obtain by taking samples of continuous signal at equidistant time points
T,. Sampling, a process of taking samples, is a discretization in time. After sampling,
discrete time signals are quantized, that is discretized in amplitude, to B bits. B is word
length of analog to digital converter.

Nyquist-Shannon sampling theorem establishes a sufficient condition for a sample
rate that permits a discrete sequence of samples to capture all the information from
a continuous-time signal of finite bandwidth. C. E. Shannon made sampling theorem
in it’s famous work [6] as Theorem 13. It states that if sampling of a bandlimited sig-
nal is done with sampling frequency f; > 2f); where f); is a maximum frequency
component of the signal, then signal can be perfectly reconstructed. Sampling is writ-
ten as in Eq. (2.3) [7, Eq.2.6] where z*(t) is sampled function, f; = 7% is a sampling
frequency and 0(t) is a Dirac delta function.

[e.9]

v (t) = Y x(nT.)s(t — nT,) (2.3)

n=—oo

Spectrum of sampled function x* is given in Eq. (2.4).

o0

X*(w) = Ti > X(w— kw,) (2.4)

5 k=—o0

It can be seen that sampled faction spectrum X * have original spectrum X (w) scaled
by Ti and periodized with frequency period w;. If Nyquist-Shannon sampling theorem
is satisfied there is no overlapping between replicas of X (w). Discrete time signal is
zg[n] = x(nTj)

Discrete-time signal u[n] can be represented with it’s spectrum U (w). Connection be-
tween discrete-time signal and it’s spectrum is given by Discrete-Time Fourier Trans-

form (DTFT) [5].

DTFT[u(t)] = U(w) = f uln]e 7" (2.5)

n=—oo

Inverse Discrete-time Fourier Transformation is given by:

IDTFT[U(w)] = uln] ! / " U(w)e’™" duw (2.6)

T or

—T

DTFT and IDTFT operates at infinite series signals. Infinite series signal practically

3

isn’t achievable. In reality, computers work with limited amount of memory and lim-
ited number of signal samples. Thus, we must use different tool for transformations
of finite-length discrete-time signals. This is Discrete Fourier Transform and Inverse

Discrete Fourier Transform Eq. (2.7), [5].
DFTy([u[n]] = Ukl = > un]WiF0<k<N -1 (2.7

Inverse Discrete-time Fourier Transformation is given by:

N-1
1
IDFTy [U[k] = uln] = & > X[EWR™,0<n<N -1 (2.8)
n=0
Wik = e=9*%" (2.9)

Fast Fourier Transform is a group of algorithms for efficient calculating DFT trans-
form. It’s is important to notice few details about FFT and DFT to understand signal
spectrum in simulations. First, discrete frequency have range from —7 to 7. Whole
frequency range [—%, %] of continuous-time signal is mapped into range [—, 7.
DFT assumes periodic signal, ie. it assumes that finite-length signal u[n] is exactly
one period of a infinite-length periodic signal. If this isn’t true, spectrum isn’t per-
fectly clean.

DFT can be observed as array of matched filters, each of which is matched to k-th
frequency. Input signal excites more or less each of the filter, and each filter output is
proportional to how much signal frequency is matching that filters frequency.

Using finite-length sequence of infinite-lenth signal is a windowing operation. FFT by
default operates with rectangular window. Windowing the signal produces amplitude
and frequency effects in calculated spectrum of the signal. Rectangular window with
amplitude of A and width T" have frequency spectrum X (w) = 2ATsinc(%). Thus
multiplication of infinite-length signal withwindow in time domain produces convo-
lution of signal spectrum with window spectrum in frequency domain. Eq. (2.10) is

modified DFT equation which includes time window samples w|n].

Ukl = wln]u[n]Wi (2.10)

From Eq. (2.10) it can be seen that amplitude of each spectral component £ calculated

by DFT is increased by a sum of window samples w[n]. To retain physical meaning of

4

spectrum amplitude, FFT need to be scaled by a sum of window samples. Corrected

FFT transform is shown in Eq. (2.11).

wnju[n] Wik (2.11)

There are three discrete-time signals for which it is important to know their spectra.

Those signals are rectangular impulse, d[n] (single non-zero sample) and sine wave

signal.

Amplitude

Figure 2.3: Single rectangular pulse signal

Amplitude

Amplitude

Kronecker delta[n-fs/2], fs = 1000 Spectrum of Kronecker delta pulse, fs = 1000, 1000 point FFT
- 59
12 X 0.499 | 592
¥
1 2 59.4
08 596
06 T cos
o
04)
0.2 =
& 602
: =
X 0.498)(0.5‘ 50.4
02 Yo Yo
: 60,6
0.4
o6 60.8
&1
0 01 02 03 04 05 06 07 08 08 1 4 08 06 04 02 0 02 04 06 08 1
Time.[s] Normalized frequency (= rad/sample)
. fs . . fs .
Figure 2.1: §[n — <] signal Figure 2.2: Spectrum of 6[n — %] signal
Spectrum of rectangular impulse, fs = 1000 Spectrum of rectangular pulse, fs = 1000, 1000 point FFT
30
1 %
£
09 40 i
] |
08 i |
T
50 \ Tt
ot o N ‘” ||‘ \n
" 2 A\ [\
3 I,\/\.u"\\ | ‘ RIAVAWA "
05 éﬁ N f\,\“\\w'\\‘\‘\\hwl‘“\ I I \('\\'\\I\fﬁ\wrﬁn‘w‘"r"\
ba g (VUL R RIRRIAA
LUVl AR
03 e H H ‘ ‘ ‘ H U
|1 T
02
80 I
01
o
90
400 420 440 460 480 500 520 540 560 580 600 1 08 06 04 02 0 02 04 06 08 1

0.8

0.6

0.4

0.2

0.2

0.4

0.6

0.8

One period of sine signal, f = 5, fs = 1000

sample

0.4

02

03 04 05 06 07
Time.[s]

08

09

1

Figure 2.5: Sine wave signal

Normalized frequency (x = rad/sample)

Figure 2.4: Spectrum of rectangular pulse

Magnitude, [dB]

-150

55, m'n\m"\‘t“rfwn-.aMVM~M’ et

Spectrum of sine wave signal, f=5, fs = 1000, 1000 point FFT
0

X 0.01
50 Y -6.021

"M h-www“m.-,

05 -04 03 02 01 0 01 02 03 04 05
Normalized frequency (« = rad/sample)

Figure 2.6: Spectrum of sine wave signal

2.1.1. Modulation and complex envelope of bandpass signal

Message Transmitted

signal m(?) />‘<\ signal s(?)

\T/

Carrier signal
A cos(2nf.1)

Figure 2.7: Block diagram of modulation

Modulation represented with block diagram Fig. 2.7 is a procedure in which modu-

lation signal m(¢) is mixed with carrier signal. Modulation or mixing is mathematically
multiplication. Modulation signal is carrying information or message. Carrier signal is
RF signal tuned for RF channel frequency. Multiplication of carrier signal with m(t)
produces signal s(t) which contains spectrum of m/(¢) centered at carrier frequency,
thus whole information signal spectrum is shifted into RF channel band.
Modulation can affect carrier signal frequency, amplitude or phase. Modulation for-
mats which uses phase of carrier signal as information carrier are called phase mod-
ulations. Keying is a modulation format in which message signal is pulse coded, for
example Amplitude Shift Keying in which pulse can have amplitude of O or 1. These
pulses are multiplied with carrier signal to produce ASK modulated signal. A pass-
band is the range of frequencies that can pass through a filter. For example, a radio
receiver contains a bandpass filter to select the frequency of the desired radio signal
out of all the radio waves picked up by its antenna. The passband of a receiver is
the range of frequencies it can receive when it is tuned into the desired frequency. A
bandpass-filtered signal (that is, a signal with energy only in a passband), is known as
a bandpass signal, in contrast to a baseband signal [8]. Baseband is a signal that has
a near-zero frequency range. In telecommunications and signal processing, baseband
signals are transmitted without modulation, that is, without any shift in the range of
frequencies of the signal [9]. Signal m/(t) is basically baseband signal.

Direct Conversion modulation is one of the technique which gives modulated signal
using complex mixing or complex modulation. Fig. 2.8 represents basic block diagram
of direct conversion modulator. Signal uyp(t) is a complex signal consisting of two
signals. Real part of uyp(t) is signal uyp ;(t) or In-phase signal. Imaginary part of

urp(t) signal is upp (t) or Quadrature signal.

urp (¥ /‘\
= X

cos(2nf.:1) ugp(t)
sin(2nf 1) C: ~
urp o
)

Figure 2.8: Basic block diagram of direct conversion modulator

upp(t) = Re[upp(t) - eljuwot)] (2.12)
upp(t) = Re[urp 1(t) + jurp o(t)] - [(cos(wot) + jsin(wot)] (2.13)
upp(t) = urp 1(t)cos(wot) — urp g(t)sin(wot) (2.14)

Equation Eq. (2.14) is showing that any modulated signal can be achieved by using
adequate I and Q signals mixed with complex exponential, that is cosine and sine
signals with carrier frequency. Summation of I branch signal with negative Q branch
signal results in modulated bandpass signal. Signal uyp(t) = urp ((t) + jurp ¢(t) is

a complex envelope of signal ur,p(t)e/*"!.

2.2. Digital modulation formats

Among many keying formats this Thesis focuses on M-ary Phase Shift Keying (M-
PSK). M in M-PSK represents order of modulation. For M=2 modulation is 2-PSK or
binary PSK (BPSK), and for M=4 modulation is Quadriphase PSK or QPSK.

Modulation states are represented with symbols instead of bits and symbols are actual
information, that is signals which are modulated on carrier signal. Depending on order
of modulation, one or more bits are packed into one symbol. This is done by mapping
bits into symbols and representing symbols using vector space signals. Parameter K =
logs (M) defines how much message bits is packed into one M-ary modulation symbol.
For example, 8-PSK, with M=8 transmits or modulates K=3 bits per symbol.

Assigning signals to symbols.

Functions ¢;(t) form the orthonormal basis of vector space. Signals s;(¢) can be shown

as linear combination of ¢;(t), 7 =1,..., M.

Equation Eq. (2.15) for N = 2 resembles the direct conversion modulator in which
basis functions are ¢; = cos(wot) and ¢ = sin(wot). Signals representing symbols
are s;1 = urp y and s;p = upp @.

Basis functions are chosen using equations Eq. (2.16), Eq. (2.15), and the facts that
basis functions must be orthogonal and signals s;(¢) are linear combination of products

of multiplication basis functions with coefficients s;;.

¢i(t) = % (2.16)
o gi(t)dt

2.2.1. BPSK modulation

4 m(t)

" 1 " "O"

Figure 2.9: Message signal pulses representing binary "1" and "0"

S(t) s(t) = m(t) * cos(2nf.t)

AWMLY
VAVARYA N

Figure 2.10: BPSK - modulated symbols "1" and "0"

N

Coherent BPSK is modulation with M = 2, thus two signals are used, s; and ss.
Signals are given with the equations Eq. (2.17) and Eq. (2.18).

1

T — —
"~ SR

T, is time duration of the symbol and SR is symbol rate at which symbols are trans-

mitted.
= \/ T 0s (27 fot) (2.17)
E 2F
=\ / s(2m fot +) = —4 /Tbcos(waot) (2.18)
b
BPSK have one basis function ¢ (¢) thus signal vector space is one-dimensional.
2
d1(t) = 4/ Tcos(27rf0t) (2.19)
b

Basis function amplitude / le ensures that basis is orthonormal. ~

Vector which describes first signal:

Ty
S1 = S11 = / Sl(t)(bl(t)dt = \/Eb
0

Vector which describes second signal:

,1—))
S9 = S91 = / Sg(t)¢1<t)dt = —\/ Eb
0

Signal space or constellation of BPSK modulation is shown in Fig. 2.11. Probability

Decision
limit
1

|
-V, 0 Y

\ 4

Figure 2.11: BPSK signal space

of transfer error for Additive White Gaussian Noise (AWGN) communication channel:

1

P. ppsk = §€T’fc(

By
N

where F; is symbol energy and /N, is channel noise energy. BPSK bit to symbol
mapping maps one bit of message into one symbol, that is number of bits Kgpgx = 1.
In case of BPSK modulataion symbol energy and symbol duration is same as bit energy
and bit duration, F, = E,, T, = Tj.

2.2.2. QPSK modulation

A (I)z

ll01ll "00"

° '_\/E—b °

Decision
limit T»

: S
-JE, 0 JEy ¢1
ll11ll ll10|l

° _"_—\/E—b)

Figure 2.12: QPSK signal space

Coherent QPSK is modulation with M = 4, thus four signals are used, sy, S2, S3,

and s4. Signals are given with the equations Eq. (2.20) - Eq. (2.23).

51 = 2;38 cos(2m fot + %T) (2.20)
59 = 25: cos (27 fot + %ﬂ) (2.21)
83 = 27{? cos(2m fot + %T) (2.22)
Sy = 27% cos(2m fot + %T) (2.23)
1
T.= <

T, is time duration of the symbol and SR is symbol rate at which symbols are trans-

mitted.

10

QPSK have two basis function ¢, (t) and ¢» (%) thus signal vector space is two-dimensional.

¢1(t) = \/Tzcos(%fot) (2.24)
Pa(t) = \/Tzsm(%fot) (2.25)

Signal space is shown in Fig. 2.12. Adjacent symbols have Hamming distance of
1, which means that the are different in 1 bit. Different constellation mappings are
possible It is beneficial for reducing transfer error probability that signals which are
close have small Hamming distance.

BPSK and QPSK have same probability of transfer error, P.. This is because QPSK
modulation uses one bit of message to modulate In-Phase signal and second bit of mes-
sage to modulate Quadrature signal. These bits, and these quadrature component mod-
ulations are independent. For that reason QPSK is basically two independent BPSK
modulations thus P, is the same for both modulations. QPSK modulation sends two
bits of message at the same time and uses twice the energy of BPSK to mentain same
Signal To Noise ratio.

Rectangular signals uy,p ;(t) and uzp ¢(t) from Fig. 2.8 represents coordinates in

signal space, signal ugp(t) is a QPSK modulated modulated signal.

2.2.3. Offset QPSK (O-QPSK) modulation

QPSK modulation modulates In-Phase and Quadrature signals with message bits at the
same instant of time. Symbol transition from one symbol to another passes trough IQ
plane origin, that is zero amplitude. This variation of amplitude produces unwanted
effectes in RF power amplifier and reduces amplifier efficiency.

0-QPSK is a variant of QPSK which modulates In-Pgase and Quadrature signals with
time delay, or offset, of half a symbol duration, % This procedure eliminates symbol

transitions trough zero amplitude.

2.3. Nyquist filter and pulse shaping

Every real communication channel is band-limited. For example, FERSat expected
channel bandwidth is 5 to 10 MHz. If we consider mixer input signals uy;p ; and
urp ¢ as rectangular pulses, for example as in Fig. 2.3 than magnitude spectrum of

that signals has shape as in Fig. 2.4. This spectrum is unlimited with side lobes which

11

decays slowly (sinc function). Besides bandwidth issues with rectangular pulses, im-
pulse response of the channel causes a transmitted symbol to be spread in time domain.
This causes Inter Symbol Interference (ISI) where the previously transmitted symbols
affects the currently received symbol, thus reducing tolerance for noise.

H. Nyquist came up with criterion for distortionless transmission which states that
height (amplitude) of the middle of each signal element (symbol) should be undis-
torted. This means that each pulse p(t) should be zero-valued in every sampling time

instance 7 except for time instance ¢ = 0, that is Nyquist criterion for zero-ISI:

1; t=0
p(t) = (2.26)
0; t=nTs(n#0)

and

> r(r-

n=—oo $

) =T (2.27)

A minimum bandwidth system has a rectangular shape from —37 to 7. Where 3T
is Nyquist frequency. Any filter that has excess bandwidth with odd symmetry around
Nyquist frequency and even symmetry around zero frequency also satisfies zero-ISI
criterion. Any such filter is called Nyquist filter.

Brick-wall filter or sync filter is ideal Nyquist filter. Frequency response and impulse

response of the filter are illustrated in Fig. 2.13 and Fig. 2.14. Impulse response of

1.7\
okl
1.0 |- o—— . f \\
: | o |
I ! : . s
0.5 C ° o — /b.4- \
L 1 1 | /0.2» \
P I S— o I\ /\ / \ /\ VAN
L 1 o~ 4/ ,x/‘/ ‘\J/ﬁ) 6
05 T AP T AP B A o2p

Figure 2.14: Graph of the normalized sinc
Figure 2.13: Rectangular function - fre- .))
function - impulse response of a brick wall

quency response of a brick-wall filter
filter

brick-wall filter is a Sinc function. It is slowly decaying signals which lasts from
t = —oo to oo and because it decays slowly, time shifting and time-limiting such signal

produces significant errors in spectrum. Therefore, it is practically unachievable. For

12

that reason we would like to use filter with different frequency response shape and fast

decaying impulse response which could be approximated.

Raised Cosine filter is popular Nyquist filter. It’s pulse has signal bandwidth (37})(1+
B). Frequency response of Raised Cosine filter [10] is given in Eq. (2.28) and plotted
in Fig. 2.15.

1 H()

— (=0

— [=0.25

— B=0.5
B=1

Figure 2.15: Frequency response of raised-cosine filter with various roll-off factors 3 [1]

1, f| < 572
Hf) = [1reos (LI 5))]. S<lfi<s e®
0, otherwise

For each impulse at filter input filter output is one impulse response. This procedure is
called pulse shaping. Using Raised Cosine (RC) shaped pulses, zero-ISI is achievable.
Impulse response of RC filter decays quickly than Sinc pulses, and could be much
better approximated. This type of filter is most widely in use as Nyquist transmit
filter. Impulse response of Raised Cosine filter is given in Eq. (2.29) and plotted in
Fig. 2.16 for various roll-off factors. There is an trade-off between spectral bandwidth

and decaying slope.

= sinc <L , t==+L
h(t) = jT . tw cos(724) " (2.29)
7 sinc (’T) 1_(%&)2, otherwise

2.4. Peak to Average Power Ratio (PAPR)

Theoretical modulation use rectangular impulses as symbols. Perfect rectangular im-
pulses have instantaneous level transitions and maximally sharp edges. Using theo-

retical modulation, modulated signal wave would have shape as in Fig. 2.10. If we

13

[LE — 4-0

— [B=0.25
— [B=0.5
B=1

Figure 2.16: Impulse response of raised-cosine filter with various roll-off factors 3 [1]

RMS envelope of the QPSK signal RMS envelope of the QPSK signal

| B B 1
0.6 l 0
o4 A A B m\f\“j\/\ﬂ”

Amplitude
&
amplitude

. f\r\f\«/’v\ﬂW"v‘wl
| of

1000 2000 3000 4000 5000 6000 5 6 7 8 9 10 1
Samples samples w104

Figure 2.17: Envelope of QPSK modulation Figure 2.18: Envelope of QPSK modulation
with ideal rectangular pulses with RC shaped pulses

plot envelope of that signal Fig. 2.17, it can be seen that peak power to rms or average
power is constant. When RC filtered pulses are used as symbols then symbol transition
are not instantaneous. Sum of impulses produces envelope with peeks and drops. In
that case PAPR is lower than ideal. Such transients behavior of signal envelope is a
problem for linear RF power amplifier [11] because amplifier must have enough dy-
namic range to convey envelope peaks, but most of the time it operates at power lower
than optimal. Envelope with peaks and drops produces unwanted nonlinear effects
in the amplifier and reduces power efficiency of linear RF amplifier. Power amplifier
efficiency is a trade-off for spectral efficiency of higher-order modulation formats. O-
QPSK modulation format is variant of Q-PSK in which delay of % between I and Q
transitions produces modulated signal envelope which never drops to zero, that is sig-
nal transition in signal space never pass trough origin and envelope is more flat than

compared with ordinary QPSK modulated envelope.

14

3. Proposed system architecture

3.1. System requirements

The goal is to have satellite communicating in Amateur-Radio X-band 10.450 - 10.500
MHz with dedicated channel bandwidth of 10 MHz. For that type of RF communi-
cation channel, International Telecommunication Union documentation was studied
under FERSat project. Resulting maximum allowed spectral emissions are illustrated
on the spectral mask given in Appendix A. This thesis is focused on more stringent
spectral requirement of -40 dBc.

Analog part of transmitter is already defined. Mixer that will be used is Analog De-
vices’s HMC1056LP4BE. This mixer receives analog IF input signals (In-phase and
Quadrature component) in frequency range from DC up to 4 GHz. It’s reasonable
to have stringent requirements for digital processing part until transmitter prototype
is field tested because of unknown parasitic parameters in analog part of transmitter,
which can affect resulting unwanted spectral emissions.

System should transmit using one or all of modulation formats: BPSK, QPSK nad

O-QPSK. Line transmition rate need to be up to 16 Mbit per second.

15

3.2. Digital modulator architecture

Ip[n I[n
PIN] oo [n]

» shaping 9 D/A

filter

Binary Symbol uRrpf(t)
' Didital
data —_ TR igital System
E PRBS
! Pulse

» shaping » D/A

Q] —™ Qml [Q®

Figure 3.1: Block diagram of digital system for baseband signal processing

Fig. 3.1 illustrates proposed Direct Frequency Conversion mixer with complex
mixing. Modulator is consisting of symbol mapper, transmit filters and digital to ana-
log converters (DAC). Output of DACs are two continuous-time analog signals, /(t)
and Q(t) which together makes complex envelope signal.

Pseudo-random Bit-Stream (PRBS) is not part of modulator. PRBS is used for testing

and simulation purposes, which will be explained in the next chapter.

16

4. Matlab simulation

4.1. Pseudo-random Bit-Stream generator

PRBS generator is based on Linear Feedback Shift Register architecture. Basically it
is a shift register with some flip-flop outputs (taps) connected to XOR gate. Output of
the XOR gate is connected back to the input of the first flip-flop in the shift register
[2]. Table in Fig. 4.2 contains listed polynomials for maximum length LFSR counters.
For example, if PRBS-9 is used then potentions of x in the polynomial for the PRBS-
9 defines which taps of LFSR are connected to XOR gate. Output of the PRBS is a
sequence of random bits, that is sequence of the output from the last flip-flop in the

LFSR. During first steps of writing simulation algorithm, it would be beneficial if

T=—]
ik el il el

Figure 4.1: LFSR architecture [2]

resulting FFT spectrum of complex envelope would be clean and flat as possible. DFT
expects that input sequence contains exactly £ periods in the periodic signal, where
k € N. To minimize spectral estimation errors due to non-integer number of periods,
periodic sequence of data is used. PRBS generator of order n generates random bits
with repetition cycle of 2" — 1 bits. In other word, PRBS-n is cyclic in 2" — 1 bits.
This bits are mapped into symbols, thus period sequence of bits becomes periodic
sequence of symbols. Because every symbol is represented with L samples, if FFT is
calculated on a sequence of length 2" — 1 samples it will always be periodic sequence

which will produce clean spectrum. This way it’s easier to spot changes in spectrum

17

LFSRs (cont)

 Primitive polynomials with minimum # of XORs

Degree (n) Polynomial
2,3.4,6,7,1522 | x"+x+1
5,11,21,29 X'+ x4+ 1
8,19 X +x6+ x5 +x+ 1
9 X+ xt+ 1
10,17,20,25,28 | x*+x3 + 1
12 XX+t +]
13,24 X +xt+ 3 +x+ 1
14 R R A | T |
16 XX+ a3+ a2+ 1
18 X' +x7+1
23 X' +x3+ 1
26,27 XA xS+ a7 +x+ 1
30 X+ xl6 + x5+ x4+ 1

C.Stroud, Dept. of ECE. Aubum
Univ. 10/04

Figure 4.2: LFSR polynomials [3]

due to simulated system parameter change. The concept of creating periodic sequence
illustrated in Fig. 4.3. Depending on modulation type, more than one bit is packed into
symbol and PRBS-n doesn’t produce even-lenght sequence. If just one period of PRBS
is used as sequence of data bits then last symbol would not be complete for modulation
with order M > 2. This would break the periodicity of FFT sequence. Solution is to
use at least two periods of PRBS as data sequence. Then, it is possible calculate FFT
on a sequence of symbols with length equal to PRBS period. This sequence can be
shifted left and right for any number of symbols. FFT sequence will be periodic, no
mather the shift. This shift is used to avoid calculating FFT from zero-valued samples

which exist at the beginning of simulation due to filter delay.

PRBS period PRBS period

el]z faefom]n]]efa]sfofm]n] | [o-

FFT sequence = L*PRBS period samples

Figure 4.3: PRBS and sequence periodicity [1]

4.2. PRBS program implementation

PRBS generator is called in simulation by calling function

[symbol, nextseed | = f_prbs(seed, bits).

18

20

2

22

23

24

25

26

27

28

29

30

Function will determine order of PRBS-n from length of the parameter seed. Second
paramter bits defines how many bits function will return as value of symbol. Next

block of code will generate periodic pseudo-random message bits stored in variable

data .

K = 1log2 (M) ; % number of bits per symbol

seed = 1000000007 ;

bits = length (seed);

prbs_period = intl6 (2"bits)-1; % LFSR RNG periodicity
sequence_period = lcm(intl6(K), prbs_period); % symbols to

repetition: symbols for cyclical sequence
m = 2xsequence_period; % need to have enough data for cyclic fft

capture

for k=1:m

[symbol, seed] = f_prbs(seed,K);
switch symbol

$QPSK

case 00’

[data, 0,0];

case 01’

[data,0,1];

case 10’

[data,1,0];

case "11’

data

data

data

data = [data,1,1];
$BPSK

case 0’

data = [data,0];
case "1’

data = [data,1];
otherwise

warning (' Unsupported symbol type.’);
end

end

19

2

5

1

2

3

4.3. Symbol mapping

Simbol mapper is implemented inside function f_mappsym_ms. Functions is called

from main simulation script mpsk_sim_ms.m within next block of code:

S O FHHH AR AR AR AR AR AR A R R R R R A
% SYMBOL MAPPING
SO i

[symbols, I, Q, SYMmapped] = f_mappsym_ms (modulation, data);

Input bit sequence, first 32 bits

ST T o A L 1

o 5 10 15 20 25 30

o 5 10 15 20 25 30 First 16 | impulses

i e e e e e i
LTI L e

i} 5 10 15 20 25 30 First 16 Q impulses

Figure 4.5: QPSK and O-QPSK maped sym-

Figure 4.4: BPSK maped symbol pulses
bol pulses

Symbol mapping is implemented in function

[symbols, I, Q, SYMmapped] = f_mappsym_ms (modulation, bitstream).

Parameter modulation defines modulation format (BPSK, QPSK, O-QPSK). Function
reads sets of K bits from input message (array of bits) and maps them into output
vectors / and () which contains impulses (one sample is one impulse) representing
coordinates of symbols in signal space. Every k-th symbol S(k) have coordinates in
vector space S(k) = (I(k),Q(k)). Output array SY Mmapped is array of k com-
plex numbers where each complex number is representing one symbol S(k) where
Re[S(k)] = I(k) and Im[S(k)] = Q(k). Function also returns array symbols which
is array of numbers (bits) with columns length of K numbers. Each column is repre-
senting K bits, that is, one symbol. Fig. 4.4 and Fig. 4.5 shows first 32 bits of message
sequence and corresponding mapped symbol pulses. The next block of code is part of

function f_mapsym_ms.m. Constellation lookup tables and I, Q mapping is listed.

%% Constellations (Look-up Tables)

vector-row format!!!

20

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

% BPSK constellation

constell BPSK = [1 , $ 0
=1 1 s 1
% QOPSK contellation, Gray code, Hamming distance = 1
constell QPSK = [exp(1i =* pi/4), ... % 00 = 0d
exp(11 = 3*pi/4), % 01 = 1d
exp(11 = 7*pi/4), % 10 = 3d
exp(1i » 5xpi/4) 1; $ 11 = 2d
% Other constellations
% My own reshape and mapping
SYMmapped = zeros (1, len/K); % memory allocation for mapped
symbols
symbols = zeros (K, len/K); % symbols, binary
symbol = zeros(l,K); % one symbol, binary
addr = zeros(1l,len/K); % memory allocation for symbol
addressing
col = 0;
idx = 0;
for ii = 1: K : len
col = col +1;
idx = idx+1;
for kk = 0 : K-1
row = kk+1;
symbols (row,col) = bitstream(ii+kk); % All symbols
symbol (kk+1) = bitstream(ii+kk); % One symbol
addr (idx) = addr (idx) + ((2"(K-1-kk)) = bitstream(ii+kk));
SYMmapped (idx) = constell (addr (idx)+1);
end
end

o\

= real (SYMmapped) ;

0o H
Il

imag (SYMmapped) ;

21

4.4. Raised Cosine filter

Raised Cosine filter is a family of Nyquist filters with frequency response shape of
raised cosine function with flat top. It is used for zero-ISI transmission.

Filter is designed using function h = f_raisedcosine_ms(alpha, span, sps, shape, im-
plementation) as in the next code block:

[

% h_rc is a impulse response coeficients of FIR nyquist filter

% h = f_raisedcosine_ms(alpha, span, sps, shape, implementation)

h_rc = f_raisedcosine_ms(rolloff, RCF_span, L, RCF_shape, ’'matlab’)

o\

Function receives parameter alpha which is frequency rolloff in range O to 1. In this
simulation filter is designed with rolloff factor value of 0.22. Second parameter is span,
that is the duration or length of designed filter impulse response in number of symbols.
Third parameter, sps, is the number of samples per symbol or symbol sampling rate.
Fourth parameter, shape can have values of 'normal’ or ’sqrt’ and it defines shape of
frequency response to be normal Raised-Cosine filter or Square-Root Raised Cosine
(SRRO) filter. The last parameter implementation is used to define how filter coefi-
cients will be designed - using My own code or using Matlab function rcosdesign.
Filter for this simulation is designed using Matlab function rcosdesign. Basically,
f rcosdesign_ms is a wrap-around Matlab function for some special cases. Fig. 4.6
shows impulse response samples and Fig. 4.7 shows magnitude response of the de-
signed RC filter using parameters:

alpha = 0.22, span = 128, L = 8, shape = 'normal’, implementation = "matlab’.

22

Impulse response of NORMAL Raised Cosine filter
Span=128 length=1025

20T

amplitude

=

] 100 200 300 400 500 600 700 8OO 900 1000
coefficient

Figure 4.6: Impulse response samples of the designed RC filter

(dB) and Phase
T T

9 9.259

o\ | - 72388

Magnitude (dB)
Phase (radians)

50 \ ~-154.032

LT AT——
B o
& H = = Nnm::ized Fvequeums:y (xr vad/:asmp\e) i - =

Figure 4.7: Magnitude and Phase response of the designed RC filter

4.5. Pulse shaping

Pulse shaping is a procedure in which pulse are "shaped’ by the Nyquist filter, that is RC
filter. Each pulse is a impulse response of the filter caused by input stimulus. In order
to produce correct impulse response, input stimulus cannot be mapped impulses but the
need to be upsampled for a factor of 2, at least. Basically, filter need enough samples
(discrete time) to produce response and enough samples containing information which
describe each pulse. Upsampling by factor L is done by inserting L — 1 zeros between
original impulses. Next block of code produces upsampled I and Q signals (I_up and
Q_up):

1 % ### UPSAMPLE
2> I_up = upsample (I, L);
3 Q_up = upsample(Q, L);

Pulse shaping is a filtering process and it is done using Matlab function filter by calling:

23

2

3

4

5

6

7

8

9

10

[

% Signals are concatenated with zeros at the end to allow filter
response

% to decay

I_up = [I_up, zeros(l,Lx(RCF_span/2))];
Q up = [Q up, zeros(l,Lx(RCF_span/2))];
I_f state = zeros(l,length(h_rc)-1); $ I filter state variable

Q_f state = zeros(l,length(h_rc)-1); % Q filter state variable

[I_filt, I_f state] = filter(h_rc, 1, I_up, I_f_ state); % In-—
phase branch filtration

[Q_filt, Q_f state] = filter(h_rc, 1, Q up, Q_f state);

o\

Qadrature branch filtration

span
2

impulse responses. For this reason filter state is keept in a _state variable. At the be-

Impulse response to each impulse is affected by impulse response of previous

ginning state variable is empty (all state are zero). Output signal delay is half the filter
span. This is why the signal is concatenated with zeros at the end, to allow the filter to
settle down after all data symbols are filtered.

Resulting upsampled signals for BPSK and QPSK are shown in Fig. 4.8 and Fig. 4.9.
When using O-QPSK modulation then phase (time) delay of % is inserted between |

Input bit sequence, first 32 bits Input bit sequence, first 32 bits

0.5 05

0 5 10 15 20 25 30 0 5 10 15 20 25 30

First 32 upsampled impulses First 16 upsampled impulses
2 2
0 0
A | \ Lo A A
| \
1 P | R Y | Y Y) N | A | WY | ENY | O | EE

Figure 4.8: BPSK upsampled symbol pulses Figure 4.9: QPSK uppsampled symbol pulses

and Q impulses. This is show in Fig. 4.10. Effect of upsampling factor L is signal shift
in discrete frequency band. Increasing L pushes signal spectrum closer to O frequency.
It is easier to filter signal which is more ’packed’ around low frequencies, thus it look
that it is better to have larger upsampling factor L. There is a trade off in increased data
rate and need for increased processing power.

Another question is delay of half the symbol time 75 when O-QPSK modulation is

used. If symbol is sampled with even number of samples, for example 8, it not pos-

24

Input bit sequence, first 32 bits

) AP PP S P -— -

L . L L L L
0 5 10 15 20 25 30

First 16 upsampled impulses

-2

0 20 40 100

Figure 4.10: O-QPSK uppsampled symbol pulses

sible to delay impulses for a exactly half the symbol time. It can be delayed for a
f loor[%] samples. In case of L = 8 that would be 3 samples. In case of even num-
ber of samples per symbol, L, to make correct delay of impulses interpolation would
be needed. To avoid interpolation, thus reducing processing power, it is favorable to

chose odd number of samples per symbol. Resulting shaped impulses are shown in

I[n] and Q[n] impulse train I[n], Q[n] RC Nyquist filtered impulse train

JTTL

[N]
o

0 [Filter taps = 1025, sampling = 8X

m

100 150 200 250 300 600 650 700 750 800
samples samples

Figure 4.11: BPSK filtered and shaped I and Q impulses

Fig. 4.11, Fig. 4.12 and Fig. 4.13.

25

I[n] and Q[n] impulse train

T
AT m

I[n]. Q[n] RC Nyquist filtered impulse train

g

A L -l
T AV

Figure 4.12: QPSK filtered and shaped I and Q impulses

I[n] and Q[n] impulse train IIn], Q[n] RC Nyquist filtered impulse train

: WW[HJJ HWL“W

~2
100 200 2 300 350 700 750 800 850 900
samples samples

Figure 4.13: O-QPSK filtered and shaped I and Q impulses

26

5. Simulation results

5.1. Long RC filter span results

Using filter span 128 symbols and sampling factor L=8 next signal transition in vector

space and resulting spectra are simulated. Shown in next sections.

5.1.1. BPSK results

BPSK (1 b/sym) LR=16.0 Mbit, PAPR= 6.40 dB
60

Envelope of BPSK modulated signal

40 50

20 30

| — g
A TRTRA R

-40 -0

50 *0 29 295 3 3.05 31 315 32 325
£0 40 -20 0 20 40 60 x10%
|

Figure 5.2: Enevlope of the BPSK signal
Figure 5.1: BPSK signal trasnition in signal

space

Fig. 5.1 shows that BPSK modulation have one-dimensional signal space. En-
velope drops to zero in each symbol state change. Bandwidth of BPSK signal from
Fig. 5.3 is wider than symbol rate bandwidth and conforms to rule for RC filter which
is SR(1+a) =16 x 105 x (1+0.22) =19.52 MHz

27

BPSK PSD (-40-dBc, BW=19.006 MHz)

201 SE= 0.84 bits/s/Hz
=0.22 (spec), «=0.19 (meas),
(0]
=207
) { = 1
= 40 : :
[
=
2 60
| =
o
@
= -B0
? i1
=100 1
-120
-140
0.4 -0.2 0 0.2 0.4

Discrete frequency = =
Figure 5.3: BPSK signal spectrum

5.1.2. QPSK results

QPSK (2 b/sym) LR=16.0 Mbit, PAPR= 5.22 dB

40

Envelope of QPSK modulated signal

30

20

10

-20

-30

-40

-40 -20 o 20 40

Figure 5.5: Enevlope of the QPSK signal
Figure 5.4: QPSK signal trasnition in signal

space

Fig. 5.4 shows that QPSK modulation have two-dimensional signal space. Enve-
lope drops to zero, but not as in BPSK modulation. QPSK modulation produce signal
with better Peak to Average Power Ratio. This modulation conforms the channel band-

width requirement.

5.1.3. 0O-QPSK results

Fig. 5.7 shows that O-QPSK modulation have two-dimensional signal space. Envelope
does not drop to zero amplitude and PAPR is beter than PAPR from QPSK modulation.
Bandwidth is the sam as for QPSK modulation.

28

QPSK PSD (-40-dBc, BW=9.519 MHz)

20 SE= 1.68 bits/s/Hz
«=0.22 (spec), ®=0.19 (meas),
o
=20
2 40 : :
o .
& =
2 60
= .
g ;
= .80 i
¥ 1
-100
-120
-140
-0.4 0.2 0 0.2 0.4

Discrete frequency =

Figure 5.6: QPSK signal spectrum

O-QPSK (2 b/sym) LR=16.0 Mbit, PAPR= 4.42 dB

40

Envelope of 0-QPSK medulated signal

30

20

-20

-30

-40

-40 -20 0 20 40

. . L Figure 5.8: Enevlope of the O-QPSK signal
Figure 5.7: O-QPSK signal trasnition in signal

space

5.2. Shortening the RC filter span

When filter have smaller number of taps it’s have greater error. Result is spectrum
which stop band is not attenuated as much as with the longer filter. This simulation is
concentrated on BPSK ind QPSK modulations.

Using the same rolloff factor alpha = 0.22 as in previous simulations, but shortening
the filter span to 16 symbols and increasing the sampling factor to L=16 result with the
filter response, as in Fig. 5.10.

Changing the rolloff factor from alpha=0.22 to alpha=0.30 widens passband bandwidth
but stop-band attenuation is increased. Magnitude response of the RC filter with 257
tap, 16symbol span, 16 samples per symbol and rolloff=0.30 is shown in Fig. 5.11.
Resulting spectra for BPSK and QPSK are shown in Fig. 5.12 and Fig. 5.13. From the

29

O-QPSK PSD (-40-dBc, BW=9.519 MHz)

20 SE=1.68 bits/s/Hz
«=0.22 (spec), «=0.19 (meas),
0
20 f \
() i i
=0 ‘ ‘
ar -
2 3
2 60 ;
= -
g ;
= a0 .
! t
-100
120
-140
04 02 0 02 0.4

Discrete frequency = x

Figure 5.9: O-QPSK signal spectrum

Magnitude Response (dB)
T T T

40

20 |

Magnitude (dB)

\ 1l
a0 H”‘I‘I‘\‘MIMUU

s
5

s
\W.m.“ﬂ“ m

mummwl\‘ I
60

I

Nnrma\lzed Frequency (= rad/samo\e)

Figure 5.10: Magnitude response of 257 tap RC filter, span 16 symbols, L=16, a=0.22

simulation results it is clear that RC filter rolloff factor will make a trade off between
excess bandwidth in passband and attenuation in stop-band. BPSK modulated signal
violates channel bandwidth, thus using BPSK maximum attainable line rate is up to 8

Mbps. With this filter design, unwanted spectra is still under -40 dBc.

30

(dB)
T

n IS
5 8

o

Magnitude (dB)

&
S

Mmooy

0 05
Nm\qu noy (x d/amp\)

& IS
3 S

Figure 5.11: Magnitude response of 257 tap RC filter, span 16 symbols, L=16, a=0.30

BPSK PSD (-40-dBc, BW=19.162 MHz) QPSK PSD (-40-dBc, BW=9.581 MHz)

20 SE=0.83 bitsisHz SE=1.67 bitsisHz

«=0.22 (spec), «=0.20 (meas), «=0.22 (spec), «=0.20 (meas),

-20
-40 : H

Magnitude, [dB]
Magnitude, [dB]

-140 140

e ZDiS;SIe frecc;uem?y.'ﬂx m o e ZDiS;SIe frecc;uem?y.'ﬂx noz v
Figure 5.12: BPSK spectrum using Figure 5.13: QPSK spectrum using
257 tap RC filter 257 tap RC filter

5.3. Further shortening the RC filter span

Using the same rolloff factor alpha = 0.22 as in previous simulations, but shortening
the filter span to 16 symbols and decreasing the sampling factor to L=8 result with the
spectra as in Fig. 5.14 and Fig. 5.15. From the simulation it stands out that the impact
on stop band attenuation and first side lobe magnitude is greater by the filter span than
by the sampling factor L. Minimum passband width is determined by the line rate, that
is, symbol rate. If the only criterion would be first side lobe in spectrum below -40 dBc
than filter span 16 symbols with 5 time oversampling would be marginally enough. But
for better results, oversampling by a factor of 8 is needed. Thus resulting filter span

using L=8 is 129 taps.

31

BPSK PSD (-40-dBc, BW=19.162 MHz)

20

-20

Magnitude, [dB]

-120

SE=0.83 bitsis/Hz
«=0.22 (spec), «=0.20 (meas),

04 03 02 -01 o 01 02 0.3

Discrete frequency = =

Figure 5.14: BPSK spectrum using

129 tap RC filter

QPSK PSD (-40-dBc, BW=9.581 MHz)

20

Magnitude, [dB]

-120

SE=1.67 bitsis/Hz
«=0.22 (spec), «=0.20 (meas),

-04 03 02 -01 o 01 02 03 0.4

Discrete frequency = =

Figure 5.15: QPSK spectrum using

129 tap RC filter

32

6. Conclusion

This Thesis focus was on analysis digital signal processing steps for a baseband signals
and how complex envelope signal is generated.

It is simulated how Nyquist filter affects complex envelope signal bandwidth. What
are effects of rolloff factor, that is excess bandwidth and how filter impulse response is
affecting spectral content of complex envelope. Trough multiple runs of simulation it is
come to conclusion that to satisfy 10 MHz channel bandwidth using BPSK modulation
maximum line rate is up to 8 MHz and spectral efficiency of BPSk is 0.84 bits/s/Hz.
QPSK modulation has the spectral efficiency twice the BPSK modulation. To satisfy
requirement of -40 dBc filter with at least 16 symbol span is needed. Oversampling
factor from L=5 up is producing satisfying results. Thus resulting minimum filter span
is 81 taps.

Whole processing system need to have two such filters. System output in case of L=5
oversampling would be 25 Msps for each of I and Q branches.

Next steps would be to consider decimating filter for lowering data throughput and

analysis of digital to analog converter amplitude resolution effects.

33

BIBLIOGRAPHY

[1]

[3]

(4]

[5]

User:Krishnavedala. (2011) Frequency response of raised-cosine filter with
various roll-off factors. [Online; accessed 18-September-2020]. [Online].

Available: https://commons.wikimedia.org/wiki/File:Raised-cosine_filter.svg

M. Vuci¢. (2020) Biljeske s predavannja iz predmeta obrada signala u
komunikacijama. [Online; accessed 18-September-2020]. [Online]. Available:

https://www.fer.unizg.hr/predmet/osuk/predavanja

C. E. Stroud. (2011) Linear feedback shift registers. [Online; accessed

18-September-2020]. [Online]. Available: http://www.eng.auburn.edu/~strouce/
class/elec6250/LFSRs.pdf

H. Riebeek and R. Simmon, “Catalog of earth satellite orbits,” Sep 2009.
[Online]. Available: https://earthobservatory.nasa.gov/features/OrbitsCatalog

“Pregled formula iz digitalne obradbe signala,” 2019. [Online]. Available:
http://www.fer.hr/predmet/dos/ispiti

C. E. Shannon, “A mathematical theory of communication,” The Bell System
Technical Journal, vol. 27, no. 3, pp. 379-423, 1948.

D. Petrinovi¢, Ekvivalencija vremenski kontinuiranih i diskretnih signala i sus-

tava, Fakultet elektrotehnike i raCunarstva, 2008.

Wikipedia contributors, “Passband — Wikipedia, the free encyclopedia,” https:
/len.wikipedia.org/w/index.php?title=Passband&oldid=972761523, 2020, [On-
line; accessed 20-September-2020].

——, “Baseband — Wikipedia, the free encyclopedia,” https://en.wikipedia.org/
w/index.php?title=Baseband&oldid=972377414, 2020, [Online; accessed 20-
September-2020].

34

[10] ——, “Raised-cosine filter — Wikipedia, the free encyclopedia,” https://en.
wikipedia.org/w/index.php?title=Raised-cosine_filter&oldid=948688776, 2020,
[Online; accessed 18-September-2020].

[11] E. McCune, Practical Digital Wireless Signals, ser. The Cambridge RF and Mi-

crowave Engineering Series. Cambridge University Press, 2010.

35

Baseband Signal processing Chain for a Satellite Digital Transmitter

Abstract

Baseband signal processign chain for a Satellite Digital Transmitter is Master The-
sis at the faculty of Electrical Engineering and Computing, University of Zagreb, Croa-
tia. Digital processing procedures and steps for the baseband signal were analyzed.
System for processing complex envelope signal was simulated. Minimal parameters
of the digital processing system which satisfies assigned parameters of of signal quality
were specified. Simulations were amde for digital modulation formats BPSK, QPSK
and O-QPSK.

Keywords: BPSK, QPSK, O-QPSK, DSP, COMPLEX, MIXING, MODULATOR

Lanac za obradu signala u osnovnom pojasu u satelitskom digitalnom

predajniku

Sazetak

Lanac za obradu signala u osnovnom pojasu u satelitskom digitalnom predajniku
je Diplomski rad na Fakultetu elektrotehnike i raCunarstva u Zagrebu. Analizirani su
postupci digitalne obrade signala u osnovnom pojasu. Simuliran je sustav za obradu
signala kompleksne ovojnice i odredeni su minimalni parametri digitalnog sustava koji
zadovoljavaju zadane kriterije kvalitete signala. Simulacije su provedene za tipove
digitalnih modulacija BPSK, QPSK i O-QPSK.

Kljuéne rije¢i: BPSK, QPSK, O-QPSK, DSP, MODULATOR, KOMPLEKSNO, MI-
JESANJE

Appendix A
Spectral emission limits for
Radio-Amater Band in X-Band radio

frequencies

UTU Emission designator for 10 MHz bandwidth channel, digital phase modulation

with single carrier (single channel communication) is 10MO G1D.

37

uonempow aseyd [e13Ip pue UONEIIUNWWOD [dUUBYD J[IuIs Juisn pueg-X Ul [UUBYD Y Indjewe ZHIA () J0J SITWI[UOISSTWIA [2130adS 1"V an3I]

€ 'd ‘01 SIGeL ‘01-6Z€ NS ¥-NLI (4
L€ 'd ‘6 B1q.L ‘01-6Z€ INS ¥-NLI €
uipimpueq paldnaoQ # yipimpueq A1EssadaN # UpImpueq paubISsy (,..)
¢3s18 Buiyiswos 1o 186png yui uo Buipuadap ‘paulep yipimpueq A1essaoau St MOH - JIAOYNA [ASY (sxs)
S|aA9| uonenuaye gp €2 aY} usamiaq aoualayip Aouanbauy ayy Bunjenojes Aq paulwialep aq ued ysew uoissiwa Jenoiued e Aq papiwiad ypmpued paldnado jomod %66 (y.)
€511 ‘O LYSLAS ¥-NLI (4)

: : 0es ol 050 osp0 ol
[zHO] 3 0L°0L 0901 1521504 1050} s6v°0} Sz8Y'0L
< “ \\\ “ “ \\\ L : I : | p/m—
< < P m oo pueq ayjeles-inajeuly I r
Nggz+ m m m m m m
wgp ggl - Nesz g+ Ngz'i+ Nggos % Ngoo- NEZL- Nggz-

2 e
| | I I

=, MaPp €91 -
papaau
uoljeje|nsuod

#ZH! ¥ = Mgy wap €1- 10 08p 9y - = (d 6ol 01 + €p) -
ZH) 0L = MEY ‘0GP Ly - = (d 6ol 01 + 8¢) -
(zHX = ma¥) 2ap vE - = (d Boj 0L + 1) -

apmie wy 009 je

.02 d|Bue euuajue yum wgp 8z -
ulewop urewop ulewop ulewop _.w_._
snounds ga400 9400 snounds 3
a,
(=]
=]
= ‘ - ©
ZHY L = M8y °9P 01 o
» 08P €T - s
(]
=
>
85'd ‘9-L¥SL NS WoK MSYIN
(asd) psap 0 MZ=d 928ap0

: Ng 1

: |

' ZHNOL

>

pueq
paubissy v

sjwy| uoissiwe [enods gL ONOL

38

[~

22

23

24

25

26

27

28

Appendix B

Source code

B.1. Source code of main Matlab simulation script

% File: MPSK_SIM MS.m

o\°

o\

Master Thesis

o\

o\

Work in progres

% Simulating an 4-PSK (QPSK) modulation

% Version: 0.200909-0

% Date: September 9, 2020

% Student: Mario Simunic

% email: mario.simunic@fer.hr

% emaill: mario.simunic@gmail.com

o\°

close all
% clear all
cle

colordef white

S HHHHAE A AR E AR AR R R A
% SIMUATION PARAMETERS
S HHHHHE AR AR A AR AR AR A A R R R R A

use_prbs = 1;

39

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

s4

55

56

57

58

59

60

61

62

63

64

65

66

67

modulation = ’"BPSK’;

M=2; % modulation order
% modulation = 'QPSK’;
$ M= 4; % modulation order

o_qgpsk = 0;
% modulation = "O-QPSK’;
$ M= 4; % modulation order

[

% o_gpsk = 1;

K = log2(M); % number of bits per symbol

LR = 8x10"6; % LR = line rate, Transfer speed, bits/
second

SR = LR/K; % SR = symbol rate, symbols/second

Tsymbol = 1/SR; % Symbol period, from link speed, br (

bits per second)

% TRANSMIT FILTER (Nyquist) PARAMETERS - Spectral Raised Cosine

filter
% RCF_shape = ’sqrt’; % Square—-Root Raised Cosine filter
RCF_shape = ’'normal’; % Square—Root Raised Cosine filter
RCF_span =16; % Filter impulse response span
rolloff = 0.22; % beta factor, spectrum rolloff
% ##### SYMBOL SAMPLING
L = 3; % symbol upsampling factor, samples per
symbol
% ========= print parameters
starttime = char (datetime (' now’,’Format’,’yyyy-MM-dd’’_’’HHmmss’)) ;
log_filename = ['M-PSK_sim_',starttime,’.log’];
diary (log_filename) ; % diary on

fprintf ("\nM-PSK SIMULATION by Mario Simunic\n");

40

68 fprintf ("\n\nLog filename:\t\t\t M-PSK_sim_%s.log\n",starttime) ;
69

70 fprintf ("\n\nSimulation parameters:\n");

71

72 fprintf ("\nModulation:\t\t %s (M = %d)\n", modulation, M);

73

74 fprintf ("\nBit rate:\t\t\t\t\t\t %d, \n", LR);

75 fprintf ("\nSymbol rate:\t\t\t\t\t %d, \n", SR);

76 fprintf ("\nSamples per symbol:\t\t\t\t %d,\n", L);

77 fprintf ("\nSample rate:\t\t\t\t\t %d,\n", LxSR);

78 fprintf ("\nTransmit filter shape:\t\t\t %s,\n", RCF_shape);

79 fprintf ("\nTransmit filter span:\t\t\t %d symbols, \n", RCF_span);
g0 fprintf ("\nTransmit filter alpha:\t %1.2f\n", rolloff);

81

$2 ¢« ——fYFY(YFT — —~—~——~——~—"—"—"—"f—""f—"—~"~—""—~F"—"""""""""""""" " ""~""~"~"~" """ ~"¥“~"¥~"¥~“"¥~“"¥—“"¥—@"¥&@"¥7/¥7/¥VZ—/—/VZ—W/Vm—WV—mWV—V—V—————————

83

84

85

86

87

88

o\°

G o
BINARY DATA - pseudorandom bit vector
FHAF AR AR A AR A A R A

This binary data vector represents a synchronization header (ie.

89

o\

90

o\

91

o

92

Barker

o\

93 code) plus payload data with protective coding. All together

scrambled

o

94 for uniform distribution of zeros and ones. Uniform distribution

of zeros

o\

95 and ones (without contonous blocks) helps to estimate carrier

o\

96 signal at receiver.
97

98 fprintf (' \n>BEGIN ====== f_ prbs.m

99

100 1f use_prbs ==

o\°

101

[

12 $ Generate Ciclic repetitive pseudo-random sequence - for a nice FFT

5=)

41

103 %

104

105 seed = 100000000 ; % 1f it has nine digits, its PRBS9, if 11
its PRBS11.
w6 5 seed = 710000’ ; % 5 bits

17 $ It can also do 15, 21, 31, but those will be too long for the
memory

18 bits = length (seed);

109 prbs_period = intl6 (2”bits)-1; % LFSR RNG periodicity
110 sequence_period = lcm(intl6 (K), prbs_period); % symbols to

repetition: symbols for cyclical sequence

1 m = 2xsequence_period; % need to have enough data for cyclic fft
capture

112

113 fprintf (! Generating %d bits of random data \n’, m);

14 data = [1];

115 for k=1:m

116 [symbol, seed] = f_prbs(seed,K);
117 switch symbol

118 $QPSK

119 case 00’

120 data = [data,0,0];
121 case 017

122 data = [data,0,1];
123 case 10’

124 data = [data,1,0];
125 case 11’

126 data = [data,1,1];
127 %$BPSK

128 case "0’

129 data = [data,0];
130 case "1’

131 data = [data,1];
132

133 otherwise

134 warning (’ Unsupported symbol type.’);
135 end

136 end

137
o

133 else % use random number

139 datal = f_rbs_ms (m*K) ;

42

140

141

142

143

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

[o)

end $ end if
% Print data sequence
fprintf (“\n data = \n’);
for k=0:ceil (length (data) /40)-1
for(n=1:40)
if kx40+n <= length (data)
fprintf (" %d", data(kx40+n));
end
end
fprintf ("\n");
end

fprintf (/ \n\n’) ;

fprintf (/ >==== f_prbs_ms.m ================== ====== ========
END\n\n’) ;

\o

O
s SYMBOL MAPPING
S HEHHHF AR F AR AR AR AR A AR R A R R R

\o

\o

[symbols, I, Q, SYMmapped] = f_mappsym_ms (modulation, data);

fig = figure('Name’, ['I and Q impulses of ’, modulation,’ modulation
"1);
subplot (3,1,1);
stem(data,’k’, " MarkerSize’,4,’MarkerFaceColor’, " auto’);
axis ([0, length(data)+l, -0.2, 1.2]);
title ([’ Input bit sequence’]);

subplot (3,1, 2);
stem(I,’b’,’'MarkerSize’, 4, MarkerFaceColor’,”auto’);
axis ([0, length(I)+1, -1.2, 1.2]);

title ([’ In-phase (I) impulses’]);

subplot (3,1,3);

43

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

210

211

212

213

214

215

216

217

218

219

220

221

stem(Q,"r’,’'MarkerSize’, 4, " MarkerFaceColor’,’auto’);
title ([’'Quadrature (Q) impulses’]);
axis ([0, length(Q)+1, -1.2, 1.2]);

fprintf ("\nFigure %d: I and Q impulses\n", fig.Number);

i

@

=

N

f

f length(data) > 32
N_disp = 32;

lse N_disp = length (data);
nd
_IQ disp = N_disp/log2 (M);

ig = figure('Name’, ['First ’',num2str(N_disp),’ I and Q impulses of

", modulation,’ modulation’]);

subplot (3,1,1);
stem(data,’k’,’MarkerSize’, 4, " MarkerFaceColor’,’auto’);

axis ([0, N_disp, -0.2, 1.2]);

title ([’ Input bit sequence, first ’,num2str(N_disp),’ bits’]);

subplot (3,1,2);
stem(I,’b’,’'MarkerSize’,4,"MarkerFaceColor’,’auto’);
axis ([0, N_IQ disp, -1, 11);

title([’'First ’',num2str(N_IQ disp),’ I impulses’]);

subplot (3,1, 3);
stem(Q,’r’,’'MarkerSize’, 4, " MarkerFaceColor’,’auto’);
title(['First ’,num2str(N_IQ disp),’ Q impulses’]);
axis ([0, N_IQ disp, -1, 11);

fprintf ("\nFigure %d: First %$d I and Q impulses\n", fig.Number,

%

[
<

N_disp);

FHEF A A A R
SYMBOL FILTERING

44

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

257

258

259

260

261

262

SOt AA A A A A

% ### UPSAMPLE
I_up = upsample(I, L);
Q_up = upsample(Q, L);

if o_gpsk == S ##### Using O-QPSK
Q_up = circshift (Q_up, floor(L/2)); % Equivalent to time
delay

% of half a sybol

end

fig = figure ('Name’, ['Upsampled I and Q signals’]);
subplot (2,1,1);
stem(data,’k’,’MarkerSize’, 4, " MarkerFaceColor’,’auto’);
axis ([0, length(data), -0.2, 1.21]);
title ([’ Input bit sequence’]);

subplot (2,1,2);

hold on

plot (1 + I_up,’b’);

plot (-1 + Q up,’'r’);

hold off

axis ([0, length(I_up), -2.1, 2.11);
title ([’ Upsampled impulses’]);

fprintf ("\nFigure %d: %s input bit stream, I and Q signals upsampled

with %d samples per symbol.\n", fig.Number, modulation, L);

if length(data) > 32
N_disp = 32;

else

N_disp length (data) ;
end

N_IQ disp = N_disp/K;

fig = figure ('Name’, [modulation,’” I and Q upsampled signals’]);
subplot (2,1,1);
stem(data,’k’,’MarkerSize’, 4, " MarkerFaceColor’,’auto’);
axis ([0, N_disp, -0.2, 1.2]1);
title ([’ Input bit sequence, first ’,num2str(N_disp),’ bits’]);

45

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

287

288

289

290

291

292

293

294

295

subplot (2,1, 2);
hold on
plot (1 + [zeros(l,floor(L/2)),I_up(l:end-floor(L/2))]1,'b");
% [zeros(1l,L),I_up] inserted zeros are for plot alignment of
impulses with stem(data)
plot (-1 + [zeros(l,floor(L/2)),Q up(l:end-floor(L/2))1,'r");
hold off
axis ([0, N_IQ dispxL, -2.1, 2.11]1);
title([’'First ' ,num2str(N_IQ disp),’ upsampled impulses’]);

fprintf ("\nFigure %d: %$s input bit stream, I and Q signals upsampled

with %d samples per symbol.\n", fig.Number, modulation, L);

o\

simulation parametrs - at the begining

o\°

Ideal Nyquist filter is brick-wall filter or rectangular

spectral

o\

pulse. Problems with ideal filter - Impulse response is decaying

slowly,

o\°

it is non-causal, can’t be realized, etc.

o\

Paramters of Nyquist filter —-——-

o\

We will be using Raised Cosine and/or Square—Root Raised Cosine

filter

% h_rc is a impulse response coeficients of FIR nyquist filter

h_rc = f_raisedcosine_ms(rolloff, RCF_span, L, RCF_shape, 'matlab’)

o\°

% Filter Gain, [dB]

FG = 40-4.139; % To get PSD at 0 dB

% rcosdesign and f_raisedcosine_ms returns filter coefficients with

% energy = 1, ie. h = b2/sgrt (sum(b2.72));

% It would be beneficial to use filter with heigher gain, eg. +20db,
but

o\°

not to exceed dynamic range of variable (register).

46

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

G = 10" (FG/20);

o\

In case of using R bit wide register and fixed

point

o\

arithmetic. Number in 2’s complement format 1. (R
-1) can
% have maximum positive value 1 - 27 (-(R-1)).

% To avoid saturation use gain K < 1.0

o\°

For 13 bit register and number in fractional 1.12
format, maximum postive

% number is 0.99975586

% impulse reponse with gain

% plot RC filter

fig = figure('Name’,’f_raisedcosine_ms: Designed Nyquist filter’);
stem(h_rc,’MarkerSize’, 3, 'markerFaceColor’, 'none’);
axis([-5, length(h_rc)+6, -0.1 0.3]);
title({[’ Impulse response of ’,upper (RCF_shape),’ Raised Cosine
filter’], [’ Span=',num2str (RCF_span),’ length=’,num2str (length (
h_rc))l});
xlabel (' coefficient’);
ylabel (amplitude’) ;

fprintf ("\nFigure %d: Impulse response of %s Raised Cosine filter,
span = %d symbols with %d samples per symbol.\n", ...
fig.Number, RCF_shape, RCF_span, L);

[

% Magnitude frequency characteristics

H_rc = 20x10gl0((1/length(h_rc))*abs (fftshift (fft (h_rc))));

f _step = 2/ (length(H_rc)-1); S 2«pi/pi = 2;

f_axis = -1:f_step:1; $ f_axis = —-1l*pi/pi:f_step/pi
:1l*pi/pi;

fig = figure(’'Name’,’Magnitude frequency response of nyquist filter’

)i

plot (f_axis,H_rc);

axis([-1.05 1.05 max(H_rc)-120 max(H_rc)+10]);
title(["Magnitude frequency response of ’,upper (RCF_shape),’
Raised Cosine filter’]);

xlabel ('discrete frequency \times \pi’);

ylabel (‘magnitude, [dB]’);

47

330

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

fprintf ("\nFigure %d: Frequency response of %s Raised Cosine filter,
span = %d symbols with $d samples per symbol.\n", ...

fig.Number, RCF_shape, RCF_span, L);

[

[D, state_D] = f_set_fir delay(floor(L/2)); % used to prepare the
FIR for delaying one half of the symbol
[BI, state_BI] = f_set_fir delay(1); % used for FIR for syncing the
response with the inpyut impulses
[BQ, state_BQ] = f_set_fir delay(1); % used for FIR for delaying
one half of the symbol

% Signals are concatenated with zeros at the end to allow filter
response

[

% to decay

I_up = [I_up, zeros(l,L*(RCF_span/2))];
Q_ up = [Q up, zeros(l,Lx(RCF_span/2))];
I_f state = zeros(l,length(h_rc)-1); $ I filter state variable

[o)

Q _f state = zeros(l,length(h_rc)-1); $ Q filter state variable

[I_filt, I_f state] = filter(h_rc, 1, I_up, I_f_state); $ In-—
phase branch filtration

[Q_filt, Q_f state] = filter(h_rc, 1, Q_ up, Q_f state); %
Qadrature branch filtration

fig = figure ('Name’, [modulation,’” - filtered I and Q signals’]);

hold on

plot (0.5 + I_filt,’b’");

plot (-0.5 + Q_filt,’r");

hold off

axis ([0, length(I_filt), —-(max(I_filt)+0.5)*1.1, (max(I_filt)
+0.5)x1.11);

title([’'Filtered impulses’]);

xlabel (' sample’) ;

legend(’I signal’,’Q signal’,’location’,’east’);

48

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

fprintf ("\nFigure %d: %$s quadrature signals filtered using %s Raised
Cosine filter, span = %d symbols with %d saples per symbol.\n

J e e e

fig.Number, modulation, RCF_shape, RCF_span, L);

o\°

G o o
SPECTRAL ANALYSIS

S i

o\°

o\

o\

FFT

ss_period = Lxsequence_period;

ssp = Lx (RCF_span) ; % we will make FFT somewhere in
signal. This beginng is SSP

Nfft = double(ss_period); % ss_period == speriod

I_fft = 1/Nfft » fftshift(fft(I_filt(ssp : ssp+Nfft), Nfft)); %
FFT of filtered I signal

O_fft = 1/Nfft » fftshift (fft(Q_filt(ssp : ssp+Nfft), Nfft));
FFT of filtered Q signal

o\

o

% P_fft = 10xloglO(abs(I_fft.”2 + Q_fft.”"2)); PSD — here lies

a problem - sidelobes in spectrum

P_fft = 10%xloglO(abs(I_fft .* conj(I_fft) + Q_fft .% conj(Q_fft)));
% PSD — here lies a problem
I_fft = 20%x1ogl0 (abs(I_fft));

fstep = 2/Nfft;
f_axis = -1l:fstep:1-fstep;

%$find max magnitude

mag0dBc = max (P_fft); % Carrier magnitude or for M
-PSK it’s max magnitude in passband

% mag0dBc = max (I_fft);

mag_limit_dBc = -40; % 60 dB below carrier

49

401

402

403

404

405

406

407

408

409

410

41

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

bw_limit = mag0dBc + mag_limit_dBc; % Bandwidth limit - I choose
to set at 60 dB below carrier (-60 dBc)

for k = Nfft:-1:floor (Nfft/2) % search index where FFT is
gretaer than magnitude given in bw_limit
% if P_fft(k) > bw_limit
if P_fft(k) > bw_limit
leftk = k;
break;
end
end

% #### bandwidth
bw_desc = 2+xf_axis (leftk);

o\°

descrete domain bandwidth

o\°

fsample = SRx*L; symbol sample rate

bw_cont = bw_desc x fsample/2; % continous domain bandwidth

% Efefctive bandwidth = SPECTRAL EFFICIENCY

% bweff = SRxK/BW_cont; % LR = SRxK

bweff = LR/bw_cont; % spectral efficiency, [bits/s/Hz]
s #### PAPR

E = I_filt.”2 + Q_filt."2;

P = sum(E) /length (E);
Pavg = 10x1oglO (P);

Ppeak = 10%x1ogl0 (max(E));

PAPR = Ppeak - Pavg; %It is Ppeak/Pavg, but this is logarithmic

oo

G i o i
RESULTS PLOTING

#HAHHHH A
plot labels

o° o°

o°

textlabel2 = sprintf ('Filter taps = %d, sampling = %dX’, RCF_spanx*L
+1, L);

50

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

461

462

463

464

465

466

467

468

469

470

471

472

473

474

textlabel3 = sprintf

modulation,

bwlabell = sprintf (’
bw_contx1.0e-6);

bwlabel2 = sprintf (/' SE=%5.2f bits/s/Hz’,

bwlabel2_pos = [-0.1

bwlabel3 = sprintf (’
rolloff, bw_cont/SR-1);
bwlabel3_pos = [-0.1

% plot all

fig

= figure (’'Name’,

("%s (%d b/sym)

K, LR*1.0e-6, PAPR);

LR=%3.1f Mbit, PAPR=%5.2f dB’,

PSD (%d-dBc, BW=%5.3f MHz)’, mag_limit_dBc,

5, mag0dBc+20];

\\alpha=%4.2f (spec),

5, mag0dBc+12];

bweff);

\\alpha=%4.2f (meas), ',

[modulation,’ simulation results’], ’'Position’

, [50 50 1100 900]);

subplot (2,2,1)
hold on

plot (1l + I_up,’'b
plot (-1 + Q_up,’
hold off

axis ([10xL 40+L
axis square;
title([’'I[n] and

xlabel (' samples’

subplot (2,2, 2)
hold on

plot (1 + I_filt,
plot (-1 + Q_filt
hold off

axis ([L* (1L0+RCF_

I _filt)*1.2]);

axis square;

")

r’');

-2 21);

Q[n] impulse train’],’FontSize’, 11);

)

"o’ ;

")

span/2) Lx (40+RCF_span/2) -max (I_filt)*1.2 max (

% Kako je prof. Babic dobio vecu (istu) amplitudu na izlazu
filtra??? -
% Pogledaj energiju filtra - skaliranje koeficijenata

4

title(['I[n], Qf
, 11);

xlabel (' samples’

n] RC Nyquist filtered impulse train’],’FontSize

)i

text (L* (L0+RCF_span/2) +10, max (I_filt)*1.1,textlabel2,’FontSize’,

10,’FontWeight'’,

"bold’") ;

51

475

476

471

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

ax = max (I_filt);

subplot (2,2, 3)

hold on;

plot (I_filt, Q_filt, ’"k-',’LineWidth’, 1);

plot(I, Q, 'wo’,’LineWidth’, 2,’MarkerFaceColor’,’r’);
hold off

axis([-1.5xax 1.5xax —-1.5xax 1.5%xax]);
xlabel ("I’ ,’FontSize’, 10);

ylabel ("Q’,"FontSize’, 10);

title (textlabel3,’FontSize’, 11);

axis square;

subplot (2,2, 4)

plot (f_axis, P_fft,’'k.”);

axis([-0.4 0.4 max(P_fft)-140 max (P_£fft)+30]1);

axis square;

title ([modulation, bwlabell],’FontSize’, 11);

xlabel ('Discrete frequency \times \pi’);

ylabel (' Magnitude, [dB]’);

text (bwlabel2_pos(l), bwlabel2_pos(2), bwlabel2,’FontSize’, 10,’
FontWeight’, ’'bold’);

text (bwlabel3_pos(l), bwlabel3_pos(2), bwlabel3,’FontSize’, 10,’
FontWeight’, ’"bold’);

fprintf ("\nFigure %d: %$s simulation results.\n",...

fig.Number, modulation);

fprintf ("\n\nRESULTS:\n") ;
fprintf (' $3d-dBc BW = %2.3f MHz, SE = %2.2f bits/s/Hz\n’, floor(
mag_limit_dBc), bw_contxl.0e-6, bweff);
fprintf (' \\alpha=%4.2f (spec), \\alpha=%4.2f (meas), PAPR=%5.2f dB\n
", rolloff, bw_cont/SR-1, PAPR); % PAPR - to explain !!!
% Just spectrum figure
figure (' Name’, [modulation,’ - resulting spectrum’])
plot (f_axis, P_fft,’k.");
axis([-0.4 0.4 max(P_fft)-140 max (P_£fft)+30]);
axis square;
title ([modulation, bwlabell],’FontSize’, 11);
xlabel (' Discrete frequency \times \pi’);

ylabel (Magnitude, [dB]’);

52

513

514

515

516

517

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

text (bwlabel2_pos(l), bwlabel2_pos(2), bwlabel2,’FontSize’, 10,’
FontWeight’, ’'bold’);
text (bwlabel3_pos(l), bwlabel3_pos(2), bwlabel3,’FontSize’, 10,’
FontWeight’, ’"bold’);

% Envelope of the signal
fs_RF 100%SR+L;
Tc_RF 1/fs_RF;

fc = f£s_RF/20;

o\°

take peace of filtered pulses and resample the to RF sampling rate

o\

(simulation)

I filt block I_filt(l: L*RCF_spanx*5);
Q_filt _block Q _filt(l: L*RCF_spanx5);
I_rf = resample(I_filt_block,100,1);
Q rf = resample(Q_filt_block,100,1);

t_step = 1/fs_RF;
tc = 0:t_step: (length(I_rf)-1)«*t_step;

53 uc_sine = —-sin(2xpixfcxtc); % cosine signal, frequency fc, duration
= I rf

535 uC_cosine = cos (2xpixfcxtc);

536

537 I_t = uc_cosine .x I_rf;

538

539

540

541

542

543

544

545

546

547

548

549

550

Q_t = uc_sine .* Q _rf;

urf =1t +0Q t;

figure () ;

envelope (u_rf,20«L, " rms’) ;

title([’"Envelope of ’,modulation,’ modulated signal’l]);

fprintf("\n\n == = = R — END

fprintf ("\n\n") ;
diary off

53

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

B.2. Source code of PRBS generator

function [symbol, nextseed] =

o\

o\

output is a bit for bits=1,
with
bits

o\°

n = numel (seed) ;
switch n
case 1
symbol = "’;
for k=1l:bits
if rand > 0.5

symbol = strcat (symbol,

else

f_prbs (seed,bits)

seed in string form, the length of the seed determines n

but you can get any number of bits out

symbol = strcat (symbol, 70’

end

end

nextseed = '0’;

return;
case 2

tapl = 2;

tap2 = 1;
case 3

tapl = 3;

tap2 = 1;
case 4

tapl = 4;

tap2 = 1;
case 5

tapl = 5;

tap2 = 2;
case 6

tapl = 6;

tap2 = 1;
case 7

tapl = 6;

tap2 = 7;
case 9

tapl = 5; $ 4

tap2 = 9;
case 10

17);

)i

54

41
42

43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82 end

83 verb

tapl = 10;

tap2 = 3;
case 11

tapl = 9;

tap2 = 11;
case 15

tapl = 14;

tap2 = 15;
case 17

tapl = 17;

tap2 = 3;
case 18

tapl = 18;

tap2 = 7;
case 20

tapl = 20;

tap2 = 3;
case 21

tapl = 21;

tap2 = 2;
case 22

tapl = 22;

tap2 = 1;
case 23

tapl = 18;

tap2 = 23;
case 25

tapl = 3;

tap2 = 25;
case 28

tapl = 28;

tap2 = 3;
case 29

tapl = 29;

tap2 = 2;
case 31

tapl = 28;

tap2 = 31;
otherwise

fprintf (! prbs unrecognized. ..

return;

=O;

exit\n’);

55

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

for k=1:n
rg(k) = str2num(seed(k));
if verb
fprintf (' $d’, rg(k));
end
end
if verb
fprintf ("\n’);
end
symbol = "';
for k=1:bits

if (rg(tapl) == 1) && (rg(tap2) == 0)
dummy = 1;

elseif (rg(tapl) == 0) && (rg(tap2) == 1)
dummy = 1;

else
dummy = 0;

end

for ii=n:-1:2

rg(ii) = rg(ii-1);
end
rg(l) = dummy;
dum = num2str(rg(n));

symbol = strcat(symbol, dum);

end
nextseed = ',
for k=1l:n
nextseed = strcat (nextseed,

end

num2str (rg(k)));

56

20

21

22

23

24

25

26

27

28

29

30

31

32

B.3. Source code of symbol mapper

o

F_MAPPSYM MS () will mapp input data vector of bits (bitstream)
to

o\

M - point (M-ary) constelation based on Gray code.

o\

modulation - type of modulation. Supported types are ’'BPSK’, '
QPSK' .

o\°

bitstream - input vector (length power-of-2) of integers or

boolean

o\

representing bits.

o

o\°

f_mappsym_ms (modulation, bitstream) outputs binary symbols in

form of

% K x N matrix, where K is number of bits in constellation symbol
and N

% is a length(bitstream) /K constellation points.

% [symbols, I, Q, SYMmapped] = f_mappsym _ms (modulation, bitstream)

o\

outputs binary symbols, mapped constellation points in vector of

o\°

In-Phase componenets, I, and gquadrature components, Q, and the

vector

o\

of complex points, SYMmapped, consisting of I + 1ixQ points.

o\

% Version: 0.200909-0

% Date: September 9, 2020.

% Student: Mario Simunic

% email: mario.simunic@fer.hr

% emaill: mario.simunic@gmail.com

function [symbols, I, Q, SYMmapped] = f_mappsym_ms (modulation,

bitstream)
version = 70.2009090-0’; % mod(2006050,11) = 2

filename = 'f mappsym ms.m’;
file = dir(filename) ;
fprintf (/" \n\n>BEGIN ===== f mappsym _ms.m ===== ver. $%s

=== >\n’,version) ;

if isempty(file) ==
warning ('File f_mappsym _ms.m is not in the current folder.’);
else

% fprintf ("%$s, file version: %s, last change: %s\n", file.name,

version, file.date);

57

33

34

35

36

37

38

39

40

41

42

43

end

%% Constellations (Look-up Tables)

% vector-row format!!!

% BPSK constellation
constell BPSK = L 1,

-1 1;

[)

o\
= O

o

% QPSK contellation, Gray code, Hamming distance

constell _QPSK = [exp(1i = pi/4), ... % 00 = 0d
exp(11 » 3xpi/4), ... % 01 = 1d
exp(11 = 7xpi/4), ... $ 10 = 3d

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

exp

% Other constellations

%% Symbol Mapping

o\

M = modulation order
K

o\

% convert type just for the logic operations

bitstream = boolean (bitstream);

switch modulation

case ’"BPSK’

constell = constell_ BPSK;

M= 2;
K = log2(M);

case 'QPSK’

constell = constell_QPSK;

M = 4;
K = log2(M);

case '0O-QPSK’

constell = constell_QPSK;

M = 4;
K = log2 (M) ;

1i

= number of bits per symbol

%

76

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

105

106

107

108

109

110

111

112

113

otherwise

error (! Unsupported modulation type.’);

end

% Check in bistream length is
% len need to be divisible by
length
(mod (len, K)

(bitstream) ;
~= 0)

len =
if

correct for the modullation type.

the K

error (' Unsupported length of input data vector.\n’);

end

fprintf ("\n\nUsing modulation:

[)

[)

% syms =

elemnt columns.

o\

% addr = (2.7 ((K-=1:-1:0)) xsyms) ;
table
% Ss = constell (addr+1);

reshape (data, K, L/K) ;

M

%

o\

o\°

o\

% Symbol mapping using elemnt operation

operation

% Parameters for testing

% data = [1 01 1000 17;
% K = 2;

% L = 8;

% My own reshape and mapping

SYMmapped = zeros (1, len/K);
symbols

symbols = zeros (K, len/K);

symbol = zeros(l,K);

addr = zeros(1l,len/K);
addressing

col = 0;

idx = 0;

for ii = 1: K len

o\

o° oe

o\

%d) \n", modulation, M);

% symbol mapping using matrix operation and block data

Vector—-row convert to K-

Each column is a symbol.

Symbols converted to look-up

address.

Symbol stream

and elemnt-by-element

memory allocation for mapped

symbols,

one symbol,

binary

binary

memory allocation for symbol

59

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

145

146

147

148

149

150

151

152

153

154

col col +1;
idx = idx+1;
for kk = 0 : K-1

row = kk+1;

symbols (row,col) = bitstream(ii+kk); % All symbols
symbol (kk+1) = bitstream(ii+kk); % One symbol

addr (idx) = addr (idx) + ((2"(K-1-kk)) * bitstream(ii+kk));
SYMmapped (idx) = constell (addr (idx)+1);

end

end

%% plot constellation points

fig = figure('Name’,’f _mappsym ms: Symbols mapped to constellation’)

7
hold on;

% unit cicrcle definition
r = 1;

theta = 0:2+pi/50:2xpi;

X rxcos (theta) ;

y = r*sin(theta);

[o)

plot(x,y,"b."); % Unit circle

[

% constellation points from lookup table

plot (real (constell), imag(constell),’ro’, ’'MarkerFaceColor’,

axis([-1.5 1.5 -1.5 1.5]);
% axis equal
axis square
grid on
% constellation point labels
if (0)
for k = 1l:length (constell)
text (real (constell (k))-0.2, imag(constell(k))+0.2,

"Color’,’red’,’FontSize’,13);

"r’);

dec2bin (k

60

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

[
<

plot symbol point labels with number of counted symbols from data

stream
if (1)
% count number of occurrence of each symbol
PointCnt = zeros(1l,M);
for k = 1l:1length (addr)
PointCnt (addr (k) +1) = PointCnt (addr(k)+1) + 1;
end
% For each constellation point print number of occurrences
for k = 1l:length(constell)
msg = [dec2bin((k-1),K),’ \times ’,int2str (PointCnt(k))];
pos_x = real (constell (k))-0.2;
pos_y = imag(constell (k))+0.2;
text (pos_x, pos_y, msg,’Color’,’red’,’FontSize’,13);
end
end
hold off;

xlabel (! In-Phase’); ylabel (' Quadrature’);

title ([modulation,’ constellation with number of occurrences’]);

[
<
%
o

°

o
°

ax = gca;

ax.XAxisLocation = 'origin’;

ax.YAxisLocation = ’'origin’;

set (ax, ’'FontSize’, 12);

fprintf ("\nFigure %d: Symbols mapped to constellation\n", fig.Number

o o0 o0 oo o° oo o°

o\

)

real (SYMmapped) ;
imag (SYMmapped) ;

fprintf (‘\n Input data = \n’);

disp (bitstream) ;

fprintf (' \n Symbols mapped (each column is one symbol) :\n’);

disp (symbols) ;

fprintf (" \n Symbols mapped to constellation = \n’);

disp (SYMmapped) ;

fprintf (' \n>===== f_mappsym_ms.m

= = = END\n\n’) ;

61

62

20

21

22

23

24

25

26

27

28

B.4. Source code of filter design

$F_RAISEDCOSINE_MS Spectral Raised Cosine Filter design.

o\°

o\

o\°

o\

o\°

o

o o° o0 o° oe

o\

o

o\°

o\

o o° o0 oo oo oP

o\

O
°

h = f_raisedcosine_ms (alpha, span, sps, shape, implementation)

returns spectral raised

cosine FIR filter coefficients, h, with rollof factor alpha. The
filter

is truncated to SPAN symbols and each symbol is represented by
sps

samples. F_RAISEDCOSINE_MS designs a symetric filter. Therefore,
the

filter order which is spanx*sps, must be even. The filter energy

is 1.

mode will define how FIR filter will be designed, 'mtlb’ - using
matlab

rcosdesing () function, or, ’'ms’ - using my own implementation.

This is

for testing purposes and results should be identical.

alpha is rolloff factor,
span is filter impulse response duration (symbols),
sps is number of samples per symbol,
shape defines which spectral shape of the filter will be
designed. When

shape is set to 'normal’ function will return spectral
Raised

Cosine filter coeficients. When shape is set to ’sqgrt’
function

will return spectral Square—-Root Raised Cosine filter
coefficients,

implementation is a string value 'matlab’ or 'ms’ where ’'ms’

represents
My implementation.
Version: 0.200909-0
Date: Spetember 9, 2020
Student: Mario Simunic
email: mario.simunic@fer.hr
emaill: mario.simunic@gmail.com

function h = f_raisedcosine_ms(alpha, span, sps, shape,

implementation)

63

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

version = "0.200909-0";
filename = ’'f_raisedcosine_ms.m’;

file = dir(filename) ;

fprintf (" \n\n>BEGIN ====== f_raisedcosine_ms.m ==== ver. %S

=============>\n’ , Version) 8

if isempty(file) == 1

warning ('File f_mappsym _ms.m is not in the current folder.’);
else
% fprintf (" %s, file version: %s, last change: %s\n", file.name,

version, file.date);

end

% Debugging

% fprintf (' \n Using implementation = %s\n’, implementation);
%% Take One - Using Matlab function rcosdesign ()

o\

o

Spectral Rised Cosine filter design using rcosdesign ()

o\°

o\

b = rcosdesign (beta, span, sps) returns the coefficients, b, that

o\

correspond to a square-root raised cosine FIR filter with

rolloff

o\°

factor specified by beta. The filter is truncated to span

symbols,

o\

and each symbol period contains sps samples. The order of the
filter,
% spsxspan, must be even. The FILTER ENERGY is 1.

% b = rcosdesign (beta, span, sps, shape) returns a square-root raised

cosine

o\°

filter when you set shape to ’sgrt’ and a normal raised cosine
FIR

o\

filter when you set shape to 'normal’.

if (1 == strcmp (implementation,’matlab’))
fprintf (' \n Using ’’matlab’’ implementation for computing
coeffcients.\n\n’);

[)

% Railsed cosine filter
[¢)

bl = rcosdesign (alpha, span, sps, shape); % design impulse

response

64

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

end

o\°

o\°
o\°

o\

if

o\

Take Two - My implementation of raised cosine filter impulse

response

(1 == strcmp (implementation,’ms’))

fprintf (/\n Using ’’ms’’ implementation for computing

coeffcients.\n\n’);

FIRord = span * sps; %
% Check if filter order is even
if (mod(FIRord,2) ~= 0) %

error (' Filter order of Raised Cosine filter must be
even!’);

end

FIRlength = FIRord + 1;

b2 = zeros(l,FIRlength); % allocate memory for filter samples

for k=1 : FIRlength $filter length L = filter_order+1l, odd.
% irad = (double((k—-1)-nfs/2)* (double (fs)/double (nfs)))/2;
idx = (((k-1) - FIRord/2)«(span/FIRord))/2;

o\

idx represents t/Tsymbol in raised-cosine equation

o

idx is index in range [-6.0, 6.0]

o\°

(span/FIRord) equals (1/L);
time = ((k-1) - FIRord/2)x* (span/FIRord);

if time ==
b2(k) = 1; % sinc for t=0;
else

Q

b2 (k) = sin(2+pixidx)/ (2*xpi*idx) ; % sinc
b2 (k) = sin(pixtime)/ (pixtime); % sinc
end

[o)

d = 2+xalphaxtime; % part of denominator

65

103

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

(cos (pi*alpha*time) / (1-dxd)) ;

prevent division with zero

% Normalization to unit energy so that FILTER ENERGY would be 1

if abs(d) == 1
b2 (k) = 0; S
else
b2 (k) = b2 (k) =*
end
end
h = b2/sqgrt (sum(b2.72));
end
fprintf (! >====== f_raisedcosine_ms.m
end
% EOF

END\n\n’) ;

66

