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Abstract – Security proved to be a major
concern when organizations outsource their data
storage and processing. Encryption schemes do not
provide solutions as they disable data processing
in the cloud. Researchers have used constraint-
based data fragmentation to increase security while
maintaining availability. We build on this approach
by applying fragmentation to the application logic
in addition to the data in the database and propose
a model for security risk assessment in a multi-
cloud environment. By applying a multi-objective
optimization algorithm to the proposed model, we
determine pareto-optimal distributions of appli-
cation and data fragments to the available cloud
providers.

1. Introduction
With the increased popularity of cloud computing
in the past decade, it is no longer a question
whether or not a company will embrace cloud
computing. Rather, the question is when the
technology will be implemented and which services
should be migrated to the cloud. Remote access to
a pool of computing resources reduces the up-front
IT infrastructure costs and allows companies to
meet fluctuating demands.
Current research indicates that the biggest

challenges in cloud adoption are related to trust
since companies may feel like they are losing
control over their data [1]. Numerous data
breaches and security vulnerabilities [2, 3] prevent
users from trusting cloud service providers (CSPs).
Compliance with the industry specific regulations
and even general information security regulations
often make moving to the cloud difficult since
regulations may differ from region to region. High
flexibility of a cloud service makes exhaustive
and continuous security revisions expensive or
intractable [4].
Hybrid cloud environments enable users to

combine their computing resources with the cloud
to retain more control over their data. Confidential
data can, for example, be stored or encrypted

on premise before leaving the local environment.
Such approach makes regulation compliance easier,
but burdens the user with key management.
Furthermore, encrypted data cannot be used by
applications running in the cloud.

Recent trends show that the use of multiple cloud
providers simultaneously is increasing to achieve
higher service availability and damage reduction in
the case of malicious insiders on a single CSP [5].
Such multi-cloud environments mitigate reliance on
a single cloud provider.

The contribution of this paper is threefold.
Firstly, we introduce a multi-cloud application
model that assumes multiple application compo-
nents and multiple data fragments. Secondly, we
propose two risk metrics for assessing the risk of
a given application deployment to the multi-cloud
environment. Lastly, by using multi-objective
optimization, we find a set of pareto solutions
according to two proposed risk metrics.

1.1. Literature review
Security is a major concern of the cloud platform
and is one of the main research directions regarding
the cloud computing [6]. Fragmentation has been
recognized as a possible solution to improving data
security while still enabling query evaluation at the
provider side.

Using fragmentation as a method for increasing
privacy in data storage has been explored [7].
Sensitive data relations can be broken to decrease
information leakage in case of an attack. Confiden-
tiality constraints have been introduced as a means
for describing sensitive data relations. Algorithms
for finding optimal fragmentation based on the
constraints have also been proposed [7, 8], but such
algorithms do not touch on finding the optimal
distribution of data fragments to the available
servers.

Researches have used fragmentation and distri-
bution between multiple cloud providers [9].
Similarly to earlier work [7], user defined
constraints are taken into consideration during data
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fragmentation and distribution in the cloud. The
paper shares motivation and assumptions with our
work: cloud providers are non-colluding, usage of
multiple CSPs enables better regulation compliance
and minimal use of encryption maximizes data
availability in the cloud. Work is focused on
security in data storage and does not touch on
data security during computations performed by
the cloud applications.
Information entropy can be used to measure the

sensitivity of connections between the data [10].
This can help in deduction of confidentiality
constraints. Such approach requires the database
to be filled with the actual or representative data
which can be an issue when data distribution is not
known in advance.
The rest of this paper is structured as follows.

Section 2 presents a simple distributed database
and distributed application model. Section 3
applies a risk assessment method for the distributed
application deployed in a multi-cloud environment.
Optimization algorithm and preliminary results
of risk optimization are discussed in Section 4.
Section 5 concludes the paper and explores possible
future work.

2. Distributed model
We assume that both, application logic and the
data, are distributed. Since any cloud provider may
be malicious, storage and computation are split and
distributed among available CSPs. Optimal distri-
bution of data fragments and application compo-
nents ensures minimal information leak in case of
an incident on a single CSP.
The application database is split into NF data

fragments and the application logic is split into
NC application components. Data fragment Fi is a
portion of data that can be stored to any available
CSP. Figure 2.1 illustrates vertical fragmentation
on a simple table. The original table is split into
two fragments: F1 containing the name and the
surname of a person and F2 containing the payout
amount for each person. Fragmentation aims
to decouple the person and the payout amount.
Malicious access to only one of the data fragments
results in a significantly lower information leak
than access to the both fragments. If F2 is
leaked, only payout amounts are known to the
attacker. The names of involved persons are

F2

NAME

Cloe
Tom

Emma

SURNAME

Connolly
Flynn
Hills

PAYOUT

5000
17500
12000

F1

Figure 2.1: Simple relational table split.

C0 C1

F1 F2F0

C2

R02 R12

Figure 2.2: Simple application model.

compromised if fragment F1 has leaked. When
such fragments are provided to the deployment
optimization process for multi-cloud applications,
it will attempt to deploy those fragments to
different CSPs to maximize security.

Similar to the data fragment, application
component Cj is a segment of the application logic
that can be deployed to and executed on any
available CSP. Each component is able to perform
three actions:

1) access data fragments (read or write),
2) receive data from other components,
3) send data to other components.

Result Rab represents the data sent from source
component Ca to the destination component Cb.
Each result has exactly one source and exactly one
destination application component.

Figure 2.2 illustrates a simple application
consisting of 3 components: C0, C1 and C2.
Components C0 and C1 access the data fragments
and perform computations. Computation results
R02 and R12 are sent to the component C2.
Since the application components are treated as

black boxes, no assumption can be made for their
outputs. Consequently, results exchanged between
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the components must be treated as resources that
carry information, likewise the data fragments.
For example, component C0 may simply forward
input data to its output making the result R02
identical to F0. Therefore, a resource ρk that the
risk assessment process considers is either a data
fragment Fi or result Rab exchanged between the
application components.

3. Security risk assessment
Fragmentation can be used for increasing security
in the data storage by breaking sensitive data
relations to decrease information leak in case of
attack [7]. Security constraints are used for
describing sensitive data relations.
User provides NK security constraints for the

multi-cloud application. Each constraint contains
a subset of all resources. A security constraint
Kl = {ρ1, . . . , ρn} defines a property that sum of
information of each resource ρk in the constraint
is smaller than the information of all resources
merged together. This concept is formalized in the
expression 3.1 where I(ρ1, . . . , ρn) is the amount
of information leak when resources ρ1, . . . , ρn leak
together.

n∑
k=1

I(ρk) < I(ρ1, . . . , ρn) (3.1)

If all resources contained within a security
constraint are present on a single CSP, the
constraint is considered violated since more infor-
mation will leak in case of an incident on that
provider.

3.1. Resource reach
A set of fragments and components where a
resource ρk is available defines its resource reach
D(ρk). Therefore, the reach of a data fragment is a
set that contains that data fragment and all compo-
nents that access that data fragment. For example,
resource reach of fragment F1 shown in Figure 2.2
is a set containing fragment F1 and component C1.
Results that components exchange are trans-

ferred from a single source component to a single
destination component. Consequently, the reach of
a component result is a set containing two elements:
result source and result destination. Reach of
the result R12 that can be seen in Figure 2.2 is
D(R12) = {C1, C2}.

Resource reach enables efficient check if a
constraint can be satisfied in the ideal case where
unlimited amount of cloud providers is available.
ConstraintKl = {ρ1, . . . , ρn} can be satisfied in the
ideal case if and only if:

D(ρ1) ∩ . . . ∩D(ρn) = ∅ (3.2)

Evaluation of a distribution of fragments and
components in the multi-cloud environment is
also made simple with the use of resource reach.
Violation of a security constraintKl = {ρ1, . . . , ρn}
is checked in the following way:

1) The reach of each resource in the constraint
is calculated: D(ρi), i = 1, . . . , n

2) Cloud resource reach Dc(ρi) is calculated by
substituting each fragment and component
in D(ρi) with a cloud provider where that
fragment or component is deployed. Dc(ρi)
is therefore a set of CSPs where resource ρi
is available.

3) Multi-cloud distribution satisfies constraint
Kl if and only if:

Dc(ρ1) ∩ . . . ∩Dc(ρn) = ∅ (3.3)

The procedure is repeated for each security
constraint during the risk assessment of a particular
deployment of fragments and components. Since
the same resources are often part of multiple
security constraints, computed cloud resource reach
Dc(ρi) may be cached to avoid duplicated calcula-
tions.

3.2. Risk metrics
We define two metrics for assessing the security risk
of a particular multi-cloud deployment:

a) violated security constraints,
b) individual security of resources.

The first metric penalizes when all resources within
a security constraint are available on the same CSP.
The second metric estimates security of resources
individually and is responsible for pushing more
important resources towards more trusted CSPs
during deployment optimization. Given a set of
available CSPs P = {σi, . . . , σS}, trust estimate
function t:P → R+ must be provided by the user
which assigns the trust estimate to each CSP.
Higher trust estimate implies that the provider has
a lower chance of leaking information. In addition
to pushing resources to more trusted CSPs as
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much as possible, optimization process attempts to
violate unsatisfiable constraints at the most trusted
providers.
The risk for breaking security constraint Kl is

calculated using the expression:

r1l = pl
t(σl)

, (3.4)

where pl ∈ R+ is the penalty for breaking the
constraint Kl and σl is the cloud provider where
the constraint is violated. If multiple CSPs violate
the security constraint, CSP with the lowest trust
estimate is used.
Expression 3.5 computes individual risk of

resource ρk with value vk ∈ R+ assigned by the
user.

r2k =
∑

σ∈Dc(ρk)

vk
t(σ) , (3.5)

More important resources should be assigned a
higher value vk. This enables critical resources to
produce higher risks and have higher priorities in
the optimization procedure.

4. Experimental setup and results
Metrics for assessing security provided in the
previous section can be linearly combined. Total
risk of a given deployment is then measured with
a scalar. The issue with this approach is that the
importance of each metric has to be expressed with
a coefficient before optimization. Metrics can differ
in scale rather greatly so choosing coefficients that
yield good deployments may be difficult for non-
trivial applications.
We use multi-objective optimization algorithm

NSGA-III [11, 12] to avoid attributing importance
to optimization criteria before actual optimization.
Importance is attributed implicitly when one
of the suggested deployments is chosen by the
user. NSGA-III is a multi-objective evolutionary
algorithm which aims to improve fit of a population
of candidate solutions to a pareto front constrained
by a set of objective functions. NSGA-II introduced
elitism to the original NSGA algorithm. NSGA-III
further improves the algorithm by using a method
that increases solution diversity. This results in
even distribution of solutions across the pareto
front.
A solution is represented as a mapping of

fragments and components to the cloud providers.

σ1
F0

σ0

σ2
C0

F1 F2

C1 C2

Parent A

σ1
F0 C0

σ0

σ2
F1 F2 C1 C2

Parent B

σ1

F0

σ0

σ2

F2

C1 C2

C0

F1

AB

B

Child
A/B A/B

A/B

none

Figure 4.1: Crossover example.

In a scenario where three CSPs (σ0, σ1, σ2) are
available, three possible solutions for simple appli-
cation (Figure 2.2) are shown in Figure 4.1 where
crossover operation is visualized. In the solution
that represents parent B, CSP σ0 is unused, two
data fragments and two application components are
deployed to σ2, and fragment F0 and component C0
are deployed to CSP σ1. Genotype is implemented
as a hash table that maps fragments and compo-
nents to the CSPs.

Crossover operator uniformly selects a cloud
provider for each component from one of the
parents. Child solution illustrated in Figure 4.1 is
constructed by selecting CSPs for fragment F1 and
component C0 from parent B. F2 is deployed to the
same CSP as in parent A, while CSPs for F0, C1
and C2 could have been selected from either parent
since they map them to the same cloud providers.

Two mutation operators are used with equal
probability:

a) picks a random fragment or component and
assigns it to a random cloud,

b) all fragments and components are assigned
to random clouds (solution is reconstructed).
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Figure 4.2: Test application.

It has been found that the enterprise applications
often consist of many distinct business logic and
backend components [13]. Fortune 100 companies
have applications with dozens, sometimes even
reaching hundred components.
Our test application (Figure 4.2) consists of

10 data fragments and 10 application compo-
nents. We assume 7 available CSPs, σ0 to
σ6, assigned with increasing trust values (σ6
being the most credible). Such environment
provides 720 possible cloud deployments. The
following set of security constraints is used:
{F0, R23}, {F2, F6}, {F3, F4}, {F3, F6}, {F3, R79},
{F7, R59}, {F9, R68}, {R16, R27}, {R16, R26, R37},
{R16, R26, R59}. Penalization for breaking a

Fragment Value Result Value
F0 100 R16 35
F1 200 R23 55
F2 300 R26 15
F3 400 R27 65
F4 500 R37 35
F5 600 R57 85
F6 700 R59 95
F7 800 R68 45
F8 900 R78 25
F9 1000 R79 15

Table 4.1: Values of test application resources.

security constraint is set to p = 100 for all security
constraints.

Table 4.1 lists values of application resources.
Results transferred between components have lower
values than pure data fragments since we assume
that output is arbitrary transformation of the input
that is less useful to the attacker (e.g. aggregation).

We use a population of 500 solutions and set
maximum number of generations to 100 which
results in 50000 evaluations of each objective
function. Risks of solutions shown in Figure 4.3
are achieved by the NSGA-III algorithm with 15%
mutation rate. The algorithm consistently provides
similar fronts. During our testing, random search
never provided solutions below 2000 single resource
risk. When presented with a pareto front, the user
is able to make better decisions since valuing impor-
tance of each risk metric is made easier – trade-offs
between possible solutions are visualized.

Table 4.2 lists solutions A and B marked in
Figure 4.3. Solution A violates three security
constraints: {F2, F6}, {F7, R59}, {R16, R27} on
CSPs σ5, σ6 and σ6 respectively. On the contrary,
solution B violates only {F2, F6} and {F7, R59}.
Furthermore, both constraints are violated on the
most trusted CSP σ6 which results in significantly
lower constraint risk. Solution A provides lower
single resource risk as 15 resources are available on
the single CSP while in B that is true for for 11
resources. Solution A also makes five most valuable
resources only available on the most trusted CSP
σ6 which contributes to lower single resource risk
when compared to the solution A.

Deterministic strategies for finding optimal
deployments can be successful when only database
fragmentation is considered [9], but do not scale to
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Figure 4.3: Risks of deployments proposed by
NSGA-III.

Solution A

σ4 F0, C8, C6, C0
σ5 F4, F3, F2, C2
σ6 F9, F8, F7, F6, F5, F1, C9, C7, C5, C4, C3, C1

Solution B

σ2 C8, C6
σ3 F0, C0
σ4 F6, F5, C7, C3
σ5 F1, C9, C1
σ6 F9, F8, F7, F4, F3, F2, C5, C4, C2

Table 4.2: Notable solutions from Figure 4.3.

applications with many logic components and data
fragments. While solutions provided by heuristics
might not be optimal, performance they offer
opens up possibilities for real-time recalculation of
security risk and redeployment of multi-cloud appli-
cations.

5. Conclusion and future work
In this paper, we introduced a model for assessing
the risk of distributed application and distributed
database deployed in a multi-cloud environment.
Using the model, we performed multi-objective
optimization which provided us with pareto set
of deployments with regards to different security
criteria. The approach is not exclusive to the
multi-cloud setting. It can be applied wherever a
multitude of deployment locations for application
components and database fragments are available.

The proposed risk assessment model does not
take time into consideration – it is completely
static. Information about how often and which
ratio of certain data flows through each application
component would increase the level of detail that
the model can describe. Verbosity of such model
might become an issue, but supporting tools could
be developed to assist with describing real world
applications. For example, information entropy
can be used to help the user determine security
constraints [10].

While applying security risk optimization on
existing distributed applications is possible, the
best results are obtained when a multi-cloud appli-
cation is constructed from the ground up with
security in mind. Guidelines and patterns for such
development should be established so that the right
techniques (e.g. cryptographic protections) can be
applied in the right situations.

Furthermore, supporting database mechanisms
must be established to enable transparent usage
of fragmented data while ensuring that constraints
imposed on the data are valid (e.g. primary key).
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