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A B S T R A C T

Humans are nowadays exposed to numerous chemicals in our day-to-day life, including parabens, UV
filters, phosphorous flame retardants/plasticizers, bisphenols, phthalates and alternative plasticizers,
which can have different adverse effects to human health. Estimating human’s exposure to these
potentially harmful substances is, therefore, of paramount importance. Human biomonitoring (HBM) is
the existing approach to assess exposure to environmental contaminants, which relies on the analysis of
specific human biomarkers (parent compounds and/or their metabolic products) in biological matrices
from individuals. The main drawback is its implementation, which involves complex cohort studies. A
novel approach, wastewater-based epidemiology (WBE), involves estimating exposure from the analysis
of biomarkers in sewage (a pooled urine and feces sample of an entire population). One of the key
challenges of WBE is the selection of biomarkers which are specific to human metabolism, excreted in
sufficient amounts, and stable in sewage. So far, literature data on potential biomarkers for estimating
exposure to these chemicals are scattered over numerous pharmacokinetic and HBM studies. Hence, this
review provides a list of potential biomarkers of exposure to more than 30 widely used chemicals and
report on their urinary excretion rates. Furthermore, the potential and challenges of WBE in this
particular field is discussed through the review of pioneer WBE studies, which for the first time explored
applicability of this novel approach to assess human exposure to environmental contaminants. In the
future, WBE could be potentially applied as an “early warning system”, which could promptly identify
communities with the highest exposure to environmental contaminants.

© 2020 Published by Elsevier B.V.
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1. Introduction

Human populations worldwide are exposed to an increasingly
large number of environmental contaminants. In fact, pollution is
nowadays considered to be the main environmental cause of
disease and death, with approximately 9 million premature deaths
in 2015, corresponding to 16 % of all deaths globally and more than
25 % of deaths in the most severely affected countries [1].

Beside contaminated air, dust, food and water, the main
sources of potentially harmful chemical substances include
numerous consumer products used in day-to-day life, such as
cosmetics, pharmaceuticals, food packages, plastic materials,
clothing, furniture, electronics, paints, lubricants, adhesives and
many others. Parabens, UV filters, phosphorous flame retardants/
plasticizers (PFRs), bisphenols, phthalates and alternative plas-
ticizers are widely used chemicals in these products, which can
have different adverse effects on human health [2–5]. Exposure to
these substances can be assessed by human biomonitoring (HBM)
studies [6,7], which involve the analysis of specific biomarkers
(parent compounds and/or their metabolic products) in urine and
other biological matrices from individuals. Although useful, this
approach is hampered by several limitations, including high costs,
selection bias (difficulties in selecting individuals representative
of the entire population), ethical approval requirements and lack
of temporal dimension (individuals are sampled only once or, at
best, over a 24-h period) [8]. It is, therefore, difficult to
extrapolate the results of HBM studies, typically performed only
periodically and on the limited number of subjects, to the entire
populations, as well as to monitor temporal trends in exposure to
contaminants.

Wastewater-based epidemiology (WBE), sometimes referred to
as sewage epidemiology [9] or sewage chemical-information
mining [10], is a relatively novel concept for obtaining some
relevant epidemiological information, including lifestyle and
dietary habits, population health and exposure to contaminants.
Similar as HBM, WBE is also based on the analysis of specific
human biomarkers, often the same ones as in HBM studies.
However, instead of biological matrices, WBE involves the analysis
of municipal wastewater (sewage). This approach is based on the
fact that biomarkers of almost everything we consume, or we are
exposed to, enter the sewer network after being excreted from the
human body. Therefore, raw sewage can be considered as a very
diluted, pooled urine (and feces) sample of the entire population
connected to a certain sewer network. In other words, WBE can be
regarded as HBM study at the community scale. Nowadays it is a
well-established approach for the assessment of illicit drugs
consumption and, more recently, it has been applied to estimate
the consumption of some legal substances as well [11–13]. Recent
studies also investigated the applicability of the WBE approach to
assess human exposure to food and/or environmental contami-
nants, including pesticides [14–17], mycotoxins [18], phthalates
[19–22], PFRs [8,23,24] and bisphenol A (BPA) [25]. Although first
insights are rather promising, the full potential of WBE in this field
has yet to be explored. WBE can also be applied to monitor spread
of infectious diseases and antimicrobial resistance [26]. Scientific
interest in this field has markedly increased in recent months,
mostly due to the COVID-19 outbreak [27]. As demonstrated in first
exploratory studies [28,29], WBE could serve as an additional,
complementary approach to estimate the prevalence of COVID-19
in communities.

One of the key challenges in WBE is the selection of appropriate
biomarkers, which should be specific to human metabolism (or
their exogenous sources should be minimal), excreted in sufficient
amounts (preferably in urine), and stable in sewage (both during
the transport in sewer and during sampling, storage and analysis).
Some recent review papers addressed this issue by proposing or
evaluating biomarkers used in present and future WBE applica-
tions [11,12]. However, these papers did not focus exclusively on
biomarkers of exposure to environmental contaminants and,
therefore, did not systematically evaluate rather complex and
scattered pharmacokinetic and HBM data to propose the most
promising biomarker(s) for many potentially harmful environ-
mental contaminants. Moreover, some pharmacokinetic [30–33]
and WBE studies [19–25,34] relevant for this topic were published
very recently.

Therefore, the aim of this paper is to identify the potential
biomarkers of human exposure to environmental contaminants,
namely parabens, UV filters, PFRs, BPA, phthalates and alternative
plasticizers, for a WBE-based assessment. The most suitable WBE
biomarkers of the selected chemicals have been proposed after
thorough review of pharmacokinetic, HBM and WBE literature.
Moreover, the potential and challenges of WBE in the field of
human exposure to environmental contaminants is discussed
through the review of exploratory WBE studies.

2. Identification of potential WBE biomarkers of human
exposure to personal care and household products

2.1. Parabens

2.1.1. Background
Parabens are a class of chemicals widely used as preservatives

in food, cosmetics and pharmaceutical formulations. Chemically,
they are esters of 4-hydroxybenzoic acid. They are frequently used
combined, which increase their activity against microorganisms
[35].

2.1.2. Potential health risk
For decades, parabens were considered to be safe. However, in

the last 20 years, a concern has been raised regarding their
endocrine disrupting potential, but also due to their possible role in
breast cancer etiology [35,36]. Although the debate is ongoing,
European Commission limited their maximum amount in cosmetic
products sold in the EU market to 0.4 % for single compounds and
0.8 % for mixtures, with the additional restrictions for propylpar-
aben (PrP) and n-butylparaben, while isopropylparaben, isobu-
tylparaben, phenylparaben, benzylparaben and pentylparaben
were banned from cosmetic products sold at the EU market [37].

2.1.3. Potential WBE biomarkers
In HBM studies, exposure to parabens is mainly assessed by the

analysis of parent compounds in urine. As they are mostly excreted
as glucuronide or sulfate conjugates [38], total concentrations
(free + conjugated forms) are determined after enzymatic decon-
jugation [39]. Their common, but unspecific metabolites – p-
hydroxybenzoic acid (PHBA) and p-hydroxyhippuric acid (PHHA;
glycine conjugate of PHBA), are sometimes analyzed as well
[40,41]. However, parent compounds and unspecific metabolites
should be avoided as biomarkers in WBE, due to their possible
additional sources in sewage, not necessarily reflecting the human
exposure to specific compounds. Glucuronide conjugates, as rather
unstable compounds, are generally not suitable WBE biomarkers
due to their rapid hydrolysis by β-glucuronidase enzymes
produced by fecal bacteria in sewage [19]. Although enzymatic
deconjugation is a common, routine step in HBM studies, it can be
recommended in WBE only in case of conjugated metabolites and
not for conjugated parent compounds. Unlike glucuronides, sulfate
conjugates, as more stable compounds, could be potentially used
as WBE biomarkers. However, to the best of our knowledge,
reference standards of sulfate conjugates of parabens are not
commercially available. In HBM studies, their concentration is
assessed indirectly, by analyzing parent parabens with and



I. Senta et al. / Trends in Environmental Analytical Chemistry 28 (2020) e00103 3
without a deconjugation step, which is performed using sulfatase
enzymes.

In a recent pharmacokinetic study, novel side-chain-oxidized
metabolites were identified and proposed as additional, more
specific biomarkers of exposure to butylparabens in HBM studies
[41]. However, urinary excretion rate of ring-oxidized metabolite
of methylparaben (MeP) was found to be much lower (0.1 %) [41].
Nevertheless, this compound, also known as methyl protocatech-
uate (3�OH-MeP), was used as a specific biomarker of exposure to
MeP in HBM [42]. In fact, concentrations of 3�OH-MeP and ethyl
protocatechuate (3�OH-EtP), analog ring-oxidized metabolite of
ethylparaben (EtP), were found to be similar or even higher than
the concentrations of parabens in urine samples, with a significant
positive correlation between protocatechuates and their corre-
sponding parent parabens. The discrepancy between the studies is
difficult to explain, even if we take into account that proto-
catechuates can have natural origin, because this exposure is
expected to be much lower than the exposure to parabens [42].

The human pharmacokinetic profile of PrP after oral adminis-
tration has been recently studied. However, only parent PrP
(mostly in conjugated form) and unspecific metabolites PHBA and
PHHA have been determined [43]. The authors pointed out that the
developed pharmacokinetic model has been evaluated only for oral
route of exposure. However, dermal exposure could be even more
relevant for parabens.

In Table 1, the main parabens are listed, along with their specific
(oxidized) metabolites which could be used as biomarkers in WBE.
Oxidized metabolites of PrP have not been identified yet, although
they could be theoretically predicted [43]. Therefore, additional
human pharmacokinetic studies, which would also include
different routes of exposure (such as dermal) are needed for the
correct interpretation of exposure to parabens in future studies.

2.2. UV filters

2.2.1. Background
UV filters represent a rather diverse group of chemicals with the

common feature to protect skin against harmful UV��A and UV��B
radiation. They are widely used in sunscreen lotions, but also in
other cosmetics and a wide range of other products, including
plastics, textile, food packages, adhesives, paints and rubbers. They
can be divided into two main groups – inorganic, which mainly
reflect and scatter UV radiation, and organic, which protect skin by
absorbing harmful UV radiation. UV filters are often used in
combination, to increase sun protection factor [44] or for
stabilization purposes [45].

2.2.2. Potential health risk
Although UV filters are applied topically, they can enter the

human body after being absorbed through the skin. Several organic
UV filters and/or their metabolites can have adverse effects on
human health, including endocrine disrupting properties [2] and
some of them were banned from the sunscreen products available
on the EU market. Current legislation allows around 30 compounds
to be used as UV filters in cosmetic products in the EU, with the
Table 1
Biomarkers proposed for WBE studies to assess human exposure to parabens.

Compound Biomarker 

Methylparaben (MeP) Methyl 3,4-dihydroxybenzoate (Methyl proto
Ethylparaben (EtP) Ethyl 3,4-dihydroxybenzoate (Ethyl protocate
n-Butylparaben (BuP) 3-Hydroxy-n-butylparaben (3-OH-BuP) 

iso-Butylparaben (iBuP) 2-Hydroxy-iso-butylparaben (2-OH-iBuP) 

a Sum of free and conjugated forms; b Study on 3 subjects (two males and one female
additional restrictions regarding their maximum allowed concen-
trations [46].

2.2.3. Potential WBE biomarkers
In HBM, exposure to UV filters is mostly assessed by the analysis

of parent compounds in urine (usually after enzymatic deconju-
gation) [47]. However, the number of HBM studies on UV filters
seems to be comparatively lower than for some other groups of
chemicals. Human pharmacokinetic studies are also relatively
scarce and, in some cases, only data from metabolism studies with
rats and/or in vitro studies are available. Among the most widely
used UV filters, data are available for Benzophenone-3 (Oxy-
benzone), Octisalate, Enzacamene, Octocrylene, Avobenzone and
Homosalate.

The metabolism of Benzophenone-3 (2-hydroxy-4-methoxy-
benzophenone; BP-3), probably the most widely used UV filter,
was mainly investigated in rats [48,49]. Two major metabolites –

2,4-dihydroxybenzophenone (DHB) and 2,20-dihydroxy-4-
methoxybenzophenone (DHMB) were identified in urine in their
free and conjugated forms and used as biomarkers of exposure to
BP-3 in HBM. However, data from several in vitro and HBM studies
with humans [50–52], suggest that excretion rate of DHMB might
be very low. Therefore, DHB seems to be better biomarker of
exposure to BP-3. It should be pointed out that these compounds,
known as BP-1 and BP-8, respectively, are also used as UV filters
themselves, however they are not allowed in cosmetic products
sold at EU market [46]. A novel oxidative metabolite of BP-3 – 2,5-
dihydroxy-4-methoxybenzophenone, was identified in a study
with rat and human liver microsomes [50]. However, to the best of
our knowledge, it has not been used in HBM so far. It is also
noteworthy that metabolism of BP-3 seems to be rather different in
different populations, depending both on age and ethnics [51].

Excretion rates of three most prominent oxidative metabolites
of Octisalate (2-ethylhexyl salicylate; EHS) were determined after
its oral administration [32]. Although the mean excretion rate of 2-
ethyl-5-hydroxyhexyl 2-hydroxybenzoate (0.28 %) was slightly
higher compared with 5-(((2-hydroxybenzoyl)oxy)methyl)hepta-
noic acid (0.24 %), the latter metabolite was detected with the
highest frequency (88 %) in subsequent HBM study [53]. This
discrepancy might be associated with the different pharmacoki-
netic profiles of EHS for different routes of exposure [54].

Two urinary metabolites were identified after dermal applica-
tion of Enzacamene (3-(4-methylbenzylidene)camphor) – 3-(4-
carboxybenzylidene)-6-hydroxycamphor (mostly in free form)
and 3-(4-carboxybenzylidene)camphor (predominately in glucu-
ronide form) [55]. Their excretion rates were lower than 0.5 %,
which could be a result of dermal route of exposure.

In an oral dosing study, three metabolites of Octocrylene (2-
ethylhexyl 2-cyano-3,3-diphenyl-2-acrylate; OC) were determined
[31]. The major metabolite, 2-cyano-3,3-diphenylacrylic acid
(CPAA), accounted for 45 % of the applied dose. However, this
metabolite might not be specific to OC, because other structurally
related compounds with CPAA moiety could also be metabolized to
CPAA. The remaining two metabolites, 2-(carboxymethyl)butyl 2-
cyano-3,3-diphenyl acrylate and 2-ethyl-5-hydroxyhexyl 2-cyano-
Excretion rate (%)a Ref.

catechuate; 3-OH-MeP) 0.1 (0.1‒0.25) [41]b

chuate; 3-OH-EtP) NA [42]c

5.8 (4.5–7.1) [41]b

15.8 (9.9–21.5) [41]b

) after a single oral dose; c HBM study.
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3,3-diphenyl acrylate (5�OH�OC), are highly specific for OC and
have been successfully determined in urine samples [45].
However, although very consistent, their excretion rates are much
lower, especially for 5�OH�OC (0.008 %), which could pose a
substantial analytical challenge related to their determination in
sewage.

Four metabolites of Avobenzone were recently identified [56].
However, their excretion rates are not available and, to the best of
our knowledge, only parent compound has been determined in
HBM studies so far [57].

Finally, it has been reported that Homosalate (3,3,5-trimethyl-
cyclohexyl 2-hydroxybenzoate) is rapidly metabolized to two
compounds – salicylic acid and trimethylcyclohexanol [58].
However, salicylic acid is used in medicine and in the production
of some other pharmaceuticals, and it is also a major metabolite of
acetylsalicylic acid, very popular over-the-counter drug. Therefore,
lack of specificity and contribution from other sources will most
probably prevent the use of salicylic acid as a biomarker of
exposure to Homosalate.

Table 2 summarizes the potential biomarkers of the most
popular UV filters which could be applied in future WBE studies.
However, the accurate assessment of exposure to several popular
UV filters is currently hindered by the lack of quantitative excretion
data. Therefore, additional human pharmacokinetic studies, which
would also include different routes of exposure, are needed.

2.3. Phthalates

2.3.1. Background
Phthalic acid diesters (phthalates) are plasticizers extensively

used in the production of polyvinyl chloride (PVC) and other
polymer materials for almost a century [59]. They can be found in
numerous products, including building materials, furniture, car
interiors, electric wires and cables, clothing, cosmetics, pharma-
ceuticals, food packages, pesticides, paints, lubricants, adhesives
and medical devices [19,59–61]. As phthalates are used as
additives (i.e. they are not chemically bound to polymers), they
are easily released into the environment by direct release,
migration, evaporation, leaching and abrasion [60].

2.3.2. Potential health risk
Due to their widespread use and continuous release from

different products, humans are ubiquitously exposed to these
compounds through ingestion, inhalation and dermal exposure
Table 2
Biomarkers proposed for WBE studies to assess human exposure to UV filters.

Compound Biomarker 

Benzophenone-3 (Oxybenzone; BP-3) 2,4-Dihydroxyben
2,5-Dihydroxy-4-

Octisalate
(2-ethylhexyl salicylate; EHS)

5-(((2-Hydroxybe
2-Ethyl-5-hydrox
2-Ethyl-5-oxohex

Enzacamene (3-(4-methylbenzylidene)camphor; 4-MBC) 3-(4-Carboxybenz

3-(4-Carboxybenz

Octocrylene (2-ethylhexyl 2-cyano-3,3-diphenyl-2-acrylate; OC) 2-Cyano-3,3-diph
2-(Carboxymethy
2-Ethyl-5-hydrox

Avobenzone
(butyl methoxydibenzoylmethane)

Desmethylhydrox
Hydroxy avobenz
Desmethylavoben
Dehydrated dihyd

Homosalate (3,3,5-trimethylcyclohexyl salicylate) 3,3,5-Trimethylcy

a Sum of free and conjugated forms; b Study on human and rat liver microsomes; c Study o
on 6 subjects (3 males and 3 females) after dermal application.
during their entire life, including intrauterine development, which
raise a lot of concern, due to their numerous adverse effects on
human health. Phthalates are well-known endocrine-disrupting
chemicals, but they also disturb the reproductive system and
sexual development of humans, especially males, and trigger
several disorders in children [3]. Consequently, European Com-
mission recently restricted maximal concentrations of four
prominent phthalates to 0.1 % by weight, either individually or
in any combination, in plasticized materials in the EU [62]. Some
“traditional” phthalates were previously banned from toys and
childcare articles. At the same time, di-(2-propylheptyl) phthalate
(DPHP) has been increasingly used in the last decade as a less toxic
alternative.

2.3.3. Potential WBE biomarkers
After entering the human body, phthalates are rapidly

metabolized (hydrolyzed) to monoesters, which can be oxidized
in a second step. Both monoesters and secondary metabolites can
be conjugated with glucuronic acid before excretion [6]. The extent
of oxidative modification depends on the chain length of the
phthalate monoester, with approximately 70 % of the short-chain
phthalates excreted as monoesters [63]. However, monoesters of
the long-chain phthalates are further metabolized to much greater
extent, yielding to formation of several oxidized metabolites
[3,60,64]. Furthermore, commercially available formulations of
diisononyl phthalate and diisodecyl phthalate are mixtures of
several structural isomers, resulting in formation of numerous
structurally similar metabolites, which are difficult to separate and
identify [59]. Nevertheless, metabolism of the most common
phthalates is generally well-studied [6] and many HBM studies
were conducted in the last decades [61].

Parent compounds are not good biomarkers of exposure to
phthalates even in HBM, due to their omnipresence, even in the
cleanest analytical laboratories, posing a great analytical challenge
for their accurate determination. For short-chain phthalates,
monoesters are usually used, although contamination is also
possible in this case [65], especially when using lipase-containing
matrices [66]. Yet, monoesters are considered to be good
biomarkers of exposure to short-chain phthalates when they are
determined in urine, although some studies suggest that oxidized
metabolites can be valuable additional biomarkers [65,66]. Due to
their low excretion rates, monoesters of long-chain phthalates are
rarely detected in HBM studies, which can lead to underestimation
of the human exposure to these substances if monoesters are used
Excretion rate (%)a Ref.

zophenone (DHB; BP-1) NA [52]b

methoxybenzophenone (5-OH-BP-3) NA [50]b

nzoyl)oxy)methyl)heptanoic acid (5-cx-EPS) 0.24 (0.14–0.41) [32]c

yhexyl 2-hydroxybenzoate (5-OH-EHS) 0.28 (0.13–0.54)
yl 2-hydroxybenzoate (5-oxo-EHS) 0.11 (0.06–0.20)
ylidene)-6-hydroxycamphor 0.4 � 0.15d

0.3 � 0.01e
[55]f

ylidene)camphor 0.1 � 0.02d

0.07 � 0.02e

enylacrylic acid (CPAA) 45 (40–50) [31]c

l)butyl 2-cyano-3,3-diphenyl acrylate (DOCCA) 0.13 (0.11–0.16)
yhexyl 2-cyano-3,3-diphenyl acrylate (5-OH-OC) 0.008 (0.005–0.011)
y avobenzone NA [56]
one
zone carboxylic acid
rohydroxy avobenzone
clohexanol NA [58]

n 3 male subjects after a single oral dose; d Male subjects; e Female subjects; f Study
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as biomarkers [60]. Thus, secondary (oxidized) metabolites are
generally preferred for the long-chain phthalates, not only due to
the higher excretion rates [63,64], but also due to their longer half-
lives, better reflecting long-term exposure to these substances
[67].

Biomarkers of the most prominent phthalates, including those
already used in WBE studies [19–22], are given in Table 3. It is
noteworthy that rather different excretion profiles of some
compounds, such as DPHP, were reported [68,69] and, in these
cases, additional pharmacokinetic studies are also recommended.

2.4. Alternative plasticizers

2.4.1. Background
Due to their adverse effects on human health, many “tradition-

al” phthalates have been gradually replaced by several alternative
plasticizers, including DPHP, di-2-ethylhexyl adipate (DEHA), di(2-
ethylhexyl) terephthalate (DEHTP) and di(isononyl)cyclohexane-
1,2-dicarboxylate (DINCH). DEHA and DEHTP are mostly used as
Table 3
Biomarkers used/proposed for WBE studies to assess human exposure to phthalates.

Compound Biomarker 

Dimethyl phthalate (DMP) Monomethyl phthalate (M
Diethyl phthalate (DEP) Monoethyl phthalate (ME
Di-n-butylphthalate (DnBP) Mono-n-butyl phthalate (

3-Hydroxy-mono-n-buty
Di-iso-butylphthalate (DiBP) Mono-iso-butyl phthalate

2-Hydroxy-mono-iso-bu
Benzyl butyl phthalate (BzBP) Monobenzyl phthalate (M

Mono-n-butyl phthalate
Di(2-ethylhexyl) phthalate (DEHP) Mono-2-ethylhexyl phtha

Mono-(2-ethyl-5-hydroxy

Mono-(2-ethyl-5-oxohexy

Mono-(2-ethyl-5-carboxy

Mono-[2-(carboxymethy

Dicyclohexyl phthalate Monocyclohexyl phthalate
Di-n-octyl phthalate (DnOP) Monooctyl phthalate (M

Mono(3-carboxypropyl) p
Di-iso-nonyl phthalate (DiNP) (mixture of isomers) Mono-iso-nonyl phthalate

Mono-(4-methyl-7-hydr

Mono-(4-methyl-7-oxo-o

Mono-(4-methyl-7-carbo

Di-iso-decyl phthalate (DiDP) (mixture of isomers) Mono-iso-decyl phthalate
Monocarboxyisononyl ph
Monooxoisodecyl phthal
Monohydroxyisodecyl ph

Di(2-propylheptyl) phthalate (DPHP) Mono-2-(propyl-6-hydro

Mono-2-(propyl-6-oxohe

Mono-2-(propyl-6-carbo

Note: biomarkers already used in WBE studies are written in italic.
a Sum of free and conjugated forms; b Study on 8 subjects after a single oral dose (high or lo
by González-Mariño et al. [19] due to the unsatisfying instrumental performance; e Study
20 subjects (10 male and 10 female) after a single oral dose (high or low) ; g Excluded fr
instrumental blanks; h Semi-quantitative estimation; i HBM and WBE study; jHBM study
single oral dose.
substitutes for di(2-ethylhexyl) phthalate (DEHP), while DINCH is
an alternative to high-molecular weight phthalates.

2.4.2. Potential health risks
Alternative plasticizers are considered to be less toxic than

traditional phthalates, although the comprehensive data on their
toxicity and possible adverse effects are still missing [75].

2.4.3. Potential WBE biomarkers
In the human body, DEHA is hydrolyzed to mono-2-ethylhexyl

adipate (MEHA). MEHA can be further transformed into non-
specific metabolites, mostly adipic acid. Two additional oxidative
metabolites were identified in in vitro studies and proposed, in
addition to MEHA, as specific human biomarkers of exposure to
DEHA. However, their excretion rates seem to be low and the
preliminary results suggested that their application may be limited
to the highly exposed populations [76]. Indeed, a very recent
pharmacokinetic study reported mean urinary excretion rates of
three oxidized metabolites in humans between 0.05 % and 0.20 %
Excretion rate (%)a Ref.

MP) NA [61]
P) NA [61]
MnBP) 69 [63]b

84.2 [65]c

l phthalate (3OH-MnBP) 6.9 [65]c

 (MiBP) 70.7 [65]c

tyl phthalate (2OH-MiBP) 19.5 [65]c

BzP) 73 [63]b

 (MBP) 6
late (MEHP)d 6.3 � 2.0 [70]f

7.3 [71]c

5.9 [67]e

hexyl) phthalate (5OH-MEHP; MEHHP) 15.6 � 3.2 [70]f

24.7 [71]c

23.3 [67]e

l) phthalate (5oxo-MEHP; MEOHP) 11.3 � 2.7 [70]f

14.9 [71]c

15.0 [67]e

pentyl) phthalate (5cx-MEPP; MECCP)g 13.9 � 3.5 [70]f

21.9 [67]c

18.5 [67]e

l)hexyl] phthalate (2cx-MMHP) 5.4h [67]c

4.2h [67]e

 (MCHP) NA [21]i

nOP) 13 [63]b

hthalate (MCPP) NA [21]i

 (MiNP) 3.1 � 1.0 [70]f

2.2 [72]c

oxy-octyl) phthalate (7OH-MMeOP) 12.3 � 3.2 [70]f

20.2 [73]c

ctyl) phthalate (7oxo-MMeOP) 6.6 � 1.8 [70]f

10.6 [73]c

xyheptyl) phthalate (7cx-MMEHP) 10.9 � 3.1 [70]f

10.7 [73]c

 (MiDP) NA [74]j

thalate (MCiNP) NA
ate (MOiDP) NA
thalate (MHiDP) NA
xy-heptyl) phthalate (OH-MPHP) 10.7 � 3.6 [68]k

2.3 � 1.3 [69]l

ptyl) phthalate (oxo-MPHP) 13.5 � 4.0 [68]k

3.6 � 2.0 [69]l

xy-hexyl) phthalate (cx-MPHxP) 0.48 � 0.13 [68]k

0.12 � 0.07 [69]l

w); c Study on 1 male subject after a single oral dose; d Excluded from the WBE study
 on 1 male subject after a single oral dose (high, medium and low) (24 h); f Study on
om the WBE study by González-Mariño et al. [22] due to the repeated detection in
; k Study on 5 male subjects after a single oral dose; l Study on 6 male subjects after a
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[33]. Among them, mono-5-carboxy-2-ethylpentyl adipate seems
to be the most suitable biomarker of exposure to DEHA in HBM,
which was confirmed by the pilot HBM study [77]. Another recent
study reported high detection frequency of mono-(2-ethyl-5-
oxohexyl) adipate [78]. However, concentrations of all oxidized
metabolites were low already in urine, which could hamper their
use in WBE due to the sensitivity limitations.

In a recent pharmacokinetic study, 1-mono-(2-ethyl-5-carbox-
yl-pentyl) terephthalate was found to be the most prominent
biomarker of exposure to DEHTP, with the excretion rate of 13 %
[79]. This was confirmed by its detection frequency of 100 % in a
subsequent HBM study [80]. Other DEHTP metabolites are also
analogous to metabolites of DEHP, but their excretion rates seem to
be much lower, although in a recent HBM study, concentrations of
mono-(2-ethyl-5-hydroxyhexyl) terephthalate up to 266 mg L�1

were determined [78]. It remains to be seen if the levels of these
biomarkers in sewage would be high enough to allow their use in
WBE studies as well.

Human metabolism of DINCH is very extensive and complex.
Cyclohexane-1,2-dicarboxylic acid is a major, but non-specific
metabolite, while only 2 % or less is excreted as a simple monoester
(monoisononyl-cyclohexane-1,2-dicarboxylate; MINCH). Other
metabolites, formed by oxidation, are more promising as DINCH
biomarkers, especially cyclohexane-1,2-dicarboxylate-mono-(7-
hydroxy-4-methyl) octyl ester (OH-MINCH), with the average
excretion rate of 10.7 % and 14.5 %, depending on the study,
followed by cyclohexane-1,2-dicarboxylic mono oxoisononyl ester
and cyclohexane-1,2-diarboxylic mono carboxyisononyl ester
[81,82]. These metabolites were detected in the urine samples
[82,83], however their distribution did not fully reflect the human
excretion profiles. The authors of one of the studies pointed out
that back-calculation from individual spot urine samples is likely
unreliable to determine individual exposure, but could be used on
a population scale [82]. In another study, the detection frequency
of OH-MINCH was much lower (8 %), even below the detection
frequency of MINCH (17 %) [78]. Nine additional DINCH
metabolites were recently identified after its oral administration
[84]. Some of the side chain breakdown products, with the
excretion rates up to 2.7 %, might be suitable additional biomarkers
of exposure to DINCH in HBM, and possibly also in WBE studies.

The most promising candidates for WBE biomarkers of human
exposure to DEHA, DEHTP and DINCH, identified in the pharma-
cokinetic and HBM studies, are listed in Table 4.
Table 4
Biomarkers proposed for WBE studies to assess human exposure to some alternative p

Compound Biomarker 

Di-2-ethylhexyl adipate (DEHA) Mono-2-ethylhexyl adipate (MEHA
Mono-5-carboxy-2-ethylpentyl adip
Mono-2-ethylhydroxyhexyl adipate
Mono-(2-ethyl-5-oxohexyl) adipate

Di(2-ethylhexyl) terephthalate (DEHTP) 1-Mono-(2-ethyl-5-carboxyl-pentyl
1-Mono-(2-ethyl-5-hydroxy-hexyl)
1-Mono-(2-ethyl-5-oxo-hexyl) tere
1-Mono-(2-carboxyl-methyl-hexyl)

Di(isononyl)cyclohexane-1,2-dicarboxy
late (DINCH)

Cyclohexane-1,2-dicarboxylate-mon
ester (OH-MINCH)
Cyclohexane-1,2-dicarboxylic mono

Cyclohexane-1,2-diarboxylic mono 

Monoisononyl-cyclohexane-1,2-dica

Cyclohexane-1,2-dicarboxylic acid m
Cyclohexane-1,2-dicarboxylic acid m
Cyclohexanol-1,2-dicarboxylic acid 

a Sum of free and conjugated forms; b HBM study; c Study on 4 subjects (2 males and 2 fe
Study on 6 subjects (3 males and 3 females) after a single oral dose.
2.5. Phosphorous flame retardants/plasticizers

2.5.1. Background
Flame retardants are chemicals added to polymers both to

prevent combustion and to delay the spread of fire after ignition
[4]. They have been used for more than 50 years in different
products, including furniture, textiles, floor polish, resins, paints,
electronics, PVC plastics, food packaging, lubricants and hydraulic
fluids [8]. Chemically, flame retardants belong to different groups,
some of which, such as polybrominated compounds, were either
banned or their use has been greatly restricted due to their
persistency, bioaccumulation and/or toxicity. Many of these
harmful substances have been gradually replaced by PFRs, which
are very diverse chemicals, with different physico-chemical
properties [4]. They can be both organic and inorganic. Moreover,
although some of them can be chemically bounded to the
polymers, they are mainly mixed into the polymer as additives,
which facilitate their release into the environment [8]. Halogenat-
ed PFRs are used as flame retardants, while nonhalogenated PFRs
are mostly used as plasticizers.

2.5.2. Potential health risks
Although introduced as less persistent and toxic alternative to

other groups of flame retardants, some PFRs are also suspected to
have several adverse effects on human health, including carcino-
genicity and reproductive system alterations [4].

2.5.3. Potential WBE biomarkers
in vitro studies with human liver microsomes showed that the

major PFRs metabolites are formed by oxidative dealkylation/
dearylation and hydroxylation [85–90]. These qualitative studies
identified metabolites of the most prominent PFRs, however their
urinary excretion rates are still largely unknown, with the
exception of tris(2-butoxyethyl) phosphate (TBOEP), which excre-
tion profile was determined after its oral administration [30].
Nevertheless, PFRs metabolites have been successfully used as
biomarkers in HBM. After monitoring major metabolites of 6 PFRs,
Dodson et al. proposed the most suitable biomarkers for future
HBM studies [91].

Regarding metabolism of specific PFRs, some points should be
highlighted. For instance, diphenyl phosphate (DPhP) is a
metabolite of both triphenyl phosphate (TPhP) and 2-ethyl-
hexyldiphenyl phosphate (EHDPhP), but its formation rate in
lasticizers.

Excretion rate (%)a Ref.

) NA [76]b

ate (5cx-MEPA) 0.20 (0.17–0.24) [33]c

 (5OH-MEHA) 0.07 (0.03–0.10)
 (5oxo-MEHA) 0.05 (0.01–0.06)
) terephtahalate (5cx-MEPTP) 13.0 (7.0–20.4) [79]d

 terephtahalate (5OH-MEHTP) 1.8 (1.3–2.4)
phtahalate (5oxo-MEHTP) 1.0 (0.57–1.6)

 terephtahalate (2cx-MEHTP) 0.28 (0.17–0.42)
o-(7-hydroxy-4-methyl) octyl 10.7 (7.7–12.9) [81]d

14.5 (9.2–17.6) [82]e

 oxoisononyl ester (oxo-MINCH) 2.0 (1.5–2.6) [81]d

4.8 (2.9�7.5) [82]e

carboxyisononyl ester (cx-MINCH) 2.0 (1.8–2.3) [81]d

4.0 (2.8–5.0) [82]e

rboxylate (MINCH) 0.72 (0.31–1.3) [81]d

2.0 (0.8–3.2) [82]e

ono carboxyhexyl ester (MCHxCH) 2.71 � 0.34 [84]d

ono carboxybutylester (MCBCH) 1.07 � 0.16 [84]d

mono carboxyoctyl ester (MCHeCH) 0.96 � 0.26 [84]d

males) after a single oral dose; d Study on 3 male subjects after a single oral dose; e
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serum is substantially higher for TPhP compared with EHDPhP
[92]. However, DPhP can also be formed from other aryl PFRs, such
as resorcinol bis-diphenylphosphate [90], and, therefore, it should
be used as a biomarker of exposure to all aryl PFRs rather than to
TPhP alone, while hydroxylated metabolites can be used as specific
biomarkers of exposure to TPhP [93]. However, due to their higher
detection limits, hydroxylated metabolites could not be detected in
a pilot HBM study conducted by Bastiansen et al. [93]. Conse-
quently, despite the limitations discussed above, DPhP is usually
included in HBM studies as a biomarker of exposure to TPhP
[91,94]. Similarly, di-n-butyl phosphate (DNBP) is not specific
metabolite of tri-n-butyl phosphate [91]. Furthermore, besides
being metabolites of PFRs, both DBNP and DPhP are also used in
some industrial processes and products [95,96].

Bis(2-butoxyethyl) 2-hydroxyethyl phosphate (BBOEHEP)
seems to be more promising biomarker of exposure to TBOEP
than bis(2-butoxyethyl) phosphate (BBOEP), not only due to the
much higher excretion rate of BBOEHEP, but also due to the long
half time of BBOEP, which might also explain rather high
discrepancy between excretion rates and concentrations of these
two metabolites determined within the same study [30]. In fact, in
some HBM studies, concentrations of all three TBOEP metabolites
were found to be similar [94], although their excretion rates are
very different [30].

Beside bis(2-chloroethyl) phosphate, parent compound is also
recommended to be used for tris(2-chloroethyl) phosphate
biomonitoring, due to the its low clearance from the human body
[85,91]. Biomarkers of the most prominent PFRs for WBE
applications are listed in Table 5. Most of them have been already
used in three WBE studies conducted so far [8,23,24].

2.6. Bisphenols

2.6.1. Background
Bisphenols are a large group of compounds containing phenol

rings joined together by a bridging atom, mostly carbon [97]. They
are used in the production of polycarbonate plastic and epoxy
resins, which are then used in a variety of industrial and consumer
products, such as food and beverage containers, drinking bottles,
thermal papers and dental sealant and composites [98,99]. Among
different bisphenols, BPA has been the most widely used for
decades.
Table 5
Biomarkers used/proposed for WBE studies to assess human exposure to PFRs.

Compound Biomarker 

Triphenyl phosphate (TPhP) Diphenyl phosphate (DPhP)a

4-Hydroxyphenyl phenyl phosp
4-Hydroxyphenyl diphenyl phos
3-Hydroxyphenyl diphenyl ph

2-Ethylhexyldiphenyl phosphate (EHDPhP) 2-Ethylhexyl phenyl phosphate 

2-Ethyl-5-hydroxyhexyl dipheny
Diphenyl phosphate (DPhP)a

Tris(2-butoxyethyl) phosphate (TBOEP) Bis(2-butoxyethyl) 2-hydroxyeth
Bis(2-butoxyethyl) phosphate (B
Bis(2-butoxyethyl) 30-hydroxy-2

Tri-n-butyl phosphate (TNBP) Di-n-butyl phosphate (DNBP)a

Tris(2-chloroethyl) phosphate (TCEP) Tris(2-chloroethyl) phosphate (T
Bis(2-chloroethyl) phosphate (B

Tris(2-chloroisopropyl) phosphate (TCIPP) 1-Hydroxy-2-propyl bis(1-chlor
Bis(1-chloro-2-propyl) phospha

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) Bis(1,3-dichloro-2-propyl) phos

Note: biomarkers already used in WBE studies are written in italic.
a Non-specific metabolite; b Excluded from the WBE study by Been et al. [8] due to the un
subjects (3 male and 3 females) after a single oral dose; f Excluded from the explorato
2.6.2. Potential health risks
Many concerns have been raised in recent years due to

estrogenic properties of BPA, which may cause different adverse
effect in humans, especially children [5]. Consequently, BPA was
banned from numerous consumer products and in many cases
gradually replaced with analog bisphenols [97]. However, recent
studies show that these analog compounds, structurally similar to
BPA, can have similar or even higher toxicity compared with BPA
[99].

2.6.3. Potential WBE biomarkers
In humans, BPA is rapidly conjugated and excreted, mostly as

glucuronide (BPA-Glu). In fact, BPA-Glu was the only metabolite
identified in an oral dosing study with 6 volunteers [100]. In a
similar, more recent study with 14 subjects, both BPA-Glu and BPA-
sulfate (BPA-SO4) were determined, with the urinary excretion
rates of 87 % and 3 %, respectively [101], which is in accordance
with some HBM data [102]. However, percentages of BPA excretion
products determined in other HBM studies were quite different.
For instance, Liao and Kannan [103] reported the average
percentage of BPA-Glu of only 57 %, while percentage of BPA-
SO4 in a study by Ye et al. was as high as 21 % [98]. However, as
already pointed out (Subsection 2.1.), glucuronides are not suitable
biomarkers in WBE studies and, thus, BPA-SO4 seems to be the only
promising WBE biomarker of exposure to BPA [25].

Human metabolism data for other bisphenols are very scarce
and, if exist, they mostly involve in vitro studies. However,
glucuronidation seems to be the main metabolic pathway as well
[97].

3. WBE studies for the assessment of human exposure to
environmental contaminants

So far, quantitative WBE studies for the assessment of human
exposure to environmental contaminants included in this paper
have been conducted only for phthalates [19–22], PFRs [8,23,24]
and BPA [25]. All these studies used metabolites of the selected
compounds as biomarkers of exposure, and most of them also
investigated their stability in sewage, which is a key feature of
potential WBE biomarkers. Recently, a qualitative WBE study on
biomarkers of selected UV filters was conducted as well [34]. In
addition, some other studies also reported per capita
Excretion rate (%) Reference

NA [8,23]c

[91,93]dhate (HO-DPhP)
phate (4-HO-TPhP)b

osphate (3-HO-TPhP)
(EHPHP) NA [8,23]c

[91,93]dl phosphate (5-HO-EHDPhP)

yl phosphate (BBOEHEP) 8.4 (2.1–21.5) [30]e

[8,23]cBOEP) 0.78 (0.62–1.01)
-butoxyethyl phosphate (3-HO-TBOEP) 0.02 (0‒0.03)

NA [91,93]d

CEP) NA [8,23,24]c

[91,93]dCEP)a

o-2-propyl) phosphate (BCIPHIPP) NA [8,23,24]c

[91,93]dte (BCIPP)f

phate (BDCIPP) NA [23,24]c

[91,93]d

satisfying instrumental performance; c WBE studies; d HBM studies; e Study with 6
ry WBE study by Been et al. [8], but used in the subsequent WBE study [23].



Table 6
Overview of the analytical methods used for the determination of human biomarkers of parabens, UV filters, phthalates, PFRs and BPA in WBE and similar studies.

Compounds Sample
type

Sample
extraction

Recovery/
trueness

MQL Method Separation (LC/GC
column and LC
eluents)

MS detection
(spectrometer type,
ionization, operating
mode)

Ref.

Parabens and their
metabolites

RW, PE
and SE

SPE: Oasis MCX 70–105 % 0.1–100 ng/L HPLC-MS/MS
(quantitative)

Pinnacle DBAQ C18
(50 mm � 2.1 mm;
1.9 mm)
Eluent A: 0.1 %
formic acid
Eluent B: MeOH

QTRAP
ESI-
MRM

[104]

SPM and
sludge

Solid-liquid
extraction + SPE

52–109 % 0.1–100 ng/g

Parabens and their
metabolites

RW and
SE

SPE: Oasis MCX 74–102 % 0.1–50 mg/L HPLC-MS/MS
(quantitative)

Zorbax SB-Aq
(150 mm � 2.1 mm;
3.5 mm)
Eluent A: 0.1 %
formic acid
Eluent B: MeOH

QqQ
ESI-
MRM

[105]

SPM and
sludge

Solid-liquid
extraction + SPE

64–104 %

Parabens (+ other
personal care
products)

RW, SE
and river
water

SPE: Oasis HLB River water: 70–
91 % (parabens)

0.38–0.84 ng/L
(parabens)

UHPLC-MS/MS
(quantitative)

Xbridge BEH-C18 XP
(100 mm � 2.1 mm;
2.5 mm)
Eluent A: 5 mM
NH4OH
Eluent B: ACN +
5 mM NH4OH

ESI-
MRM

[106]

UV filters (including BP-
1)

RW ‒ 67–130 % 0.13–0.55 mg/L HPLC-MS/MS
(quantitative)

Kinetex biphenyl
(50 mm � 2.1 mm;
2.6 mm)
Eluent A: MeOH/0.2
% NH4F (5/95)
Eluent B: MeOH/
H2O (95/5)

QTRAP
ESI+
MRM

[109]

Benzophenons and
their
derivatives + bisphenols

RW, SE,
SPM and
sludge

SPE: Oasis MCX 60–88 %
(benzophenons)
52–85 %
(bisphenols)

0.1–0.8 mg/L
(benzophenons)
0.2–1.8 mg/L
(bisphenols)

HPLC-MS/MS
(quantitative)

Betasil C18
(100 mm x 2.1 mm;
5 mm)
Eluent A: 1 % NH4OH
Eluent B: MeOH

QqQ
ESI-, ESI+
MRM

[108]

Benzophenons and
their derivatives

RW, PE
and SE

SPE: Oasis MCX 81–122 % 0.25–0.5 ng/L HPLC-MS/MS
(quantitative)

Betasil C18
(100 mm x 2.1 mm;
5 mm)
Eluent A: H2O
Eluent B: MeOH

QTRAP
ESI-
MRM

[107]

SPM and
sludge

Solid-liquid
extraction + SPE

SPM: 99–108 %
Sludge: 84–105
%

0.25–0.5 ng/g

UV filters and their
metabolites

RW,
urine

SPE: Oasis MCX
and MAX

86–107 % (UV
filters)

0.009–0.95 ng/L
(UV filters)

HPLC-MS/MS
(qualitative/
quantitative)

Acquity BEH C18
(50 mm x 2.1 mm;
1.7 mm)
Eluent A: 1 mM
NH4F
Eluent B: MeOH

Q-ToF
ESI+, ESI-
bbCID

[34]

Metabolites of
phthalates

RW, SE SPE: Oasis HLB RW: 76–100 % RW: 0.5–32 ng/L
SE: 0.5–31 ng/L

HPLC-MS/MS
(quantitative)

Luna Phenyl-Hexyl
(150 mm � 2 mm;
3 mm)
Eluent A: 0.1 % acetic
acid
Eluent B: MeOH +
0.1 % acetic acid

QqQ
ESI-
MRM

[19,22]

Metabolites of
phthalates

RW, SE SPE: Oasis HLB Ultrapure
water: 98–111 %

1–10 ng/L UHPLC-MS/MS
(quantitative)

Gemini C18
(100 mm � 2 mm;
3 mm)
Eluent A: 0.1 % acetic
acid
Eluent B: MeOH

QqQ
ESI-
MRM

[20]

Metabolites of
phthalates

RW,
urine

SPE: Supelco-
Select HLB

64–98 % (RW) 0.0032–1.9 mg/L
(RW)

UHPLC-MS/MS
(quantitative)

Kinetex F5
Eluent A: 99 % H2O, 1
% MeOH, 0.1 % acetic
acid
Eluent B: 95 %
MeOH, 5 % H2O, 0.1 %
acetic acid

QTRAP
ESI-
MRM

[21]

Metabolites of PFRs RW SPE: Bond-Elut
C18

31–100 % 0.8–65 ng/L HPLC-MS/MS
(quantitative)

Kinetex Biphenyl
(100 mm x 2.1 mm;
2.6 mm)
Eluent A: H2O + 2 %
MeOH +5 mM
CH3COONH4

Eluent B: MeOH + 2
% H2O +5 mM
CH3COONH4

QqQ
ESI+, ESI-
MRM

[8,23]

Metabolites of
chlorinated PFRs

RW SPE: Oasis WAX 90–100 % 4–15 ng/L GC-MS
(quantitative;

[24]
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Table 6 (Continued)

Compounds Sample
type

Sample
extraction

Recovery/
trueness

MQL Method Separation (LC/GC
column and LC
eluents)

MS detection
(spectrometer type,
ionization, operating
mode)

Ref.

derivatization
with MTBSTFA)

HP-5MS
(30 m � 0.25 mm;
0.25 mm)

Q-ToF
EI
single MS

PFRs RW SPE: Oasis MCX 50‒112 % 0.03‒3 mg/L GC-MS
(quantitative)

BPX5
(25 m x 0.22 mm;
0.25 mm)

EI
SIM

[111]

PFRs RW, PE
and SE

SPE: Oasis HLB 86‒110 % 1‒1000 ng/L HPLC-MS/MS
(quantitative)

Luna C18

(150 mm � 4.6 mm;
3 mm)
Eluent A: MeOH/
H2O (1/9) + 0.15 %
formic acid
Eluent B: MeOH +
0.2 % formic acid

QqQ
ESI+, ESI-
MRM

[110]

SPM ASE 84‒109 % 0.05‒10 ng/g
Sludge
and ash

UAE Sludge: 83–97 %
Ash: 86‒101 %

0.05‒10 ng/g

BPA-SO4 RW SPE: Oasis HLB 64 % 5.5 ng/L UHPLC-MS/MS
(quantitative)

BEH C18
(50 mm � 2.1 mm,
1.7 mm)
Eluent A: 1 mM
NH4F
Eluent B: MeOH

Q-ToF
ESI+, ESI-
Full scan + bbCID

[25]
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environmental emission of specific environmental contaminants,
such as parabens [104–106], UV filters [107–109], PFRs [110,111]
and bisphenols [112], and, in few cases, some metabolites were
also included. However, many of these studies were more focused
on their occurrence and behavior during wastewater treatment,
rather than on application of the WBE concept. Furthermore, none
of them investigated stability of biomarkers in sewage. Neverthe-
less, these studies provide information that might be relevant for
future WBE applications, including analytical methods perfor-
mance, concentrations levels and partitioning behavior of poten-
tial biomarkers in wastewater and, therefore, are also briefly
discussed in the following subsections.

3.1. Analytical methods

An overview of the analytical methodologies used in WBE or
similar studies which reported environmental emission of
selected compounds is presented in Table 6. Except for two
GC��MS methods for PFRs [24,111], all other methods were based
on LC��MS/MS, which is nowadays the most common technique
for the analysis of polar environmental contaminants. In most of
these methods, electrospray ionization (ESI) and multiple
reaction monitoring (MRM) mode on triple quadrupole (QqQ)
or quadrupole-ion trap (QTRAP) mass spectrometers were
employed for the detection and quantification of the target
compounds. Parabens and their metabolites [104–106], as well as
phthalate monoesters [19–22], were analyzed exclusively in
negative ionization polarity, while compounds belonging to other
groups were analyzed both in positive and negative polarity,
depending on their characteristics. In two studies, quadrupole-
time-of-flight (Q-ToF) mass spectrometers, applying data inde-
pendent broadband collision-induced dissociation (bbCID) mode,
were also used [25,34]. Q-ToF was also employed in a GC��MS
method for determination of chlorinated PFRs after derivatization
with silylating reagent [24]. In this method, electron ionization
(EI) and single MS mode were used, while selected ion monitoring
(SIM) mode was applied in another GC��MS method for PFRs
determination [111].

Except for one method on UV filters, which employed direct
injection [109], all other methods included sample treatment step
using solid-phase extraction (SPE), which is nowadays the most
frequently used technique for the extraction of polar organic
contaminants from water samples. Polymeric reversed-phase and
mixed-mode strong cation-exchange sorbents (Oasis HLB and
MCX, respectively) were used in most methods, however other
types of sorbents, including mixed-mode strong and weak anion-
exchange sorbents (Oasis MAX [34] and WAX [24], respectively), as
well as hydrophobic, endcapped silica phase (Bond-Elut C18)
[8,23], were also employed.

WBE methods were generally focused only on the dissolved
fraction of wastewater. However, some related studies on parabens
and benzophenones also included the analysis of suspended
particulate matter (SPM) and sludge, which were extracted by
solid-liquid extraction followed by SPE [104,105,107]. Parent PFRs
were also analyzed in SPM and sludge [110], but, in these cases,
other extraction techniques were employed (Table 6).

The most important method performance parameters, such as
recovery/trueness and method quantification limits (MQLs) are
reported in Table 6. In general, MQLs were rather different – from
low ng/L up to low mg/L level.

3.2. Main findings

3.2.1. Parabens
The first WBE study on parabens is yet to be conducted.

Although human exposure to parabens by wastewater analysis
was recently assessed in China [106], this study is less relevant for
the WBE approach, because parent parabens were used as
biomarkers. Two other studies determined environmental
emission of parabens and their metabolites from wastewater
treatment plants (WWTPs) in the United States and India
[104,105]. Both studies included 3�OH-MeP and 3�OH-EtP,
potential WBE biomarkers of exposure to MeP and EtP,
respectively (Table 1), and their concentrations were up to
several hundred ng/L in raw wastewater (RW) [104,105]. In fact,
taking into account that urine constitutes approximately 1 % of
the total wastewater volume [113], median concentrations of both
biomarkers in RW of two WWTPs in Albany (United States) [104]
(128 and 66 ng/L for 3�OH-MeP and 78 and 32 ng/L for 3�OH-EtP,
respectively) were in a good agreement with their median
concentrations determined in HBM study in the same area (11.8
and 2.9 mg/L for 3�OH-MeP and 3�OH-EtP, respectively) [42],
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indicating their potential in the WBE approach. Similar as in a
HBM study [42], their mass loads in RW were comparable or even
higher than the mass loads of parent parabens. These studies also
highlighted the possible importance of analytes incorporated into
the SPM. For instance, although average fractions of 3�OH-MeP
and 3�OH-EtP adsorbed to SPM were rather low (1–2 % of their
total amounts in RW), in some individual samples this fraction
reached 15 % and 14 % for 3�OH-MeP and 3�OH-EtP, respectively
[89]. Therefore, possible contribution of analytes incorporated
into the SPM should be considered in future WBE studies on
parabens.

3.2.2. UV filters
With the exception of one exploratory study [34], the WBE

approach has not been applied to assess human exposure to UV
filters so far, although some recent studies reported their per capita
loads in RW. For instance, 7 UV filters were determined in influent
of 36 Australian WWTPs [109]. Mass loadings of some benzophe-
nones were also determined in WWTPs in India [108] and the
United States [107]. Although these studies were focused on parent
UV filters, they included BP-1 (DHB) and BP-8 (DHMB), which are
also metabolites of BP-3. Concentrations of BP-1, potential WBE
biomarker of BP-3 (Table 2), were rather similar in India and the
United States (up to approximately 120 ng/L), while higher levels
were determined in Australian influents (up to 600 ng/L). In their
study, Wang and Kannan [107] highlighted the importance of SPM
for the overall mass loads of some compounds in wastewater.
However, average fraction of the total loads of BP-1 adsorbed to
influent SPM was very low (<1 %).

In a recent exploratory study, a novel analytical framework
(“wastewater fingerprinting assay”), based on suspect screening by
high resolution MS, was applied for the identification of human
biomarkers of several UV filters in urine and wastewater in the UK.
With this approach, metabolites of BP-3, EHS and Homosalate were
identified in wastewater. However, in the case of Homosalate,
unspecific metabolite, salicylic acid, was determined [34].

3.2.3. Phthalates and alternative plasticizers
So far, WBE has not been applied to investigate human exposure

to alternative plasticizers, while four WBE studies investigated
exposure to traditional phthalates – two in Spain [19], one in China
[20] and one in Australia [21]. In all these studies, exposure to
short-chain phthalates were calculated from the loads of phthalate
monoesters, which were regularly detected (>99 %) in RW, up to
low mg/L level. Secondary (oxidized) metabolites were mostly used
to assess the exposure to DEHP, but their concentrations and mass
loads were generally lower [19–22]. Stability experiments,
performed in the exploratory study by Gonzalez-Mariño et al.,
confirmed that most of the investigated biomarkers are fairly
stable in RW at pH 2 and room temperature for at least 48 h [19].
However, recent study by Tang et al., which also included the
parallel analysis of phthalate biomarkers in urine samples from
individuals, showed that the human excretion might not be their
major source in wastewater. In fact, the contribution of human
excretion was lower than 25 % for biomarkers of short-chained
phthalates and only 0.33 % for monomethyl phthalate (MMP),
biomarker of dimethyl phthalate [21]. Similar findings for MMP,
but not for other phthalate biomarkers, were obtained in another
recent study, which assessed exposure to phthalates in 13 Spanish
cities [22]. Therefore, further validation of WBE approach is
advised [19,21,22], including identification of the additional
sources of phthalate biomarkers and stability studies in real
sewers. This would be important to verify the findings of WBE
studies, which suggested that exposure to several phthalates might
be higher than the safe reference values, especially for toddlers and
children [19,20,22].
3.2.4. Phosphorous flame retardants/plasticizers
A first exploratory WBE study on PFRs was conducted in

Belgium, using the same biomarkers which were previously used
in HBM studies. With the exception of few compounds for which
instrumental performance was not satisfying, the preliminary
results suggested that PFRs metabolites are good WBE biomarkers
of exposure to PFRs – they are fairly stable and not extensively
formed from the parent PFRs in wastewater [8]. During the method
development, possible contribution of conjugates was investigated
by enzymatic deconjugation experiments, however it was con-
cluded that this step can be omitted. Overall, almost all selected
compounds could be determined in RW samples from 4 cities, with
the concentrations ranging from few ng/L to 1 mg/L. The promising
results were also obtained in a follow-up study in 5 European
cities, which included few additional biomarkers. However, the
WBE-based assessment of exposure to PFRs in this study seem to
be comparatively higher than expected from HBM, which might be
related to different factors, including other excretion routes
(especially feces), additional sources in wastewater and/or
degradation of parent compounds in real sewage systems [23].

A novel analytical method was recently developed for the
determination of biomarkers of three chlorinated PFRs in
wastewater applying the WBE approach. Stability tests confirmed
suitability of the investigated biomarkers for WBE studies [24],
however only biomarker of exposure to tris(chloropropyl) phos-
phate could be detected in real RW samples, with concentrations
around 60 ng/L.

Some other studies also investigated environmental emission of
PFRs by wastewater analysis, however mostly parent PFRs were
included [110,111]. Yet, 2 PFRs metabolites, namely DPhP and bis
(1,3-dichloro-2-propyl) phosphate, were included in one of the
studies, which indicated the possible importance of PFRs
biomarkers incorporated into the SPM. For instance, 18 % of the
total DPhP mass loads in RW was adsorbed to SPM [110].

3.2.5. Bisphenols
In a very recent exploratory WBE study, BPA-SO4 was

successfully used as a biomarker of exposure to BPA [25]. The
authors used two different excretion factors (8.4 and 3 %) to
estimate human exposure to BPA, highlighting the conflicting
results of the previous studies. Total concentrations of BPA-SO4 in
RW were rather high, ranging from 0.7–121 mg/L, with only minor
fraction (<7 %) adsorbed onto SPM. Stability tests confirmed that
BPA-SO4 is a suitable biomarker of exposure to BPA, however the
authors pointed out that additional studies are needed to obtain a
more robust correction factor for BPA intake calculation.

3.3. Discussion and outlook

Pioneer quantitative studies exploring the applicability of the
WBE approach for the assessment of human exposure to
environmental contaminants selected in this review focused on
phthalates, PFRs and BPA. However, applicability of the WBE
approach to assess human exposure to parabens and alternative
plasticizers is yet to be explored, while only one qualitative study
was conducted for some UV filters.

In general, the first insights are rather promising – most
selected biomarkers seem to be fairly stable in RW and their
concentrations are mostly high enough to allow their reliable
quantitative determination. However, there are still several
limitations and challenges which hamper obtaining accurate
and reliable results in this particular WBE field.

The first limitation, which does not refer only to WBE, but also
to some HBM studies, is the lack of the reliable, quantitative
excretion data for several compounds, including some represen-
tatives of parabens, UV filters and PFRs. Although their major
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metabolites are, in most cases, identified, excretion rates are still
unknown for some substances. Even for the compounds which
metabolism is generally well-studied, numerous uncertainties
and, in some cases, conflicting results still exist. This is not
surprising taking into account that most pharmacokinetic studies
conducted so far involved very limited number of participants
(sometimes only one), often not representative for the entire
population, and only one route of exposure (mostly oral).
Therefore, for the correct interpretation of the results obtained
by the WBE approach, including intake calculation and risk
assessment, additional pharmacokinetic studies, which would
include larger number of subjects, representative for the entire
population, and/or different scenarios of exposure (including
dermal) would be very beneficial. In some cases, urinary excretion
might not be the only source of some target compounds (e.g.
biomarkers of phthalates and PFRs) in wastewater, which also
require further investigation.

Additional contribution from analytical chemists is essential for
the further development of the WBE filed. All methods published
so far were focused exclusively on one group of chemical
substances. To facilitate comprehensive assessment of human
exposure to environmental contaminants, it would be highly
desirable to develop analytical methods which would include
biomarkers of larger number of substances belonging to different
groups. Moreover, only one WBE method published so far
investigated possible importance of enzymatic deconjugation
[8]. Although this step probably can be omitted for many
glucuronides, due to their complete deconjugation in sewage, this
should be verified during the method development. In that sense, it
is noteworthy that in many human pharmacokinetic studies, only
total urinary excretion factors, which include both free and
conjugated forms of biomarkers, are reported. Another analytical
challenge is related to relatively low concentrations of some
biomarkers already in urine, which might prevent their determi-
nation in sewage, due to the sensitivity limitations. Furthermore,
only one WBE study published so far investigated the possible
importance of biomarkers incorporated into the suspended solids
[25], although some recent reports indicate that fraction adsorbed
to SPM might be relevant for the overall mass loads of some
compounds in RW [104,110].

Although the stability of biomarkers in wastewater is usually
investigated during the method development, only in-sample
stability experiments were performed. However, more complex in-
sewer stability experiments, mimicking real conditions in sewage,
are still missing and should be performed in the future, as
acknowledged by the authors of the existing WBE studies [8,19].

4. Conclusions

� 78 potential biomarkers of human exposure to parabens, UV
filters, PFRs, BPA, phthalates and alternative plasticizers were
identified.

� One of the main limitations in the applicability of the proposed
biomarkers is the lack of pharmacokinetic studies which provide
robust excretion factors, especially to quantify the exposure to
parabens, UV filters, PFRs and BPA. Another limitation is the lack
of the studies addressing in-sewer stability of the potential
biomarkers and, in some cases, their possible contribution from
other sources.

� A few subsets of the proposed biomarkers have been already
used in the exploratory WBE studies to assess human exposure
to phthalates, PFRs and BPA.

� While LC��MS/MS methods have been applied to assess human
exposure to phthalates and BPA, both LC��MS/MS and GC��MS
methods have been applied to analyze PFRs. So far, there is no
method which includes multiple chemical substances from
different groups or the analysis of suspended solids.

� This review highlights the potential of WBE to be applied as a
monitoring approach to assess trends of exposure to environ-
mental contaminants at a fine spatio-temporal resolution.
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