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Abstract

Noisy incoherent objects, which are too close to be remotely separated by optically imaging beyond the Rayleigh
diffraction limit, might be resolved by employing the artificial neural network (ANN) smart pixel post-processing and
its mathematical framework, independent component analysis (ICA). It is shown that ICA ANN approach to super-
resolution based on information maximization principle could be seen as a part of the general approach called space-
bandwidth product adaptation method. Our success is perhaps due to the blind source separation smart-pixel detectors
behind the imaging lens (inverse adaptation), while the Rayleigh diffraction limit remains valid for a single instance of
the deterministic imaging systems’ realization. The blindness is due to the unknown objects, and the unpredictable
propagation effect on the net imaging point spread function. Such a software/firmware enhancement of imaging system
may have a profound implication to the designs of the new (third) generation imaging systems as well as other non-

optical imaging systems. © 2001 Elsevier Science B.V. All rights reserved.

PACS: 42.79.S; 42.30; 84.35; 42.30.K; 42.25.F
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1. Introduction

Fourier optics [1-4] shows point sources at the
object plane spreading in the far field image plane
which sets the Rayleigh resolution criterion: the
finest structure that a system can resolve is given by:
Oxpps = 1.222fn = 1.22% (1)
where 4 is the wavelength, f is the focal length of
the lens, and B is the system aperture size. Reso-
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lution beyond the classical diffraction limit may be
possible by means of bandwidth extrapolation
super-resolution methods without noise [2] or
space-bandwidth (SW) adaptation process using
Wigner distribution based on a priori information
[5-7]. The importance of a priori knowledge in
super-resolving systems was reported in the early
papers about this subject [8-12]. We earlier re-
ported applications of the statistical inversion in
reticle-based optical trackers [14-16]. We now ex-
tend the one component imaging equation to a
set of several components called vector x showing
that the noisy super-resolution can be obtained
statistically by employing multiple detectors and
an ANN/ICA (artificial neural network, ANN;
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independent component analysis, ICA) post-pro-
cessing. We can recover the unknown source sig-
nals vector s, assuming that its components are
statistically independent, from linear image data
vector equation x = hs using the software/firm-
ware (e.g. FPGA) post-processing de-mixing ANN
weight matrix w [17-33]. We insist that compo-
nents of the recovered vector § be as statistically
independent as possible giving: § = wx = (s37) =
(wx(xw)") = wh(ss"Yh"wT = d, where the super-
script T is the matrix transpose operation, d is
diagonal matrix (it is identity matrix if the source
signals have unit variance) and the de-correlation
of sources (ss') = d is the consequence of the in-
coherence light source assumption. Then the net
system transfer wh must be the identity matrix /
implying that ANN discovered using the ANN
gradient ascent search or learning algorithms [17—
33], the internal synaptic representation w = h~"' of
the external world A achieving both: the super-
resolution beyond diffraction limit and blind ar-
bitrary de-noising.

2. Problem formulation

We begin with a brief review of the imaging
system notation [2, p. 127], and then contrast it
with the ICA notation, Fig. 1. If we assume that
object illumination is perfectly incoherent i.e. the
phasor amplitudes across the object plane are
statistically independent then image intensity is

0 y
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obtained as a convolution of the intensity impulse
response (p.s.f.) or Green’s function with the ideal
point object intensity as Egs. (6)—(15) in Ref. [2]:
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Bty = [ [ [hte- g0 i) G0 e
)

where x is some real constant, (G,7) are object
coordinates normalized on the image plane, (u,v)
are image coordinates, [,(,7;¢) is time-varying
intensity representation of the object and A(u, v) is
the Fraunhofer diffraction pattern (i.e. the far field
approximation of the Huygens—Fresnel principle)
of the exit pupil P(x,y):

h(u,v) = % //_OOP(x,y) exp { —j%(ux—k vy)}dxdy

3)

Now if we have in the object plane two inco-

herent point optical sources placed at positions

(¢,,7,) and (&,,7,) and noise source placed at
(G3,173) then:

I, iy 75 t) = I, (£)6(S — Sy, — 1))
14, (S5, 105 1) = Iy ()0(C — S5, 11 — 1) 4)
[n(gﬁw ;7]3; t) = In(t)é(é - 537 ﬁ - ﬁ3)

Combining Egs. (2) and (4) we obtain image
intensity in the (u,v) plane as:

L(u,v;t) =
Klh(u — Gy, 0 — ’71)|21g1 (t) + lh(u — &, v — i)}
X Iy () + xclh(u — &y, v — 713) 'L (0) (5)
y Exit LR

o/n (6

%5 \A :

Object "Black box"

Fig. 1. Generalized model of an imaging system (taken from Ref. [1]).
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Importantly, due to diffraction effects the point
sources and the noise from the object plane are
spread in the image plane. For an ideal imaging
case of a circular aperture P with radius w we can
compute the p.s.f. and obtain from Eq. (3), Fou-
rier transform of a disk aperture, the weighted
Bessel function of order one, the so-called Airy
pattern for a uniform intensity at the origin and
rippling after a stone having fallen through a water
pond [1]:

AN T (kowr)z) 17
0= (%) et ©
where k = 27/ is the wave number and 4 = nr? is
the aperture area, J; is the Bessel function of the

first kind and r is the radial coordinate. Based on
Eq. (6) we rewrite Eq. (5) as:

£i(u, 0;0) = 1l (1) (1) + 1l (r2) g, (£) + K1 (r3) 1 (2)

(= G0 —i1,)[* = 1(r3)

N

An imaging system operating at a 10 pm wave-
length with an f~number of 2 has a 24.4 pum width
of the diffraction blur. It means that diffraction
sets the physical limit on increasing the system’s
resolution if better spatial resolution is required.
For example a third generation thermal imaging
systems requires 20 or 15 um pixel size. We illus-
trate how the ANN smart pixel can exceed the
Rayleigh criterion by putting two point sources
placed at the relative coordinates (0.5,—0.5) and
(0.0,—0.5) and a non-white chaff noise source
placed at the relative coordinates (0.25,0.0) in the
object ({,n) plane Fig. 1. So the relative distance
between the sources is below the Rayleigh’s dif-
fraction limit, which is 1.22 in the dimensionless
coordinates. We consider an array of smart pixels
concentrated on three square pixel detectors with
linear dimension 0.5 and each has a 50% filler
factor and 50% active sensing area with centers at
the positions (—0.5,0.5), (0.0,0.5) and (—0.25,0.0)
in the image plane (u,v). This situation is illus-
trated in the contour diagram in Fig. 2. It shows
overlapping in the image plain between the de-
tectors’ area and the intensity fluctuation of a
spatially fixed point source with the center at

w—7i,) i=1273 (7)
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Fig. 2. A snap shot of the first source intensity spreading over
imaging domain detectors of three smart pixels.

(—0.5,0.5) in the image plane assuming for that
particular point of time /,, () = 1.0. The gray circle
shows area for which applies I, (u,v) > 0.1. One
can envision similar overlapping situations like
Fig. 2 for the second point source with the center

t (0.0,0.5) and for the noise source with the
center at (—0.25,0.0) that however are not shown
here due to the lack of space. It should be observed
here that we do not exploit the knowledge of the
source spatial distribution in blind discrimination
method. We have intentionally taken the three
sources placed at the relative distance below the
Rayleigh’s diffraction limit. Then problems caused
by diffraction are the most dominant. We could
use the measurement vector x with the total di-
mension p = k x [ where k and / are dimensions of
the CCD sensor. That would cause enormous
processing difficulties due to the huge number of
equations. On the other hand since the influence of
diffraction is limited on the few neighboring pixels
only it is wise to use the small kernels, 3 x 3 or
5 x 5 pixels, by means of which we can cover the
whole image. Then it can happen either to have the
same number of detectors and sources or to have
more detectors then sources in which case we shall
benefit from using more sensors than sources [32].
Intensities of the three smart pixels are the ap-
propriate integrals of the intensity distribution
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equation (7) over the three imaging detectors’ ac-
tive sensing areas. If we assume a uniform spatial
responsivity we obtain for the first detector:

ID]
1+L/2 711+L/2
/ / élav - ﬁl
&-L/2 Jin-L/2
E+L/2 i]1+L/2
/—L/2 /m _1)2
&1+L/2 ;11+L/2
+/ / — &, v — i) dudol,(¢)
1 m

&-L/2 —L)2
(8)

where L = 0.5 is the dimensionless size of the
square detector. The real constant x in Eq. (7) has
been absorbed into intensities I, () in Eq. (8). In-
tensity expressions for detectors D, and D; differ
only in the integration borders that are around
(&,,7,) and (Gj,175) respectively. We can rewrite
Eq. (8) in short notation:

In, (t) = huly, () + hiady, () + M3, ()

In, (1) = hail, () + hoole, () + o3, (1) )
Ip (1) = h311, (1) + haxly, (2) + h33l,(2)

or in matrix notation:

x=hs+n (10)

)I*dudvl, (1)

u - 523 U= ﬁ2)|2dudvlgz (t)

where h; are easily identified from Eq. (8) and
their geometrical interpretations partially given in
Fig. 2. The additive noise n has been added in
matrix equation (10) in order to model the sensor
noise if it cannot be assumed to be negligible.

3. Brief review of the independent component
analysis theory

The ICA problem is described for a number of
source signals coming from different sources and a
number of receivers. Each receiver (antenna, mi-
crophone, photo-detector, etc.) receives a linear
combination of these source signals x = hs + n;
x,s,n € RY, h e RV Neither the structure of the
linear combination (the mixing matrix &) nor the
source signals (the vector s) are known to the re-
ceivers. ICA succeeds to recover the unknown
source signals s from the measurements of their

linear mixtures x provided they are statistically
independent, non-Gaussian (except may be one),
as well as that mixing matrix A is non-singular.
Various kinds of the ICA algorithms recover vec-
tor of the unknown source signals s by means of
the linear transformation § = wx minimizing or
maximizing certain criterion @(w) called contrast
function [22,24,32] that ensures statistical inde-
pendence between components of the vector § i.e.
p(3) = [TV, 2:(5,). One of the most popular batch
algorithms, that will be used in the simulation
experiment reported in Section 4, is the so-called
JADE algorithm [24,32], that ensures source sepa-
ration by joint diagonalization of the fourth-order
cumulant matrices:

. . o 2
min @(w) = min Z ‘C4(zl~,zj,zk,zl) (11)
L Bkl ik
where 64(zi,zj,zk,z,) are sample estimates of the
related fourth-order cross-cumulants i.e. [34,35]

~

C4(Zi,Zj»Zk721) = <ZiZjZkZl> - <Zizj><zkzl>

— (zz)(zz) — z)(zz) - (12)

In Eq. (11) the sum is over all the quadruples

(i,j,k,1) of indices with i # j so that for every i,

(i # j) we have square matrix defined by [k, /] pairs

where (k,/=1,...,N). Vector z in Eq. (11) rep-

resents whitened or standardized version of the
measurement vector x, Eq. (10), obtained as:

z=rx (13)

such that E|zz"| = I and whitening matrix y is
obtained:

:gAfl/ZgT (14)

and A and ¢ are eigenvalue and eigenvector ma-
trices obtained as a solution of the eigenvalue
problem:

E[xx"] = qAq" (15)

De-mixing matrix w is obtained as the solution
of the optimization problem [24,32]:

w = arg min Zoff(mT(A?4(zi,z,7zk,z,)m) (16)

by using Jacobi method and off(a) is measure for
the off-diagonality of a matrix defined as:
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Fig. 3. Kurtosis illustration for different classes of signals.

off(@) = Y |y’ (17)

I<iA <N

So by pre-whitening and minimization of the
square of the sample estimates of the fourth-order
cross-cumulant matrices the second- and fourth-
order statistical independence between §; is ob-
tained. This is how the JADE approximates
statistical independence. The quality of how the
sample estimates of the fourth-order cumulants of
the data approximate the real cumulants influences
directly the separation performance. Generally,
more data points mean more reliable sample esti-
mates and better separation performance. The ad-
vantage of criterion equations (11) and (16) over
entropy based ICA method [23], is its distribution
independence i.e. minimization of Egs. (11) and
(16) cancels fourth-order statistical dependence
between components of § regardless of their distri-
butions. Additional property of the criteria (11) and
(16) is their robustness relative to the additive noise
nprovided it is Gaussian. This is due to the fact that
fourth-order cumulants are blind in relation to
Gaussian processes i.e. the Gaussian processes have
all the cumulants of the order higher than two equal
to zero [34,35]. Algorithm reported in Ref. [23] is in
trouble when components of the source vector s
belong to both sub-Gaussian and super-Gaussian
class of signals. These two classes of signals are
distinguished by the value of the parameter called
kurtosis defined for the zero mean signal §; as:

The sub-Gaussian processes have negative value
of the kurtosis, the Gaussian processes have kur-
tosis equal to zero, while the super-Gaussian sig-

nals have positive value of the kurtosis. Typical
examples are illustrated by Fig. 3. Examples of
super-Gaussian signals are speech and music sig-
nals. Examples of super-Gaussian distributions are
Laplacian and Cauchy distributions. Examples of
sub-Gaussian signals are most of the communi-
cation signals and images, while example of the
sub-Gaussian distribution is a uniform distribu-
tion. Since ICA/ANN based on Egs. (11) and (16)
is batch algorithm it is not suitable for the real
time type of applications. If we need on-line i.e.
adaptive ICA/ANN we can use the extended In-
fomax algorithm [25], that is also one of the well
known ICA algorithms. The Infomax principle to
source separation consists of maximizing infor-
mation transfer through the system of general type
(in this case optical system) (Fig. 4) [23]:

1(y,8) = H(y) — H(yl3) (19)

where H(y) is the entropy of the output non-lin-
earities (sigmoids) while H(y|$) is the residual en-
tropy that did not come from the input and it has
the lowest possible value [23]. Then from Eq. (19)
it follows that maximization of the information
transfer is equivalent to the maximization of the
entropy of the sigmoid outputs i.e.:

max/(y,$) = maxH(y) (20)

what is the reason why Infomax algorithm is also
called the maximum entropy algorithm. Relations
between marginal entropy H($) and H(y), joint
entropy H(8$,y), conditional entropy H(s|y) and
H(y|$) and the mutual information /(8,y) are il-
lustrated in Fig. 5. Full derivation of the learning
equations based on criteria (19) and (20) can be
found in Ref. [23]. As a final result maximization
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Fig. 4. Information maximization approach to ICA ANN.
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Fig. 5. Marginal entropy H(s) and H(y), joint entropy H (8, y),
conditional entropy H(3|y) and H(y|s) and the mutual infor-
mation /(8,y).

of Eq. (20) using the natural [21] or relative gra-
dient [31] for faster convergence gives the follow-
ing learning rule [21,23,25]:

w(k+1) = w(k) + ulI — o(5)s" w(k) (1)

where from both the information maximization
and maximum likelihood maximization approach
the following requirement is imposed on the non-
linearity ¢(o) [28,29]:

o(8) = — 5 Togp(s) )

and p(8) is the true p.d.f. of the source signals. At
this point it can be seen how ICA ANN approach
to the super-resolution depends on the a priori
information related to the p.d.f.’s of the intensity
distribution of the input signals. It was pointed out
in Refs. [5-7] how a priori information is impor-
tant in order to obtain optimal separation i.e. to
attain optimal super-resolution. Based on Fig. 6 it

SWw Inverse

adaptation P SHY adaptation [} Output

¥

SWI(s,v )

Fig. 6. General block diagram of the SW adaptation process,
taken from Ref. [5].

can be seen that ICA ANN approach to the super-
resolution is a part of the general approach called
the SW product adaptation process [5-7]. What is
in common to our ICA ANN approach to the
super-resolution and SW product shape adapta-
tion method [5,7] is that something has to be done
in order to maximize information transfer through
the system. According to Refs. [5-7] the problem
of super-resolution is the problem of the adapta-
tion of the shape of Wigner distribution chart of
the input (SWI) such that it matches the shape
of the system transfer distribution chart (SWY).
Examples of such adaptations are given in Refs.
[6,9,12]. In the SW product adaptation method
certain transformations, that will ensure maximi-
zation of the information transfer, are possible if
we have some a priori information about the signal
that can be related to the object shape, temporally
restricted signals, etc. [5-12]. In the information
maximization based ICA we can attain maximum
of the information transfer through the system
(optimal signal recovery) if our non-linearities
match the shape of the p.d.f. of the data (Eq. (22)
and Fig. 4). The influence of the optical system is
present in the form of the mixing matrix & (Egs. (9)
and (10)). The inverse adaptation block in Fig. 6 is
replaced by the de-mixing matrix w such that in



H. Szu, I. Kopriva | Optics Communications 198 (2001) 71-81 77

ideal case it will be w = A~'. In the blind source
separation scenario true p.d.f.’s are basically un-
known. However, it was shown in Ref. [27] that
learning rule Egs. (21) and (22) will still be super-
efficient provided that p(s) are even and ¢(5) are
odd. Then ¢(8) = tanh(s) is an appropriate choice
for a class of super-Gaussian signals, while ¢(§) =
23 — sign(8)s? is suitable for sub-Gaussian signals.
The adaptive algorithm capable to cope with both
sub-Gaussian and super-Gaussian sources simul-
taneously is given with [25]:

Aw o [I — K tanh(5)s" — 357w
super-Gaussian

k=1
x . (23)
ki = —1 sub-Gaussian

where k; are elements of the N-dimensional diag-
onal matrix K. Then k; can be estimated from [25]:

k; = sign(E{sech’(5,)}E{s’} — E{[tanh(5,)]5,})
(24)

and E(o) is the expectation operator. More details
about foundations of the ICA theory can be found
in Refs. [17-33].

4. Simulation results

It can be easily observed that vector version of
Eq. (9), x = hs + n, is basically the ICA problem,
where components of the column vector x =
Ip, (1), 1p, (1), Ip,(£)] " are measured signals, com-
ponents of the vector s = [I, (¢),1,,(¢),1,(r)]" are
unknown source signals while 4;;, i, j € {1,2,3} are
elements of the unknown mixing matrix 4 and n is
the additive noise vector that models the sensor
noise. Here we see that noise is included in the
model both as a part of the source signal vector to
model diffraction noise and as a sensor noise in
term of additive noise. It is known from ICA
theory that in principle N sensors must be used in
order to recover the N signals [17-32], although it
has been shown in Ref. [33] how it is possible to
recover several sources by using two sensors only.
Here we shall use three detectors. As it was pointed
out before we do not exploit here the knowledge of
the source spatial position. We have intentionally
chosen the case when the three sources are at the

relative distance below the Rayleigh’s diffraction
limit. Now we recover signals emitted by two ‘in-
formation’ point sources as well as noisy signal
emitted by the noise source. In doing so we obtain
both: super-resolution beyond diffraction limit and
de-noising. If we model noise as the Cauchy color
noise then non-Gaussian nature of the noise is for
ICA not limiting factor, as it is for some other
noise canceling methods [36], but useful prop-
erty. ' By described ICA methodology we can
recover unknown source signals using the soft-
ware/firmware (FPGA) post-processing de-mixing
matrix w such that (wxxTw?) =s. Then, because
of the three detectors imaging x = ks + n we have
consequently obtained [17-19], wh{ss")h'w" = d,
where d is diagonal matrix (identity matrix if
source signals have unit variance) and (ss') = d is
the consequence of the incoherence assumption.
Beside to the non-Gaussianity assumption we shall
additionally assume statistical independence of the
point sources since radiation is emitted from the
three physically separated sources. Consequently
the net transfer function must equal to the identity
matrix wh = I meaning that by post-processing we
have found de-mixing matrix w=~A"'. Non-
Gaussianity assumption is fulfilled if for example
at least one point source has uniform intensity
distribution and noise source has for example
Cauchy distribution (Fig. 1) [26]. Mixing matrix
non-singularity requirement is transformed into:

deth = hy Ay — hipdin + hizdis # 0

A1y = hyphsy — hyshs)

A1y = hythsy — haihas

A1z = hyhsy — hayhy (25)

We can identify /; from their geometrical in-
terpretations given by Fig. 2. that shows A, Ay
and 3. hy; tells us how much the jth source is
spread over ith detector sensing area. From Eq.
(25) it can be seen that only first term will be
product of the three most dominant components
hi1, hyp and hi; while others will always contain
products of at least two off-diagonal terms making

! This choice is physically justified since impulse noise can be
modeled as Cauchy noise that is highly non-Gaussian process.
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Fig. 7. ANN/ICA approach to super-resolution: first row is the intensity fluctuations in time of the fixed point source signals
ST(0) = gy (C1,7113 )1y (Sa, 1123 )1, (G5, 735 1)]; second row, detected signals xT(7) = |Ip, (¢)Ip, (t)Ip, ()]; third row, recovered signals

§7() = \.igx (G1, fll%l)igz(izv i (G5, iz 1) ).

them small relative to the first term implying that
det A will be always positive. So the non-singularity
requirement is in principle also satisfied. For de-
scribed arrangement of detectors and sources, il-
lustrated with Fig. 2, the mixing matrix is given
with:

0.8850 0.4902 0.4194
h= 104902 0.8850 0.4194 (26)
0.4194 0.4194 0.8850

with det A = 0.3416. This discussion shows that the
requirements necessary for the ICA theory to work
can in principle be fulfilled in order to achieve the
so-called super-resolution i.e. resolution beyond
the classical diffraction limit. So we have gone
statistically beyond the resolution limit set by the
deterministic diffraction theory. This concludes
our statistical software/firmware approach to the
deterministic super-resolution problem. The ro-
bustness to the noisy imaging environment is an-
ticipated by the virtue of statistical approach
similar to Wiener’s regulation the noisy inverse
filtering for a dual imaging system [13], but not yet
experimentally demonstrated. We illustrate the

exposed approach to super-resolution and de-
noising in Fig. 7 by application of the JADE al-
gorithm [24,32] on the mixture of the three source
signals whose intensities are changing in time ac-
cording to:

L, (t) = 50[2 rand(?) — 1]
I, (t) = 20 randn(?) (27)
I,(t) =tan(0); 0= n[2 rand(¢) — 1]

where rand(¢) stands for uniform and randn(¢) for
normal distribution. Signals are mixed with the
matrix A estimated from the given source-detec-
tors arrangement and given by Eq. (26). Here we
expressed intensity values in bits assuming inten-
sity fluctuations (random or modulated) relative to
some DC level (for 10-bit image DC level would be
512). That explains why relative intensities in Eq.
(27) can be negative. Time evolution means we are
processing sequence of images. The chosen exam-
ple of signals Eq. (27) is the most difficult one from
the ICA theory point of view since we have one
sub-Gaussian signal: I, (f), one pure Gaussian
signal: I,,(¢#) and one super-Gaussian signal: I,(¢)
with the extremely high value of kurtosis (about
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few thousands). With such difficult combination of
signals we wanted to emphasize the power of the
ICA methodology. First row in Fig. 7 represents
source signals: I, (), I, (¢) and I,(t) from left to
right respectively according to Eq. (27). Second
row represents mixed signals x = hs + n according
to Egs. (9) and (10). It shows to us what, due to
diffraction phenomenon, three detectors would see
in time. In the scenario shown in Fig. 7 additive
noise at —20 dB relative to the first source signal
was generated, see Eq. (20). Third row represents
de-mixed and de-noised signals: I, (¢), I,,(f) and
I,(t) again from left to right. We have used
T = 2000 data samples to obtain the sample esti-
mates of the related fourth-order cross-cumulants,
Eq. (12). Diffraction effects are reduced signifi-
cantly. Horizontal axis represents time in discrete
samples and vertical axis is in bits relative to the
DC level. In order to estimate the separation per-
formance more reliably we have computed the
signal to interference ratio (SIR) for each of the
source signals according to:

(28)

SIR(s;) = 101og 10 < RMSE(S,) )

RMSE (x;)

where

RMSE(S,) = %Z(s,-(k) — §i(k))*

%i(s,-(k) —x(k)? i=1,2,3

k=1

RMSE(x;) =

(29)

where 7 is the sample size here assumed to be
T = 2000. The SIR parameter measures the qual-
ity of the signal recovery in term of the RMSE
criteria of the recovered signal relative to the
RMSE of the directly measured data. Fig. 8 shows
SIR values in dB for different values of the additive
noise level that is expressed relative to the first
source signal level i.e. the horizontal axis of Fig. 8
is defined as:

SNR g = 101og 10((‘:—”) (30)

Signal to interference ratio for different source signals: Eq. (28) and Eq. (29)
T
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Fig. 8. Performance of the ANN/ICA approach to super-reso-
lution in terms of SIR.

where g, and ¢,, denote variance of the additive
noise n and variance of the source signal s, re-
spectively. We have denoted the noiseless case with
—35 dB of SNR in order to be able to show it on
the Fig. 8. The SIR values were estimated by av-
eraging results over the 100 iterations. The sensor
noise was modeled as Gaussian noise. We can see
that if additive noise is neglected, for example
sensors are cooled enough, the RMSE value after
applying ICA on the measured data relative to the
RMSE value of directly measured data (i.e. with-
out post-processing) is 13.5 times smaller for the
first source signal, 22 times smaller for the second
source signal and even 86 times smaller for the
third source signal. This gives to us illustration
how much the diffraction effects could be reduced
by means of the ICA post-processing. For SNR =
—5 dB the SIR performance is approximately the
same for directly measured and post-processed
data.

5. Conclusion

The ANN statistical approach called ICA is
employed to resolve two incoherent point sources
with noise that are too close to be resolved under
Rayleigh diffraction limit. It has been shown that
ICA theory assumptions, statistical independence
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and non-Gaussianity of the source signals and
non-singularity of the mixing matrix, are fulfilled
in principle in this scenario. Moreover mixing
matrix elements are the point spread functions of
the imaging system that can be identified in a blind
way. It was also shown that ICA ANN approach
to the super-resolution based on information
maximization principle could be seen as a part of
the general approach called SW product adapta-
tion method. Simulation has demonstrated that
by three detectors and ANN/ICA based post-
processing not only super-resolution but also
de-noising is attained. In the no additive noise sce-
nario from 13 to even 86 times improvement after
the ICA post-processing (depending on the as-
sumed intensity distribution) is obtained relative to
the directly measured data reducing diffraction
effects significantly. We wish to propose the next
step involving the costly but indispensable field
tests, employing the smart pixels’ detectors and the
back-plane FPGA firmware or ASIC implemen-
tation of ANN/ICA algorithm for a rapid real-
time post-processing, to demonstrate the noisy
super-resolution and blind de-noise. We believe
this third generation smart pixel imaging system
will have an important impact on the designs of
other, non-optical imaging systems.
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