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Abstract - The success of deep learning depends, among 

other things, on a large amount of labeled data. However, in 

medical applications, large labeled datasets are the 

exception, rather than the rule. Manual image labeling is 

time-consuming and is generally performed only with the 

purpose of developing algorithms, and not as a part of 

standard clinical practice. The goal of this study is twofold. 

Since there is always a trade-off between the ability to 

collect data and achieve the best possible performance, we 

wanted to explore how performance depends on the amount 

of data. For this purpose, a database of manually annotated 

OCT images was collected. Also, we wanted to see how 

much transfer learning can help. Retinal OCT images vary 

depending on the type of device, therefore developed 

methods should be as robust as possible. Transfer learning 

was performed so that the model was trained with similar 

OCT images and then fine-tuned with images from the 

collected database. It has been shown that transfer learning 

helps in terms of generalization and better prediction in case 

the source database is similar to the target database. We can 

also assume that further improvement can probably be 

achieved by adding images from another distribution 

(medical or nonmedical).  

Keywords – deep learning; retinal OCT images; image 

segmentation;  

I. INTRODUCTION 

Age-related macular degeneration (AMD) is one of the 
most common diseases leading to vision loss in the elderly 
population. Currently, 170 million people worldwide are 
suffering from it and, by some estimates, 288 million will 
be affected by 2040 [1]. Due to the disease, pathological 
biomarkers such as intraretinal fluids appear and there is a 
significant disturbance in the distribution and thickness of 
the retinal layers [2]. Since the introduction of optical 
coherence tomography (OCT), imaging has been done 
using OCT devices. Diagnostics and treatment in clinical 
practice rely only on the qualitative analysis and 
assessment of the ophthalmologist. For more successful 
diagnostics and therapy, computer segmentation is 
therefore necessary in quantitative analysis. It should also 
contribute to a better understanding of the disease that has 
not yet been fully explored. 

 Recently, the segmentation of medical and thus 
ophthalmic images is performed almost exclusively using 

deep learning methods. One of the preconditions for the 
success of deep learning algorithms is a large amount of 
data available. But in medicine, this is rarely the case. In 
the case of supervised learning, images manually 
annotated by an expert are required, which is very time-
consuming. Even more, image labeling is not part of 
clinical practice, and labeling is done solely to develop 
machine learning methods. As images from different OCT 
devices and different device generations vary, it is 
required that the segmentation algorithms be as robust as 
possible. This means that in case of migration to a new 
device it is not necessary to re-annotate a larger number of 
images, and existing algorithms will be upgraded with a 
smaller number of new images. 

Although transfer learning is often applied in 
medicine, by using the known architectures of neural 
networks (Xception, Inception V3, ResNet50, VGG16, 
VGG19, MobileNet) pretrained on the ImageNet dataset, 
in ophthalmology this is rarely the case [3]. Several papers 
[4]–[6] examine the adequacy of such a method since 
ImageNet dataset is a database of natural images that 
bears no resemblance to medical ones. In a recent paper 
[7], a hybrid architecture was proposed in which only the 
first few layers of networks such as the ResNet 
architecture (pretrained on ImageNet) would be used and 
then some lighter versions of CNN would be applied (and 
fine-tuned) in the end. 

The aim of this study was twofold. First, to see how 
the performance of the algorithm depends on the amount 
of data. To begin with, the network was trained from 
scratch with a different amount of data to see how 
performance varies. Segmentation was done using the U-
net architecture [8], which is almost standard in the 
segmentation of medical images. In order to perform the 
segmentation of retinal structures and pathological 
biomarkers, a database of images with manually labeled 
features was collected. And second, we explored how 
many additional labeled images are needed and how much 
transfer learning can help in the case the network was 
trained on one dataset (source data) and then migrated to 
another (target data). As a source dataset, the image 
database from the RETOUCH challenge (The Retinal 
OCT Fluid Detection and Segmentation Benchmark and 
Challenge) was used [9]. Transfer learning was then 
performed so that the network was trained with part of the 



images from RETOUCH challenge and then fine-tuned 
with the images of the target database: again, with a 
different number of images. 

II. MATERIAL AND METHODS 

A. Database 

For the research, a database of manually annotated 
images was collected. For convenience, let it be called the 
target dataset. In collaboration with Sisters of Charity 
Hospital (KBC Sestre milosrdnice), Zagreb, images were 
annotated for 25 patients with neovascular age-related 
macular degeneration (nAMD). Macular SD-OCT 
volumes were recorded with the Zeiss Cirrus HD OCT 
4000 device. Each OCT volume consisted of 128 B-scans 
with a resolution of 1024 x 512 pixels (pixel size 1.96 x 
11.74 μm). Retinal fluids were annotated for 1224 B-
scans. Of the intraretinal fluids, the following were 
annotated: pigment epithelial detachment (PED), 
subretinal fluid (SRF), and intraretinal fluid (IRF) (Fig. 1). 

 

Figure 1. Examples of B-scans from a dataset with manual annotations 

of retinal fluids. PED is colored with blue, SRF with yellow, and IRF 
with red. On the left there is an example of an entire B-scan (1024x512 

pixels). It is visible that there is a large amount of background and thus 
a large class imbalance. Examples cropped to the region of interest 

(ROI) are on the right. 

 

Data collection adhered to the tenets of the Declaration 
of Helsinki and the standards of Good Scientific Practice 
of Sisters of Charity Hospital. The presented study was 
approved by the Ethics Committee of the Sisters of 
Charity Hospital and Faculty of Electrical Engineering 
and Computing, Zagreb, Croatia. 

To estimate human error, for 75 B-scans, the same 
expert made a re-annotation with a time delay (and 
without insight into former annotations). Also, annotations 
were made by another expert. An intra-observer and an 
inter-observer error were calculated. Dice scores for inter-
observer and intra-observer errors are 0.822 and 0.889, 
respectively. Fig. 2 shows two examples. It became 
evident that there are some even major differences in the 
opinions of experts. The pathology of the disease is not 
sufficiently known, and it is often difficult to decide what 
type of fluid was present, especially since in addition to 
intraretinal fluids there are other pathological phenomena 
(hyperreflective foci, druse, cysts, etc.). Due to the poor 
quality of images (a large amount of speckle-noise), and 
the necessary prior knowledge of retinal anatomy and 
pathological changes, it is difficult to expect great 

accuracy (especially in the regime of small data) as it is a 
demanding task even for humans. 

 

Figure 2. Two examples of B-scans from a dataset with manual 

annotations (from  left to right): annotation from the 1st expert 
(considered as ground truth); annotation form the 1st expert with time 

delay and with no insight into previous annotation (used to calculate 
intra-observer error) and annotation from the 2nd expert (used to 

calculate inter-observer error). All images are cropped to show just ROI.  

 
The other dataset we used is from the RETOUCH 

challenge [9] – let it be called source dataset. The database 
consists of images from three types of devices (Topcon, 
Spectralis, and Cirrus). For each type of device, all B-
scans for 24 patients were labeled. We used only part of 
the images from the Cirrus device (1000 randomly picked 
images) to train the network. Unlike the target dataset, 
where all B-scans contained intraretinal fluids, many B-
scans did not contain pathological changes (whole B-scans 
belonged to the background class). It resulted in the even 
greater disproportion of background pixels and pixels 
belonging to fluids. The database included images of 
patients with AMD, retinal vein occlusion (RVO), and 
diabetic macular edema (DME). More details can be 
found on the website [9]. 

B. Segmentation approach 

For segmentation we used the U-net architecture [8]. 
The U-net architecture, its various modifications [10], 
stacking of multiple U-net architectures, and combining 
the U-net architecture with other machine learning 
methods [11], [12] have become standard methods for 
segmenting OCT images in recent years. Eight teams 
participated in the RETOUCH challenge in 2017, and the 
results and algorithms of all participants were presented in 
[13]. 

To make it easier to see the dependence of the 
algorithm's performance on the amount of data, the 
problem was reduced to binary segmentation (all three 
fluids belonged to the same class). Data augmentation, 
which is usually used in the case of a small amount of 
data, hadn't been performed, in order to better isolate the 
dependence of network performance on the amount of 
data. 



In the first case, the target dataset was divided into a 
training set (1000 images) and a test set (224 images). 
Furthermore, the training set was divided into three groups 
with a different number of images: 256, 512, and 1000. 
The network was trained from scratch. Dice loss was used 
to train the model, since the dice score is usually used as a 
metric for evaluation, and the goal was to maximize it. We 
tested the model training with binary cross-entropy loss, 
but worse results were obtained. The batch size was set to 
4. Adam optimizer with learning rate 1e-5 was used. The 
model had 7759521 trainable parameters. Training was 
performed during 70 epochs, without early stopping. 
Dropout was used to prevent overfitting. The validation 
dataset was 10% of the training dataset. 

In the second case, the network training was 
performed with the source dataset. The same 
hyperparameters were used. The network had only been 
trained for 20 epochs, as the purpose was only to have a 
pretrained network. Fine-tuning of all layers with the same 
three data groups from the target dataset (256, 512, and 
1000) was then performed. Training was executed during 
50 epochs with all the same parameters as in the first case.   

The model was trained on Google Colab [14] with a 
GPU. The code was written in Keras with the TensorFlow 
backend. Code is available on GitHub: 
https://github.com/mmelinscak/MIPRO_2020 

III. RESULTS 

In the first case, when the model is trained from 
scratch, as expected, the performance is better due to the 
larger number of images (it is well known that deep 
learning algorithms are “data-hungry”). Obtained dice 
scores (mean ± SEM) on a test dataset (224 images) for 
256, 512, and 1000 images are: 0.579±0.272, 
0.632±0.279, and 0.731±0.268, respectively. 

 

 

 

Fig. 3 shows examples for one raw image and ground 
truth mask, followed by model predictions on the test set 
in case the model is trained with 256, 512, and 1000 
training images. As it is as expected, segmentations are 
better with a larger amount of data. With an experiment 
like this, we can get a better insight into how much data 
we need, since there is always a trade-off between the 
amount of manually annotated data we can/want to collect 
and the performance of algorithms. The second row shows 
segmentation predictions for the second case (with the 
model pretrained on source dataset and then fine-tuned on 
target dataset). In this case, obtained dice scores (mean ± 
SEM) on the test dataset were 0.612±0.284, 0.677±0.272, 
and 0.826±0.270 respectively. It is evident that predictions 
after transfer learning have more “serrated” shapes while 
predictions from a model trained from scratch are more 
oval. As shape types are one of the key features in 
distinguishing different kinds of intraretinal fluids, this is 
a promising result. 

Fig. 4 shows a graph with mean dice scores for all 
cases. It is visible that the mean value of the dice score is 
higher in the second case (with transfer learning). 

 

Figure 4. Mean dice score with error bars (standard error of the mean – 

SEM) for training model from scratch (no TL) and in case of fine-tuning 

the pretrained model (with TL).  
 

 

 
 

Figure 3. First row (from left to right): raw image from test dataset, ground truth (manual annotation), prediction from a network trained with 256 
images, 512 images, and 1000 images. Second row (from left to right): predictions after training the network with 1000 images from source dataset 

and fine-tuning pretrained network with 256 images, 512 images, 1000 images (from left to right) from target data. 

https://github.com/mmelinscak/MIPRO_2020


 
 

Figure 5. Visualization of convolution layers 2, 4, 7, 10, 13, 16 (from left to right). Layers 2, 4, and 7 belong to the encoder part of U-net architecture, 
and 10, 13, and 16 to the decoder part. First row: network trained from a scratch with 256 images (target data). Second row: network trained with 

1000 images (source data). Third row: network fine-tuned with target data (256 images) after learning with source data (1000 images). 
 

 
Although the model trained with 1000 images from the 

source dataset achieved a high value for dice score on 
training test (0.717), the value of the dice score is very 
low for the test set (0.348). The reason is probably that 
both datasets cannot be considered to fit the same 
distributions despite the same type of OCT device being 
used in both. One of the reasons are the differences in 
annotations (we have seen that there is quite a significant 
inconsistency between expert opinions). Another reason 
may be that the source dataset contains images of patients 
with three types of disease, and the target dataset only 
contains patients with AMD. Therefore, we have a case of 
a model trained on data from one distribution and tested 
on a different image distribution. 

Fig. 5 shows a visualization of convolution layers in 
case of a training model from scratch with 256 images 
(first row). Then for the pretrained model (second row), 
and after fine-tuning the pretrained model with 256 
images (third row). First three layers belong to the encoder 
and the last three layers to the decoder. It is visible that in 
the third row, convolution layers appear to be a 
combination from convolution layers shown in the first 
two rows, as might be expected. It is evident that 
convolution layers are clearer and more completed after 
fine-tuning with additional 256 target images then after 
only training with 1000 source images. It can be 
concluded that using images from different distributions 
leads to better results than increasing the number of 
images from the same distribution. However, the 
generality of this finding requires further investigation. 
Also, it is visible that the first layers of the encoder which 
should look like Gabor filters are not very clear, and 
maybe it would help to initialize the first few convolution 
layers with Gabor filters, and then to see if freezing or 
fine-tuning them leads to better results. 

IV. CONLUSION 

In this study, we wanted to examine how the 
performance of deep learning segmentation approaches 
depends on the amount of data. Since medical labeled 
images are difficult to collect, we found it useful to get an 
insight into the performance dependence of the algorithm 
on the number of images. Furthermore, we investigated 
how transfer learning affects the robustness of the 
algorithm and how much new data needs to be collected if 
the model is not trained from scratch but fine-tuned after it 
was pretrained on existing data. 

Segmentation was performed with the basic U-net 
architecture. No data augmentation or other common ways 
of increasing performance were used to get a better result, 
since in the case of more complex architecture and 
changing multiple parameters it would be difficult to 
assess the dependence only on the amount of data. 

It was demonstrated that training the model on very 
similar OCT images had a low dice score on the test set 
despite the relatively high dice score on the training 
dataset. This means that in the case of migration to a new 
OCT device, it would still be necessary to additionally 
train the model, but with a smaller number of images than 
in case of training the model from scratch. 

Transfer learning is often applied in medicine, by 
using the known architectures of neural networks 
pretrained on the ImageNet dataset. ImageNet is a 
database with over 14 million natural images. Intuitively, 
it is not clear how would transfer learning help in case of 
medical images which are often grayscale and dissimilar 
to natural images. Optimizing transfer learning (with 
model pretrained on ImageNet) is still an active area of 
research in the case of medical images. 



By visualizing convolutional filters, it becomes visible 
what the network is actually learning. In the study, it has 
been demonstrated that the initial layers, that are usually 
similar to Gabor filters, are not clear even after transfer 
learning when the source database is similar. Our 
assumption is that better generalization and prediction is 
possible by adding images from another distribution 
(medical and/or non-medical images). In addition to 
adding images from another distribution, our assumption 
is that incorporating some prior knowledge would help. 
Mapping from human to computer methods is not always 
completely identical but can help and serve as a useful 
analogy. Ophthalmologists use some general features of 
vision developed during life, some specific features 
learned about ophthalmic images, and use knowledge of 
retinal anatomy and pathological changes. We surmise 
that optimal results might be achieved by similar 
combinations: learning on a large number of images such 
as ImageNet, learning on the ophthalmic images 
themselves, and finally by adding some prior knowledge. 
Further research will test these assumptions. 
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