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Abstract:

We present the work that has been done on segmentation of abdominal aortic aneurysm (AAA)

by Image Processing Group on Faculty of Electrical Engineering and Computing in Zagreb.

We investigated performance of two types of deformable models: parametric and geometric

deformable models both operating on three-dimensional data sets obtained by computer to-

mography angiography (CTA). Both inner and outer aortic borders can be segmented. The

segmentation of the inner aortic border is trouble-free due to a contrast agent inside blood

flow, which results in good image contrast on the inner aortic boundary. Segmentation of the

outer aortic border presents a challenge because of poor image contrast on it. Tissue and or-

gans surrounding the aorta can have similar optical density as aortic wall and that can make

border between them hard to detect. Two types of deformable models provide two different

solutions to the problem. Both segmentation methods have been tested on real patient data.

1 Introduction

Abdominal aortic aneurysm (AAA) [2], [6] is a vascular disease, which affects about 2% of

people older than 65 years. AAA is an enlargement of the abdominal aorta due to weakened

aortic wall. If left untreated AAA will enlarge over time increasing the risk of aortic wall

rapture. As a fatal consequence 70 - 90% of patients with ruptured AAA will die. Although

AAA can be imaged by plain abdominal films, ultrasound, computed tomography, magnetic

resonance tomography [7] the gold standard is represented by intraarterial digital subtraction

angiography. The information on aortic size and shape is of great importance in diagnostics,

procedure planning and condition tracking. This information can be acquired from computer

model of abdominal aorta, which can be obtained trough imaging and image segmentation.

Modern medical imaging techniques followed by appropriate image analysis methods [1] have

shown to be useful for measurements of AAA [4], [8].



In this paper we describe two 3-D segmentation techniques based on deformable models, that

we applied on segmentation of AAA. First technique utilizes manual segmentation of several

slices (preferably on slices where significant change of aortic shape starts) followed by active

contour-based automatic segmentation. Second technique utilizes manual initialization of

deformable model (minimal user intervention is required) followed by automatic segmentation

based on a level-set deformable model. The motivation behind our work is the need of accurate

automatic segmentation which would relive human experts of difficult and tedious manual

segmentation and the need of high segmentation reproducibility.

2 Active contour approach

This approach is a trade off between fully manual methods which offer best results, but

are time consuming and automatic methods which work with minimal interference from the

operator, but offer less accurate results. The user is required to manually segment several

slices along the aorta. Best results are obtained if the user manually segments slices where

significant change in aortic shape occurs. Contours on those slices remain fixed. For the

remaining slices initial contours are linearly interpolated. After initialization, active border

algorithm is applied.

2.1 Active border algorithm

Active border is an extension of the active contour in 3-D space. In 3-D active border paradigm

the algorithm attempts to minimize an energy function, which is a function of the optical

density of the voxels on which the border is positioned and a function of the shape of the

border. Border C is described by a parametric description [3] as shown in Equation 1.

C(s, r) = [X(s, r), Y (s, r), Z(s, r)]T , 0 ≤ s ≤ 1, 0 ≤ r ≤ 1 (1)

The energy function is defined as E(C) = S(C) + P (C), where S(C) is the external energy

term (function of the image data) and P (C) represent the internal energy based on the shape

of the border.

The function S(C) relates image data and deformable border. S(C) is based on an energy

function V (x, y, z), which is defined on all image data (Equation 2).

S(C) =
∫

1

0

∫

1

0

V (C(s, r))dsdr (2)

The energy function V (x, y, z) should be formed in such a way to have low values for voxels

that are likely to be border voxels of the desired structure. The purpose of the energy function

P (C) is to ensure that border remains continuous and smooth. In our application we used

discrete parametric description of border C as shown in Equation 3. We defined Z(s, r) = r



and the value is kept constant for all nodes. The force is not calculated in z direction, which

reduces 3-D surface to a set of 2-D curves that cannot move among slices.

C(s, z) = [X(s, r), Y (s, r), z]T , s ∈ {s0, s1, ..., sm − 1}, z ∈ {z0, z1, ..., zn − 1} (3)

Xn′

= Xn−1 − τFx(C
n−1), Y n′

= Y n−1 − τFy(C
n−1) (4)

Fx = kf

|V x|

|V x| + |V y| + ε
(5)

Influence of S(C) on new node coordinates is calculated according to Equation 4 where τ

is discretization step and F is a force in x or y direction. The Equation 5 shows how Fx

is calculated (Fy is calculated in similar way). Here kf is a force constant, V x and V y are

derivations of the function V (x, y, z) in appropriate directions and ε is a small constant which

ensures that there is no division by zero. Influence of the energy function P (C) is included

trough convolution of node coordinates (Xn′

, Y n′

) by two smoothing kernels along the curve

and between curves (in z direction).

2.2 Implementation details

The energy function V (x, y, z) is calculated according to Equation 6,

V (x, y, z) = −Gσ2 · exp



−

(

D(x, y, z) − mgz

c1sgz

)2

−

(

I(x, y, z) − mdz

c2sdz

)2


 (6)

where I(x, y, z) is optical density of the original voxel, D(x, y, z) = |∇Gσ1 ·I| is image gradient

calculated on a single slice (Gσ1 is a 2-D Gaussian kernel). For each of the manually segmented

slices mean value and standard deviation of the gradient (mgz and sgz) and of the optical

density mdz and sdz) are calculated on the border nodes. For slices which are not manually

segmented mean and standard deviation values are linearly interpolated. The constants c1

and c2 are here to set weight of the gradient D and the optical density I, respectively. The

above described deformable model algorithm stops if change in energy function falls bellow a

predefined threshold.

2.3 Experimental results

The program has been tested in the clinical environment on the real patient abdominal CTA

data. Segmentation was performed on the manually selected regions of interest extracted from

the original CT volumes. Visualizations of the force functions are shown in Figures 1(a) and

1(b) and the result of the segmentation is shown in Figure 1(c). The smoothing kernels acting

as internal force P (C) were constructed in a way to produce relative high smoothing and thus

a very rigid deformable model. This however does not present a problem due to extensive

and precise model initialization done by the user. This also enables the deformable model

to successfully segment aortic aneurysm even when heavy image artifacts are present due to

metal parts of prosthetic device.



(a) Forces along x direc-

tion

(b) Forces along y direc-

tion

(c) Segmentation results

Figure 1: Active contour approach

3 Level-set approach

This approach was an effort to produce fully automatic segmentation method which would

require minimal user intervention. User intervention is used only to initialize the deformable

model by placing a sphere inside the aorta. This is done by clicking on the sphere center

and dragging the radius. We utilize a 3-D version of the level-set deformable model described

in [9].

3.1 Level-set algorithm

In the 3-D level-set algorithm, a 3-D surface of deformable model is represented as a set of

points where 3-D function Ψ has the value (level) equal to zero. The function Ψ is defined as

Ψ(x, t = 0) = ±d, where x ∈ R3 and d is a distance from point x to the given 3-D surface.

Once initialized, the function Ψ is evolved trough partial differential Equation 7. Discrete

form, shown in Equation 8, is used in computations.

∂Ψ(x, t)

∂t
+ F |∇Ψ| = 0 (7)

Ψn+1

ijk = Ψn
ijk − ∆tF

∣

∣

∣∇ijkΨ
n
ij

∣

∣

∣ (8)

F = e−|∇Gσ∗Iijk| (F0 + F1(Kijk)) (9)

Here Ψn
ijk is value of function Ψ on coordinates (i, j, k) in n-th iteration. Speed factor F (Equa-

tion 9) consist of constant speed term F0, curvature (K) dependant term F1(K), and stopping

factor e−|∇Gσ∗I| based on image gradient. Stopping factor of this form, stops deformable model

on points with high image gradient.

While the basic level-set algorithm performs well on inner aortic border, outer aortic border

poses a problem. Tissue surrounding aorta has similar optical density. If the neighboring



tissue touches aorta, then it is very difficult to distinguish border between them. The level-set

deformable model relies heavily on image gradient on the border and if the gradient would

be too small the deformable model would penetrate into surrounding tissue. This has shown

to be the biggest problem in segmentation of aortic aneurysm using the level-set deformable

model. To overcome the problem we introduced some knowledge based preprocessing. We

utilized knowledge of aortic shape and distribution of voxel values. The preprocessing is aimed

to enhancement of weak aortic borer and reconstruction of non existent aortic border. The

preprocessing also has to eliminate high image gradient on inner aortic border that would

interfere with segmentation of the outer aortic border. More details on used preprocessing

can be found in [5]

3.2 Experimental results

The program has been tested on abdominal CTA data of 11 patients. Segmentation was

also performed on the manually selected regions of interest extracted from the original CT

volumes. The results have been compared to two result sets of manually corrected segmenta-

tions. The error was calculated as number of falsely segmented voxels on each CT slice. The

average relative errors (from all segmented slices) between proposed algorithm and two sets of

manually corrected results were 12.35% and 19.75% while the average relative error, between

two manually corrected results, was 14.71%. The correlation of aortic surface on all slices

was 0.93 and 0.91 compared to two manually segmented results. Figure 2(c) shows results

for segmentation of outer aortic border. Large boundary gap on outer aortic border can be

observed on gradient image Figure 2(b) as well as high image gradient on inner aortic border.

(a) Original slice (b) Gradient image (c) Segmentation results

(outer aortic border)

Figure 2: Active contour approach



4 Conclusion

We have tested two types of deformable models on segmentation of the abdominal aortic

aneurysm. The methods have been tested in clinical environment. Both deformable models

have been tested on real patients data and have shown good results. Two methods try

to solve the segmentation problem from two different angles with different trade-off levels

between the amount of user interaction and robustness. Active contour approach requires

more user assistance but it is more robust and performs well even in atypical cases. The level-

set approach requires minimal user interaction but it is more sensitive to image conditions. To

eliminate negative influence of poor image contrast on outer aortic border, knowledge based

image preprocessing has been proposed. This preprocessing improves the performance of the

level-set deformable model.
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