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ABSTRACT 

 
The paper presents a new method for all-pole model 

estimation based on minimization of the weighted mean 
square error in the sampled spectral domain. Due to 
discrete nature of the proposed distance measure, 
emphasis can be put on an arbitrary set of spectral samples 
what can greatly improve the model accuracy for periodic 
signals. Weighting can also be applied to improve the 
fitting in certain spectral regions according to any desired 
fidelity criterion. Iterative algorithm for determination of 
the optimal model is proposed and an exceptionally fast 
convergence rate is demonstrated. Accuracy of the 
estimation algorithm is verified on an example of a 
synthetic vowel for a broad range of pitch frequencies. 

 
1. INTRODUCTION 
 

In conventional LPC estimation techniques, 
coefficients of the all-pole model are determined by 
minimizing the Itakura-Saito (I-S) distance measure 
between the signal spectrum and the all-pole model 
spectral magnitude integrated across the whole spectrum. 
Indeed, such minimization yields exactly the desired result 
as long as the spectrum of the excitation signal is flat, i.e. 
single impulse or white noise signal. However this 
simplistic assumption does not hold for real speech 
signals, so the estimation accuracy can be severely 
limited, especially for periodic excitation signals (e.g. 
voiced speech segments). Since such signals have a 
discrete spectrum, frequency response of the vocal tract 
can be measured only at frequencies corresponding to the 
harmonics of the fundamental frequency. For all other 
frequencies, behavior of the system is unknown and must 
not be used in the all-pole estimation. Better estimation 
accuracy can be obtained by fitting the all-pole envelope 
only to the set of known frequency response samples of 
the system. The excitation signal is still assumed to be 
flat, but discrete, i.e. consisting of spectral lines.  

The model that minimizes the average weighted mean 
square (WMSE) spectral distance in decibels between the 
signal spectrum samples and the samples of the all-pole 
model evaluated at the same set of frequency points is 

proposed in this paper. This technique utilizes summation 
in averaging of the estimation error, instead of integration 
as in the conventional LPC. It can be applied to an 
arbitrary set of frequency samples either harmonically 
related or not. Desire to use the WMSE spectral distortion 
measure in all-pole estimation has been present in the 
speech related field from its beginning, but the 
nonlinearity of the problem and nontractability of the 
solution were the main advocates against it. However, this 
paper will prove that the solution can be obtained in 
'almost' closed form and that it is simple enough to be 
implemented in most of the speech applications. The 
benefit of the improved estimation accuracy offered by the 
method is equally important in speech analysis and 
coding, as well as in the feature extraction for speech 
recognition.  

 
2. BACKGROUND  
 

The interaction between fine spectral structure and the 
speech spectral envelope causes aliasing in the domain of 
correlation coefficients. Format frequencies of the 
estimated all-pole model derived from these coefficients 
are biased towards the pitch harmonics. Secondly, aliasing 
causes significant underestimation of formant bandwidths 
especially for high-pitched female voices. Different 
approaches had been tried out in attempt to solve the 
above problem such as: bandwidth expansion [1][2], new 
error criterion that are better suited to the statistical 
properties of the excitation signal [3], or different 
constrained versions of a linear prediction with certain 
undesired parts of the speech signal excluded from the 
correlation computation [4]. Some other approaches were 
based on smoothing of the speech spectrum by 
interpolation of some low order polynomial functions 
between harmonic peeks of the spectrum and calculating 
the LP model corresponding to the smoothed spectrum 
[5],[6]. 

Although all of the above methods give some 
improvement and some of them are even quite popular, 
the first attempt to solve the problem directly was the 
discrete all-pole modeling method DAP [7]. Discrete 
nature of the speech signal spectrum and the aliasing of 



the correlation coefficients were taken into account during 
the all-pole estimation. The resulting model was the best 
fit to the spectrum lines in the sense of minimizing the 
discrete version of the I-S distance measure. The approach 
presented in this paper is similar to DAP but with two 
significant differences. Firstly, instead of I-S measure, the 
discrete WMSE spectral distance measure is used. 
Secondly, instead of modifying the predictor coefficients, 
the estimation is performed in the domain of line spectral 
frequencies (LSFs). These two differences have 
significant impact on the properties of the algorithm, as it 
will be shown. 

 
3. WMSE ALL-POLE ESTIMATION 
 

The proposed method is iterative and calculates new 
estimation of the all-pole model parameters based on the 
current model and the set of spectral samples that should 
be fitted by the new model in the least weighted mean 
square sense. Spectral samples Y=[y1,y2,...,yN]T given in 
decibels correspond to the finite set of frequencies (lines) 
ωi, i=1,2,...N. For voiced speech, these samples are equal 
to the harmonic peeks, while the frequencies, ωi, match 
the integer multiples of the pitch frequency.  

The initial all-pole model, H(z), can be found by any of 
the conventional LP techniques and is given as: 
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Magnitude response of the model H(z) expressed in dB 
is given as:  






⋅=  ( log20)( 10

ωω jeHP  (2) 









⋅−⋅=  ( log10)(log20

2
1010

ωσ jeA  (3) 



















++

+−
⋅−=

))cos(1(
2

)(

))cos(1(
2

)(

log10
2

2

10

ωω

ωω

Q

R

G

K

K

 (4) 

where R(ω) and Q(ω) are polynomials in the variable 
cos(ω) of the order p/2 with real roots [x2, x4, ... xp] and 
[x1, x3, ... xp-1] respectively, i.e.: 
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The roots x1 to xp are equal to the cosine of the line 
spectrum frequencies corresponding to the model H(z). 
The variable G gives gain of the model expressed in dB. 
Thus, through equations (4) to (6), the dB magnitude 
response P(ω,X) of the all-pole model is expressed as a 
function of ω and parameter vector X=[x1, x2, x3,... xp, G]T. 

For simplicity, the gain G will be treated as p+1st 
parameter denoted as xp+1 in the sequel. The WMSE 
spectral distance of the model to the given set of spectral 
samples can now be expressed as: 
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where wi is the weight of the ith spectral sample. The 
weights can be chosen according to any given fidelity 
criterion as it will be discussed latter. 

Direct minimization of D with respect to X yields a set 
of nonlinear equations in x1 to xp+1. Therefore, the function 
P(ω,X) is expanded in the Taylor series around the initial 
vector X0 and approximated by only the first two terms of 
expansion, i.e.: 
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S is the row vector comprised of first derivative functions 
of P(ω,X) with respect to components of X determined in 
the initial point X0. Since the distance D in (7) requires 
only the samples of the function P(ω,X) evaluated at 
frequencies ωi, functions P(ω,X) and P(ω,X0) in (8) are 
replaced by column vectors P and P0 respectively. Row 
S(ω,X0) becomes a sensitivity matrix denoted with S0, 
whose determination will be explained in the following 
section. For expressing the distance D in the matrix form, 
the weights w1 to wN are placed along the main diagonal of 
a diagonal matrix W, that results with: 
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By assuming the equality in the expression (8), D can 

be rewritten in terms of variations of the model parameters 
∆X and variation of spectral values ∆Y: 
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The problem of estimation can now be formulated as 
minimization of D with respect to ∆X. In other words, the 
goal is to modify the parameter vector in such a way that 
the new response P(ω,X) matches desired samples Y in 
the best possible way : 
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Since D in (10) has the well-known quadratic form, the 

solution of (12) is straightforward, i.e. the parameter 
modification vector ∆X must satisfy the following matrix 
equality: 

ΨXΦ =∆⋅  (13) 
where the system matrix ΦΦΦΦ and column vector ΨΨΨΨ are: 

YWSΨWSSΦ ∆⋅== TT
000             (14) 

Once the solution of (13) has been found, the new 
parameter vector can be formed as: 

XXX ∆+= 01  (15) 
If the solution ∆X is substituted back into the 

expression (10) for spectral distance D, it is easy to prove 
that Dmin is given by: 
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minD  (16) 

The first term is the initial distance D(X0,Y), while the 
second term is the reduction due to the correction vector 
∆X. However, one should keep in mind that this is only an 
estimate of the distance, since it is based on the 
approximate model of P(ω,X) in (8). Therefore, to 
evaluate the actual distance of the new model X1, P(ω,X1) 
should be evaluated according to equations (4) to (6). 

For non-negative weights, the p×p matrix ΦΦΦΦ is 
symmetric, positive semi-definite matrix, such that any 
efficient solution method can be applied. Numerical 
complexity of the solution is comparable to the covariance 
LP procedure. Since the minimization is reduced to the 
very well known least squares problem given in (13) and 
(14), all aspects concerning regularity of the matrix ΦΦΦΦ and 
uniqueness of the solution can also be applied here and 
will not be discussed. 

Modification of the all-pole model is performed by 
modifying the LSF vector as in (15), so there is a potential 
risk that the new model might become unstable. However, 
this problem has been well studied in the LSF quantization 
literature and there are several safety techniques for 
ensuring the stability of H(z) in the LSF domain, that can 
also be applied in this algorithm after modification in (15). 

 
4. CONVERGENCE OF THE SOLUTION 
 

Since only the approximation of P(ω,X) was used in 
the minimization procedure, the new model isn't necessary 
the best solution, but nevertheless it is much better 
estimate then the initial one. If desired, the whole 
procedure can be repeated by expanding P(ω,X) around 
the new point X1, finding the new sensitivity matrix S1, 
new correction ∆X and new model X2. Each iteration like 
this will yield better and better estimate. 

The convergence rate depends on the accuracy of 
approximation of P(ω,X). Due to the favorable spectral 
sensitivity properties of the LSFs, the accuracy of (8) for 
small variations ∆X is much better then for the other 
parametric representations of the all-pole model [8]. This 
constitutes one of significant advantages of the proposed 
method compared to [7] in which the modification is 
performed directly on the predictor coefficients. It will be 
shown on the example of a synthetic vowel that a single 
WMSE iteration of the proposed method performed on the 
initial autocorrelation LP model is sufficient to reduce the 
modeling error practically to zero, irrespectively of the 
pitch frequency. 

 
5. SPECTRAL SENSITIVITY OF THE MODEL 
 

Spectral sensitivity matrix S={si,j} is necessary for 
computation of the matrix ΦΦΦΦ and the column vector ΨΨΨΨ. 
The matrix has N rows for each of ωi and p+1 columns 
corresponding to LSFs x1, x2, x3,... xp, and to the gain term 

xp+1=G. The first derivatives of P(ω,X) with respect to 
components of X are readily available from the equations 
(4) to (6) as: 
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Functions Rj(ω) and Qj(ω) are similar to R(ω) and Q(ω) in 
(5) and (6), but are missing one product term, i.e.: 
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Finally the matrix elements si,j are evaluated as: 

j

i
ji x

Ps
 

),(
, ∂

∂
=

Xω  (23) 

Since all even columns have a lot of common factors of 
(21), significant complexity reduction can be obtained in 
computation. The same is also true for odd columns and 
the expression (22). Furthermore, the cos(ωi) term can be 
evaluated and stored only once for i=1 to N and then used 
in all of the above equations.  
 
6. SPECTRAL WEIGHTING 
 

Formulation of the proposed WMSE all-pole modeling 
includes spectral weights wi. If all input spectral samples 
lay exactly on any given all-pole envelope of the order p, 
then the exact model with D=0 can be found in the 
minimization procedure for an arbitrary choice of wi.>0, 
i=1 to N. However, for the real speech signals this is never 
true and the final model will only approximate the input 
samples in the WMSE sense. In this case weights can be 
used to put the emphasis on any given part of the spectrum 
or any given spectral sample according to some perceptual 
criterion, e.g. [7]. The weights for the new estimation 
iteration can even be derived from the coefficients of the 
current predictor estimate. For example, any of the LP 
derived weightings that are commonly used for 
quantization of the prediction residual in CELP coders, 
can be used as convenient choice. This way, not only the 
quantization of the LP residual but also the estimation of 
the all-pole model itself becomes consistent with the final 
distortion measure. 



7. EXPERIMENTAL RESULTS 
 

To evaluate the proposed WMSE all-pole modeling, an 
experiment was performed on a synthetic vowel 'a' as in 
'father'. The filter Ha(z) was excited with an ideal 
synthetic periodic signal with linearly increasing pitch 
from 80 Hz to 300Hz and a total duration of 20 sec @ 
8kHz. Spectral magnitudes of all excitation harmonics 
were exactly the same. The output of the filter was used as 
an input to the autocorrelation LP analysis with 200 
samples Hamming window. The analysis was repeated for 
each 40 new time samples, resulting in the total number of 
4000 frames. For each frame k, the estimated LP model 
Hk(z) was compared to the template model Ha(z), by 
computing the conventional SD distortion measure as: 
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The LP model was then used as an initial all-pole 
model for 10 iterations of DAP estimation [7] and 2 
iterations of the proposed WMSE estimation, both with 
unit weights. It was observed that DAP modeling has 
problems with convergence for default step sizes, so the 
step size reduction factor α=0.6 was applied as suggested 
in [7]. In the case of WMSE modeling, the optimal step 
size is computed automatically according to (13). For both 
techniques, the model mismatch was computed for each 
frame and iteration according to (24) and is plotted in Fig. 
1. and 2. as a function of the pitch frequency. It can be 
observed that DAP estimation fails to resolve the template 
model even after 10 iterations, while for WMSE modeling 
the estimation error is bellow 0.35 dB after the first 
iteration and practically equal to zero after the second one.  
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Figure 1. Estimation error of the DAP modeling 

 
8. CONCLUSION 
 

It has been demonstrated that WMSE distance measure 
in the sampled spectral domain can be successfully 
applied for the all-pole model estimation. The proposed 

technique resolves problems associated to the deficiencies 
of the conventional linear prediction methods and 
significantly improves the spectral match even in a single 
iteration. Interframe LSF quantization techniques can 
greatly benefit form WMSE estimation, since random 
fluctuations due to modeling errors are reduced. Residual 
signal quantization can also be improved since WMSE 
all-pole model performs better whitening of the spectral 
peeks then the conventional models. Furthermore, since 
the complexity of the method is comparable to the 
covariance LP method, it can be easily applied to any 
real-time system. 
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Figure 2. Estimation error of the WMSE modeling 


