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Abstract: A 3D structured light (SL) system is one powerful 3D imaging alternative which in the simplest case is 
composed of a single camera and a single projector. The performance of 3D SL system has been studied 
considering many aspects, for example, accuracy and precision, robustness to various imaging factors, 
applicability to a dynamic scene capture, hardware and image processing complexity, to name but a few. In 
this work we consider the spatial projector-camera set up and its influence on the uncertainty of points’ depth 
reconstruction. In particular, we show how a depth precision is in a great extent determined by the angle of 
pattern projection and the angle of imaging from a projector and a camera, respectively. For a fixed camera 
projector configuration, those angles are scene dependent for various points in space. Consequently, the 
attainable depth precision will typically vary considerably across the volume of reconstruction which is not a 
desirable property. To that end, we study a scene dependent 3D imaging approach during which we propose 
how to conveniently detect points with a lower depth precision and to influence other factors of a depth 
precision, in order to improve a depth precision in scene parts where necessary. 

1 INTRODUCTION 

The study on 3D imaging system design has attracted 
a great deal of attention in computer vision. There has 
been many methods and systems proposed (Chen, 
Brown, & Song, 2000). A particularly interesting 
ones are active illumination 3D imaging systems 
where, besides a camera, an active source of 
illumination is introduced. The most representative 
ones are photometric systems (Barsky & Maria, 
2003), time-of-flight (ToF) cameras (Hansard, Lee, 
Choi, & Horaud, 2012) and structured light (SL) 
systems (Geng, 2011). SL has proven to be one of the 
most accurate and robust methods proposed and 
analyzed (Salvi, Fernandez, Pribanic, & Xavier, 
2010). In SL an illumination source is typically a 
projector. The main task of a projector is to project 
pattern(s) in the scene. That is especially beneficial 
when a natural scene has a low texture since SL is 
triangulation-based 3D imaging system and, in order 
to triangulate 3D point position, it is necessary to find 
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the correspondent projector and camera image 
coordinates. Having basically two different pieces of 
hardware HW, i.e. a camera and a projector, opened 
an additional vast amount of research possibilities to 
study the performance of SL systems. Naturally, the 
reconstruction accuracy and precision aspects have 
been given perhaps the most attention. To that end, 
different factors and system design issues have been 
analyzed and various measures have been proposed in 
order to improve the accuracy and precision. 
However, somewhat surprisingly and to the best of 
our knowledge, there is relatively less work about the 
spatial geometrical set up between a camera and a 
projector (Liu & Li, 2014). We note that besides a 
camera projector baseline, two other most obvious 
factors defining a geometry of 3D reconstruction are 
the angle of projector’s pattern projection and the 
angle of camera imaging (angles α and β in Figure 1).  

In this work our main contributions are related to 
those two angles and to their influence on the depth 
precision. First, we derive an expression clearly 
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showing the various factors determining the depth 
precision of a SL system, two of which are the afore 
mentioned angles of pattern projection and imaging. 
We further demonstrate how those two angles change 
across the scene, thus having a significant impact on 
the expected depth precision throughout the scene. 
Obviously, the pair of such angles are scene 
dependent and for a general scene cannot be 
anticipated in advance. we also provide a simple 
measure on improving the depth precision for those 
points in space where the particular angles cause an 
unsatisfactory depth precision. In turn, the proposed 
strategy allows scene dependent 3D imaging.  

The remainder of this work is structured as 
follows. We next briefly cover the related work on 3D 
active imaging. Afterwards we derive an expression 
for SL system depth precision, followed by the 
experimental simulations of depth precision 
dependency on angles of pattern projection and 
imaging. In the same section we discuss possible 
measures of improving the depth precision. At the end 
we reflect on the possible future work and draw the 
main paper conclusions.  

2 RELATED WORK 

A common approach to classify 3D imaging systems 
is to divide them in the following three groups: 
triangulation, interferometry and time-of flight 
(Büttgen, Oggier, Lehmann, Kaufmann, & 
Lustenberger, 2015). An even simpler classification 
would be only in two groups: passive and active 3D 
imaging systems. Within the active ones two most 
notable representatives, and closely related to this 
work, are structured light systems and time of flight 
cameras which will be, therefore, in brief jointly 
overviewed. 

Due to a fact that an active source of illumination 
has been utilized, a significant deal of work was 
devoted to the performance error analyses where 
multiple illuminations sources (3D imaging systems) 
are simultaneously used. To prevent either interfering 
one SL projector with another or one ToF LED (laser) 
source with another several approaches have been 
proposed: space division-multiple access (Jia, Wang, 
Zhou, & Meng, 2016), wavelength-division multiple 
access (Bernhard & Peter, 2008), time-division 
multiple access, frequency-division multiple access ) 
(Petković, Pribanić, & Đonlić, 2017), and finally, in 
the case of ToFs, a code-division multiple access 
(Whyte, Payne, Dorrington, & Cree, 2010). 

When analyzing the performance of a single 3D 
imaging system, a significant work was done, mostly 
in the field of ToFs, studying hardware itself w.r.t. to 
various factors such as power budget, quantum noise 
and thermal noise (Lange & Seitz, 2001); or 
integration time related error and built-in pixel related 
error (Foix, Alenya, & Torras, 2011). On the other 
hand, SL system performance has been analyzed 
mainly in the hardware agnostic manner, i.e. more in 
the image processing sense by trying to identify 
potential errors during pattern(s) (de)coding process 
(Horn & Kiryati, 1997) and/or by finding the optimal 
coding scheme (Gupta & Nakhate, A Geometric 
Perspective on Structured Light Coding, 2018). That 
is in a way understandable since in terms of signal 
processing ToF is generally based on two or three 
principles: continuous/discrete and direct time of 
flight (Horaud, Hansard, Evangelidis, & Ménier, 
2016). On the other hand, SL has richer alternatives 
regarding the various types of patterns to be projected 
and subsequently processed, particularly using color 
patterns for dynamic scenarios (Petković, Pribanić, & 
Đonlić, 2016). In that sense a high emphasis was put 
on a design of patterns to be projected (Mirdehghan, 
Chen, & Kutulakos, 2018). Interestingly, certain 
hardware design proposed solutions for ToF, e.g. 
epipolar time of flight imaging (Achar, Bartels, 
Whittaker, Kutulakos, & Narasimhan, 2017), are 
applicable for SL too.  

One of the main differences between ToF and SL 
is the former does not have the baseline involved 
since ToF illumination source and camera are 
generally assumed to be collocated. In terms of the 
baseline, an interesting work has been done in SL 
when the baseline is very small which simplifies the 
process of finding a projected code in cameras images 
(Saragadam, Wang, Gupta, & Nayar, 2019). 
Moreover, a close work to ours is the one analyzing 
the influence of the short projector-camera baseline 
on the performance (Liu & Li, 2014). Similarly 
(Bouquet, Thorstensen, Bakke, & Risholm, 2017) 
compares the performance 3D SL and ToF systems, 
but without any relation to the geometrical 
configuration between the camera and the projector. 
To the best of our knowledge none of the mentioned 
works are specially concentrated on the analyses of 
the pattern projection angle and the camera imaging 
angle and their impact on the estimated depth 
precision.  
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3 DEPTH PRECISION OF SL 3D IMAGING SYSTEM 

 
Figure 1 A: 3D point T, at the depth D from the camera (C), is projected in the camera (C) image at (uc, vc) and in the projector 
(P) image at (up, vp). Backprojected rays to the point T from the projector and the camera form with the baseline B the angles 
α and β, respectively. FOV stands for a projector’s field of view. fx and fy are the effective focal lengths in the horizontal and 
vertical direction, receptively.  

We start by introducing the basic principle behind 
phase shifting (PS) method which is very likely the 
most notable SL pattern strategy (Salvi, Fernandez, 
Pribanic, & Xavier, 2010). PS consists of sequentially 
projecting a number (N≥3) of periodic sine patterns, 
shifted by some phase shift 𝜑 = ଶ∙గே ∙ 𝑖, where i=0, 1, 
… N-1. The projected patterns are imaged by a 
camera and then processed to compute a wrapped 
phase φ, based on which the correspondence between 
projector and camera image pixels can be established. 
The intensity Ii observed at some camera pixel can be 
modeled as follows: 𝐼 = 𝐴 ∙ sin(𝜑 + 𝜑) + 𝐶 (1)

where A is the brightness when projector projects its 
full intensity (A is related to 3D points reflectivity and 
propagation loss), φ is the unknown phase, φi is the 
known relative phase shift at which a particular pattern 
was projected, and C represents the contribution from 
a background illumination. Evidently having three 
unknowns (A, φ and C) there are at least N=3 shifts 
(projected patterns) needed to recover all three 
unknowns. In practice to cope with the noise at least 
four shifts are normally used, both in SL and ToF 
systems also (Büttgen, Oggier, Lehmann, Kaufmann, 
& Lustenberger, 2015), which allows to recover the 
unknowns: 
 

𝐴 = ඥ(𝐼 − 𝐼ଶ)ଶ + (𝐼ଵ − 𝐼ଷ)ଶ2𝜑 = tanିଵ ൬𝐼 − 𝐼ଶ𝐼ଵ − 𝐼ଷ൰𝐶 = 𝐼 + 𝐼ଵ + 𝐼ଶ + 𝐼ଷ4
 (2)

We next derive a depth precision of the SL 
system. Figure  shows rectified, but still a very 
general relationship between a projector, a camera 
and some triangulated point in space. Using the law 
of sines, we derive an expression for the depth D: 𝐷 = 𝐵 ∙ sin(𝛼)sin(𝛼 + 𝛽) (3)

where B is projector-camera baseline, and given some 
point T, α is projector pattern projection angle with 
the respect to baseline B and β is a camera imaging 
angle with the respect to baseline B too. Depth 
precision can be quantitively estimated as a depth 
uncertainty where the cause of uncertainty can be 
attributed to the noise in measurements Ii of Eq. (1). 
In particular, a standard deviation σD of depth is 
commonly estimated using the expression for the 
error propagation: 
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𝜎ವ = ඩ  ൬𝜕𝐷𝜕𝐼 ൰ଶ ∙ 𝑉𝑎𝑟(𝐼)ேିଵ
𝑖 = 0  (4)

where the variance Var(Ii) is modeled as being equal 
to the signal level (Lange & Seitz, 2001). According 
to the expression (3), the depth D is explicitly 
dependent on the angles α and β. However, angle α 
can be expressed as a function of the phase φ (2) 
which in turn provides a relationship to the 
measurements Ii. Hence, using the chain rule the 
partial derivative డడூ can be expressed as:  𝜕𝐷𝜕𝐼 = 𝜕𝐷𝜕𝛼 · 𝜕𝛼𝜕𝜑 · 𝜕𝜑𝜕𝐼  (5)

Based on Eq. (3), the first factor in Eq. (5) is readily 
computed:  𝜕𝐷𝜕𝛼 = 𝐵 · sin 𝛽𝑠𝑖𝑛ଶ(𝛼 + 𝛽) 

(6)

The actual relationship between the angle α and the 
phase φ is less obvious. According to Figure 1, the 
vector vP pointing back in space in the direction of the 
spatial point T can be computed based on the 
projector calibration matrix KP and on the projector 
image point p=[up vP 1]T: 𝐾 = 𝑓௫ 0 𝑢0 𝑓௬ 𝑣0 0 1 ൩

𝑣 = 𝐾ି ଵ ∙ 𝑝 = ⎣⎢⎢
⎢⎡ 𝑢−𝑢𝑓௫𝑣 − 𝑣𝑓௬1 ⎦⎥⎥

⎥⎤


 (7)

where (uP, vP) are projector image coordinates, 
(u0, v0) is the position of the principal point in the 
projector image. fx and fy are effective focal lengths 
in horizontal and vertical direction, respectively. For 
the simplicity of exposition and without loss of 
generality we can set an image component coordinate 
u as being identical to the wrapped phase φ. Next, the 
angle α is immediately determined by a dot product 
between the vector vP and the baseline B direction 
vector vB, where vB can be taken as a unit vector.  cos 𝛼 = 𝑑𝑜𝑡(𝑣, 𝑣)|𝑣| ∙ |𝑣| = 𝑑𝑜𝑡(𝑣, 𝑣)|𝑣|  (8)

Evidently this poses a nonlinear relationship between 
the angle α and the wrapped phase φ. Fortunately, the 
angle α typically spans values where the cos 𝛼  𝑖𝑠 
fairly linear w.r.t. its argument (unless a wide-angle 
optics for a projector is used). Therefore, similarly as 

in (Bouquet, Thorstensen, Bakke, & Risholm, 2017), 
we approximate the relationship between the angle α 
and the wrapped phase φ with a linear function. Using 
fairly straightforward geometry relations, depicted on 
Figure , it can be shown that: 𝛼 ≈-FOV/φ_MAX ∙ 𝜑 + గାிைଶ  (9)

where FOV is projector’s field of view. Eq. (9) finally 
determines the partial derivative డఈడఝ = − ிைఝಾಲ  and 
simplifies the original (4) to.  𝜎ವ = 𝐵 · sin 𝛽 ∙ 𝐹𝑂𝑉sinଶ(𝛼 + 𝛽) ∙ 𝜑ெ∙ ඩ  ൬𝜕𝜑𝜕𝐼൰ଶ ∙ 𝐼ேିଵ

𝑖 = 0  
(10)

The sum of partial derivatives under the square root 
from (10), using the relations (1)  and  (2), will yield √√ଶ∙ and will ultimately define the final expression for 
the depth standard deviation σD: 𝜎ವ = 𝐷ଶ · 𝐹𝑂𝑉 ∙ √𝐶𝐵 ∙ 𝜑ெ ∙ √2 ∙ 𝐴 ∙ sin 𝛽𝑠𝑖𝑛ଶ𝛼𝜎ವ = 𝐵 · 𝐹𝑂𝑉 ∙ √𝐶𝜑ெ ∙ √2 ∙ 𝐴 ∙ sin 𝛽𝑠𝑖𝑛ଶ(𝛼 + 𝛽) (11)

Here we point out the dependence of σD on the part 
we call the angle factor 𝐴𝐹 = ୱ୧୬ ఉ௦మ(ఈାఉ). In the next 
section we show how AF affects the amount of 
standard deviation σD across the reconstruction whole 
volume. 

4 RESULTS AND DISCUSSION 

In this section we first show how the angle factor AF 
varies across a 3D imaging scene. Then we use Monte 
Carlo approach in the synthetic experiments to 
estimate the depth standard variation σD for various 
points in the 3D space. Finally we propose and 
discuss strategies to improve depth precision for the 
desired portion of space, in order to achieve a more 
uniform depth precision values across the volume. To 
that end, and without loss of generality, we assume 
one plausible projector-camera set up where projector 
and camera images are epipolary rectified (Fusiello, 
Trucco, & Verri, 2000) and with the following 
parameters: the baseline B=300mm, the effective 
focal lengths in pixels fx=fy=1000, image resolution 
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(u, v)=(1024, 768), the principal point coordinates 
(u0, v0)=(512, 384).  

Figure 2 visualizes the change of AF for a given 
volume and at the standoff distance 400mm from the 
3D SL scanner. In the case of this rectified projector-
camera set up, AF factor increases (a depth precision 
becomes worse) almost linearly along the volume 
depth. However, besides volume depth alone, which 
can be fairly arbitrary defined, we are even more 
interested about AF dependency of the depth D wrt to 
the camera itself.  

 
Figure 2: The relative change of AF across the 3D imaging 
volume 800mm×800mm×1000mm(width×depth×height). 
3D scanner standoff distance is 400mm. 

Figure 3 shows, for a sequence of constant depths 
D, how AF changes as the angle α changes, spanning 
the entire projector’s FOV angle. Given the current 
projector-camera arrangement it turns out that at 
some constant depth D, AFs become worse and worse 
as the angle α increases. In fact, the relative 
discrepancy between points having a small AF and 
points having a big AF is more evident as the depth D 
is smaller. 

 
Figure 3: Each solid curve corresponds to a constant depth. 
Going from the top curve to the bottom, depth D changes 
from 350mm to 1000mm. Values within each curve are 
normalized on the smallest AF value for that curve (depth). 

 
Figure 4: A camera image of the 3D plane of points, parallel 
to the projector-camera image plane, where the intensity 
represents the values of AF. 

Figure 4 presents another alternative overlook on 
the issue. In this case points in 3D plane, at the 
standoff distance of about 300mm and parallel to the 
projector-camera image planes, are projected to the 
camera image where for each point the value AF is 
shown as the intensity. Going from the upper left 
corner to the lower right corner, a diversity of AF 
values is witnessed, even though the points are in the 
plane parallel to the projector/camera images. Thus, 
one must not conclude, as may seem at the first glance 
based solely on the previous Figure 2, that in planes 
parallel to the projector-camera image plane there are 
no notable changes in the AF values. Therefore, in the 
case of a general scene it is reasonable to expect 
points having different values for the angles α and β 
not only at different depths D, but also within the 
same depth D as well.  In turn, a diverse set of AF 
values is expected to be present. The fact is that 
having point clouds reconstructed with the 
significantly different precision values per individual 
points may impair further processing on the point 
cloud itself.  

The natural question raises on how to improve the 
depth precision for a desired portion of 3D points or 
even for individual points. Examining the expression 
(11) we notice the depth standard variation σD is 
controlled by several parameters. The one most 
convenient to control is likely to be the value A 
dictated by the strength of the illumination source. 
Using the illumination source with an adjustable 
illumination power over different portion of projector 
images/patterns, such as in (Gupta, Yin, & Nayar, 
Structured Light In Sunlight, 2013), it is possible to 
relatively easily decrease or increase the value of A 
during the scanning (pattern projection). In turn this 
assures a seamless approach to directly impact the 
depth standard variation σD in the areas where needed. 
Our proposed approach initially scans 3D scene 
simply to get an estimate on AF values. This intial 
scan is done in practice using the fewest number of 
patterns possible since we just need a rough estimate 
of AF values which does not require highly accurate 
and precise 3D reconstruction. Afterward, the scene 

depth D increases 
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is re-scanned using the full set of patterns and with 
the appropriate strengths of the illuminations across 
the scene. 

In attempt to verify the crucial part of our 
approach we perform the following simulation. We 
randomly sample M=100 points from the volume as 
defined in Figure 2. Such point set will exhibit a 
significantly different AF values. For each of these 
3D points we estimate the depth standard variation σD 
using the Monte Carlo simulation. That is, we assume 
an additive Gaussian noise on the image values Ii 
from Eq.(1), with noise variance equal to Ii, and 
generate such random noise values in order to 
compute the phase φ from Eq.( 2). Knowing φ we can 
eventually estimate noisy depth D. Repeating the 
experiment a number of times (N=10000) for each 
known 3D point, allows us to estimate directly the 
depth standard deviation σD. According to our theory 
we expect to see a proportional relation between the 
estimated depth standard deviation and the 
corresponding AF of a certain point. In another 
words, the ratios between the different depth standard 
deviations σD should be the same as the ratios of AF’s. 
Following the above-mentioned simulation, Figure 5 
presents on the vertical axis the estimated depth 
standard deviations normalized to the smallest one in 
the randomly chosen set of the above mentioned 
M=100 points. On the horizontal axis the 
corresponding AF’s are normalized to the AF of the 
smallest estimated depth standard deviation. In Figure 
5 emerges (almost) a straight diagonal (red) line 
which confirms our predicted theory.  

 
Figure 5: Diagonal (red) line: Verification of the 
relationship between the depth precision and AF. 
Horizontal (blue) line: After the proposed adjustment of 
illuminations source strength, depth precision becomes 
invariant w.r.t. AF. 

Next, we look for the ratio of AF’s with the 
respect to the point having the smallest (within 

randomly chosen set of M=100 points) estimated 
depth standard deviation and we aim to appropriately 
increase the illuminations strength of all other points 
in order to achieve the same depth precision. Thus, 
we run another Monte Carlo simulation for estimation 
of standard deviations, but this time with the suitably 
increased value A for each of the remaining points. 
Figure 5 shows a straight horizontal (blue) line 
proving that after the proposed adjustment of the 
illumination strength a depth precision (an estimated 
depth standard variation) is uniform across all 3D 
points, i.e. it is independent of the AF. 

5 CONCLUSIONS 

In this work we have proposed a method for scene 
dependent 3D imaging aimed at improving the depth 
precision at various 3D points in space. We have 
begun by developing a theoretical framework 
explaining the depth precision in 3D imaging system 
based on the SL principle. Within this framework we 
have identified several key factors determining a 
depth precision, among which are the projector’s 
angle of pattern projection and the camera’s angle of 
imaging. We have proposed to analyze jointly the 
influence of these two angles through a proposed 
angle factor AF. Having established a clear 
dependence of AF on the depth precision, we have 
further proposed a simple approach to improve the 
depth precision on the desired set of points, by 
manipulating the strength of the illumination source. 
The foreseen future work will include the 
implementation and evaluation using the actual 
hardware. In addition, we plan to consider the 
improvement of depth precision using other factors 
such as the number of phase shifts undertaken during 
the phase shifting procedure. 
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