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Abstract 
3D registration is a process of aligning multiple three-dimensional (3D) data structures (such as point 
clouds or meshes) and merging them into one consistent and seamless 3D data structure. With the 
scope of 3D reconstruction, 3D human body scans from multiple views need to be registered into a 
single point cloud to create a seamless 3D representation.  
Following current state-of-the-art deep learning approaches [1,2,3], we argue that an encoder-decoder 
approach, where the decoder part of the architecture uses a recursive layer that iteratively estimates 
the rigid transformation, should provide the best results. We adapt an approach created for the task of 
3D segmentation called RSNets [4] to the task of 3D registration and compare it to the current state-of-
the-art algorithm PCRNet [3].
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1. Introduction
3D registration is a fundamental problem in computer and robot vision. Given two 3D structures (usually 
represented as a set of points) in different coordinate systems, or equivalently in the same coordinate 
system with different poses, the goal is to find the transformation that best aligns one structure to the 
other. It arises as a subtask in many different vision applications such as: 3D reconstruction [5,6,7], 
object recognition and categorization [8,9,10], shape retrieval [11], robot navigation [12,13] and data 
fusion obtained from different sensors [14]. Figure 1. shows two 3D human point clouds obtained from 
two different viewpoints of the same object that, when registered, merge into one seamless and 
coherent object. 

Fig 1. Example of partial registration of two point clouds. 

Even though some of these problems might be solved using hardware solutions [15] such as calibrated 
mechanics (e.g. movable robot arms) aware of their positional displacement, the applicability of such 
solutions is poor. Furthermore, problems such as object recognition, still require software solutions, 
thus making 3D registration a prominent research field. 
Whereas this paper focuses on rigid registration, where we assume a fixed rigid environment, there are 
approaches [16] that tackle the more general non-rigid registration problem in which articulated objects 
and soft bodies that can change shape over time might be present. 
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2. 3D Transformations 
A rigid 3D rigid-body transformation can be represented in several ways. The core elements of the 
transformation are a rotational component R and a translational component t which, obviously, rotate 
and translate the 3D object in hand. The rotational component R is a 3x3 matrix from the special 
orthogonal group SO(3), also called the rotation group, which contains all 3x3 orthogonal matrices 
having determinant equal to 1. The orthogonality condition is necessary because the rotation connects 
two coordinate systems while the unit determinant condition follows from the orthogonality condition 
and preservation of the "handedness" of the coordinate system. More intuitively, the rotation matrix R 
can be further divided into three matrices representing the rotation around each of the three axes x, y 
and z by the angles α, β and γ in the following way: 
 

ܴ = ܴ௭(ߛ)ܴ௬(ߚ)ܴ௫(ߙ)   (1) 
where: 
 

ܴ௭(ߛ) = ൥
cos(ߛ) − sin(ߛ) 0
sin(ߛ) cos(ߛ) 0

0 0 1
൩ ܴ௬(ߚ) = ൥

cos(ߚ) 0 sin(ߚ)
0 1 0

− sin(ߚ) 0 cos(ߚ)
൩ , ܴ௫(ߙ) = ൥

1 0 0
0 cos(ߙ) − sin(ߙ)
0 sin(ߙ) cos(ߙ)

൩. (2) 

 
This representation indicates that there are only 3 degrees of freedom (DOF) when determining a 
rotation matrix as opposed to 9 when looking at the matrix as an element of the SO(3) group. 
The translational component t is a 3x1 vector from ܴଷ  and has 3 DOF as well. Consequently, in 
combination with a rotation, the rigid transformation has 6 DOF. 
If ݌ = ,ݔ]  ,ݕ  :is a point in space, then a rigid transformation can be written in matrix form as ்[ݖ

 
ᇱ݌ = ܴ ∙ ݌ +  (3)  ݐ

 
where ∙ represents matrix multiplication and ݌ᇱ = ,ᇱݔ] ,ᇱݕ   .ᇱ]்is the transformed pointݖ
 
We can combine the rotation and translation matrices to form a more compact representation of the 
rigid transformation using homogeneous coordinates. Homogeneous coordinates are usually used in 
projective geometry and offer a simplified way of combining transformations using only matrix 
multiplications. They extend 3D points [ݔ, ,ݕ ்[ݖ  with equivalence classes [݇ݔ, ,ݕ݇ ,ݖ݇ ݇]்  which 
represent the same point for any ܴ݇߳ ∖ 0. Now, the transformation is as a 4x4 matrix from the special 
Euclidean group SE(3) with the form: 
 

ܶ =  ൥
     
 ܴ  ݐ 
0

 
0

 
0

 
1

൩  (4) 

 
where again ܴ ߳ ܱܵ(3) and ܴ߳ݐଷ. 
If ݌ = ,ݔ]  ,ݕ ,ݖ 1]்$ is a homogeneous representation of a point in space, the rigid transformation now 
takes form: 
 

ᇱ݌ = ܶ ∙  (5)  ݌
 

where again ∙  is the matrix multiplication and p’ is the new transformed point in homogeneous 
coordinates. Both SO(3) and SE(3) are Lie groups with their appropriate Lie algebras so(3) and 
se(3). An exponential map connects these two structures and allows us to represent a transformation 
matrix ܶ ߳ ܵ(3)ܧ as an element of the se(3) algebra as so: 
 

ܶ = ∑)݌ݔ݁  ௜௜ߝ ௜ܶ)  (6) 
 
where ௜ܶ  are the generators of the exponential map with twist parameters ଺ܴ ߳ ߝ  . Now, the rigid 
transformation takes the same form as equation (5). 
There exist other transformation representations, such as quaternions, but are rarely used in the context 
of 3D registration and are hence not relevant to our discussion. 
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3. Problem Formulation 
As we've seen, the registration problem comes down to finding the rotation R and translation t matrices 
that best align the two point clouds. The problem can be approached by defining a cost function that 
represents the current error, and indicates how well the two point clouds overlap. This cost function is 
then minimized using common optimization techniques. The most common cost function is the L2 norm 
of the point cloud displacements. 
Let ܺ = ௜ୀଵ{௜ݔ}

ே  be the source and ܻ = ௝ୀଵ{௜ݕ}
ெ  the target point clouds that need to be registered. 

Usually this terminology indicates that we are searching for a transformation of the target point cloud Y 
that registers it to the source X.  
Let 

= ܥ  ൛(ݔ௜ , ,ܺ ߳ ௜ݔ |(௝ݕ ௜ݔ)݀ ܻ ߳ ௞ݕ ∀ ݈݃݊݅݀݋௝߳ ܻ ℎݕ , (௝ݕ  < ௜ݔ)݀  , ௜ݔ)݀ ݀݊ܽ (௞ݕ , (௝ݕ  <  ൟ  (7)ݎℎݐ 

be a set of correspondences between points from X and Y where ݀(∙,∙) is the Euclidean distance and 
thr is a threshold that discards distances larger than it, as to omit larger errors when dealing with partial 
registration. As opposed to full registration, where all the points from the source point cloud have a 
match in the target point cloud, partial matching assumes only some points are correspondent (as is 
the more typical case). Figure 1 shows one such example. Then, the registration problem can be written 
as a minimization problem: 

min
ோ,௧

∑ ฮܴ ∙ ௜ݔ  + ௝ฮݕ − ݐ
ଶ
ଶ

(௫೔,௬ೕ) ఢ ஼   (8) 
 
Here, the set C was determined as the points from both clouds that have the smallest distance to one 
another which is a technique usually used in fine matching rather than coarse matching. More generally, 
the set C can be determined in many alternative ways as we'll see in later chapters. In practice, the 
correspondences are unknown which makes (8) a classic "chicken-and-egg" problem: if the 
correspondences are known, R and t can be easily found; if R and t are known, the correspondences 
are easily derived. 
To conquer this, some methods interchangeably search for the correspondences and transformation. 
Most of them, however, focus on finding reliable correspondences after which the transformation is 
derived. 
If C is the set of correspondences, (8) has a closed form solution: 

ܴ =  ்ܸܷ , = ݐ ݔܴ̅−  +  ത  (9)ݕ

where U and V are obtained using the singular value decomposition (SVD)  ܪ =  ்ܷܸܵ  of the 
covariance matrix 

= ܪ  ∑ ௜ݔ) − ௝ݕ)(ݔ̅ − ்(തݕ
(௫೔,௬ೕ) ఢ ஼   (10) 

and centroids  
ݔ̅  =  ଵ

ே
∑ ௜ݔ

ே
௜ୀଵ , തݕ  =  ଵ

ெ
∑ ௝ݕ

ெ
௝ୀଵ   (11) 

 
More intuitively, the process is similar to the principal component analysis (PCA) and extracts the major 
directions of shared change from the origin centered point clouds. 
 

4. Related work 
As said before, there are two approaches towards solving (8). One is to first determine the 
correspondences and use them along with (9). We denominate this approach as detection-description-
matching as the three major components of the pipeline. The second method is to try and solve directly 
for R and t in various methods. We denominate this approach as all-in-one since they cannot be broken 
down into the detection-description-matching pipeline. 
 
4.1 Detection-description-matching approaches 
In this approach, a detection step is firstly used to reduce the number of points being considered in the 
registration process. It consists of detecting a certain number of key points that are prominent according 
to a specific criterion. The sizes of the input data make the detection step necessary in many 
approaches to obtain computationally manageable datasets.  
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Following evaluation papers and algorithm comparisons [18,19,20,21,22], some of the most promising 
hand-crafted detectors are: ISS [23], MeshDoG [24], Harris 3D [25] and HKS [26] whilst most 
promising learned detectors are described in: Salti et al. [20], Lin et al. [22], Suwajanakorn et al. [27]. 
The second step of the pipeline, description, consists of assigning values to the detected key points 
according to the local shape around them. They can be classified by the fact if they are based on a local 
reference frame (LRF) or just the local geometry. LRF is an independent 3D coordinate system from the 
world coordinate system that is established on the local surface. The goal of a LRF is mainly to make 
the feature description invariant to rigid transformation. LRF based methods have generally surpassed 
LRF-independent ones on most publicly available datasets [28]. Some LRF based methods are SHOT 
[8], RoPS [9] and LoVS [29]. Deep learning based descriptors, such as: PointNet [30], 3DMatch [31], 
CGF [32], PPFNet [33], PPF-FoldNet [34] and 3DFeat-Net [35], have surpassed many hand-crafted 
local geometric descriptors. Nevertheless, the majority of learned descriptors from raw data still suffer 
from sensitivity to rotation. 
Finally, searching strategies are used to find correspondences between points in the two point sets. 
Descriptor values are used to prioritize the best apparent correspondences and a minimum of three are 
needed to determine the coarse alignment in 3D. Rather than using brute-force methods which are 
computationally expensive and yield a cost of O(n6) (triplets from both clouds need to be checked), we 
strive for more elaborate algorithms in order to report results in a reasonable amount of time. This is 
where searching (matching) algorithms take over. 
Following [36],[37], the state-of-the-art methods for finding correspondences are geometric consistency 
(GC) [38], 3D Hough Voting (3DHV) [39] and game theory matching (GTM) [40].  
After achieving a coarse alignment, a refinement step is applied. This step usually consists of using 
iterative methods to align the shapes as accurately as possible. 
 

 
Fig 2. Pipeline of the detection-description-matching approach. Taken from [21]. 

 
4.2. All-in-one approaches 
There are several methods [41] that cannot be separated into the detection-description-matching 
pipeline as the ones before. 
4-point congruent sets (4PCS) [42] is a global registration algorithm. The global optimality references 
the finding of the global minima when solving (8). The method is based on efficiently finding the set of 
congruent 4-point bases in the source point cloud X, to a 4-point base selected from the target point 
cloud Y.  
A set of 4 coplanar points is selected from X, S = { a,b,c,d }, not all collinear, such that ab intersects cd 
at the intermediate point e. Given a 4-point base constructed from two intersecting pairs, the ratios: 

ଵݎ  =  ‖ܽ − ݁‖/‖ܽ − ܾ‖, ଶݎ    =  ‖ܿ − ݁‖/‖ܿ − ݀‖  (12) 

are preserved under affine transformations and therefore act as invariants to constrain the search for 
congruent 4-point bases in X. Generalized 4PCS [43] generalizes 4PCS by allowing the pairs to fall 
on two different planes which have an arbitrary distance between them. This separation exponentially 
decreases the search space of matching bases. 4PCS presents two bottlenecks: the extractions of 
congruent pairs from X and the verification of the large number of reported congruent sets. 
By addressing these bottlenecks, Super 4PCS [44] improves the total runtime complexity to O(n+k1+k2) 
where k1 is the number of pairs of a given distance, and k2 is the number of congruent bases. Lastly, 
Super Generalized 4PCS [45] combines the two solutions. 
PointNetLK [46] utilizes the classical Lucas & Kanade (LK) algorithm [47] and tries to find the 
transformation in se(3) space between the PoinNet embeddings of the source and target point clouds. 
With the inverse compositional formulation of the problem, linearization, and approximation of the 
Jacobian matrix of the linearization process with finite differences (that only need to be computed once), 
PointNetLK iteratively updates the transformation matrix that it searches for. This process exhibits 
great efficiency since the only calculation after the first iteration is the difference of the embedded point 
clouds. 
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DeepICP [48] is an end-to-end learning-based point cloud registration framework. The algorithm firstly 
extracts feature descriptors from both the point clouds using PointNet++ [49]. After that, a point 
weighting layer is executed to learn the saliency of each point with, ideally, assigning higher weights to 
points with invariant and distinct features. The most significant K points are selected as the keypoints. 
Next a deep feature embedding (DFE) layer is applied to learn even more detailed keypoint descriptions. 
After that, a corresponding point generation (CGP) layer is applied to generate correspondences from 
the extracted features. The alignment is generated from (9). 
Admittedly, the algorithm resembles a more complex approach from the detection-description-matching 
pipeline since the layers can be observed as detection, description and matching layers. Nevertheless, 
since the method offers an end-to-end process, it makes more sense to describe it as such, and not 
split the different parts in different sections. 
Deep Closest Point [1] (DCP) is another end-to-end deep learning framework that could potentially 
be classified as a detection-description-matching approach. The algorithm firstly embeds the point 
clouds using PointNet or DGCNN [50]. Next, they encode contextual information using an attention-
based module that modifies the embeddings taking into consideration all of the information gathered 
from the source and target point clouds. The correspondences are generated using a softmax function 
over the matrix product of the point cloud embeddings. 
Iterative Matching Point [51] (IMA) is a very similar approach to DCP, with the biggest difference 
being that it wraps the whole algorithm in an iterative process. Every iteration then inputs the newly 
updated transformed point clouds which allows for more refined transformation results. 
PRNet [2] is a sequential decision-making framework designed to solve a broad class of registration 
problems. As in DCP, the network embeds points using PointNet or DGCNN after which it selects 
keypoints as the ones with the greatest L2 norms. The correspondence is generated using a 
combination of the closest point in the other point cloud and the softmax solution from DCP. The closest 
point offers a sharp keypoint matching at the cost of non-differentiability, whereas softmax offers a 
"blurred" keypoint matching at the cost of the matches not being resolute. Hence, they use a Gumbel-
Softmax [52] approach to sample a matching matrix with the use of an added "blurring" parameter. 
PRNet is designed to be iterative, and the process above is repeated multiple times using the newly 
transformed point cloud with the approximation of the alignment. 
PCRNet [3] uses PointNet in a Siamese architecture to encode the shape information of a source and 
target point clouds into feature vectors. Next it concatenates those representations and uses a fully 
connected layer to estimate the transformation matrix. The whole approach is wrapped in an iterative 
component that in each iteration tries to align the target to the newly aligned source point cloud. 
Yang et al. propose GO-ICP [53] that parametrizes the rotation by using a solid radius-ߨ ball in ܴଷ 
with the angle-axis representation. It parametrizes the translation with a bounded cube [−ߝ,  ଷ. The[ߝ
algorithm uses the branch-and-bound (BnB) method to repeatedly search the space of SE(3). 
Whenever a better solution is found, it calls the ICP algorithm initialized at this solution to refine the 
objective function value. Next, it uses the ICP result as an updated upper bound and continues the BnB 
search. The procedure is repeated until convergence. 
With the lack of a recent 3D registration evaluation in literature, we follow the comparisons of each 
individual method [1,2,3,42,43,44,45,46,51,53] and observe that approaches with an iterative 
component, like PRNet and PCRNet present the best performances to date. We hypothesize the reason 
behind such results is that these approaches offer enough "time" or iterations to correct the 
transformation matrix instead of trying to predict it at once. Multiple evidence that back up the hypothesis 
can be found in literature. Iterative matching point generalizes deep closest point with an iterative 
component and obtains better results. Sarode et al. [3] tested versions with and without an iterative 
component of their algorithm PCRNet and showed that the iterative approach performed better. 
Hence, further approaches toward 3D registration should have iterative components in determining the 
transformation matrix. 
 

5. RSNets 
3D segmentation is the task of determining the class of each point in a 3D scene without any prior 
knowledge. Figure 3 shows one such example, where an office interior has been segmented into 
various classes (objects) like chairs, walls, whiteboards, etc. 
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Fig. 3 Example of 3D segmentation of a point cloud. Each color represents an object in the scene such as: 
chairs (red), turquoise (walls), blue (floor), etc. Taken from [4]. 

 
RSNets [4] is a 3D segmentation framework that solves the local context problem by projecting 
unordered points into ordered features and applying deep end-to-end learning algorithms. Firstly, 
features are extracted from point clouds using convolutional layers. Next, 3 slice pooling layers are 
applied separately for every ax which divide the space into N evenly spaced "cubes". Max pooling is 
applied on every cube to obtain global cube features. This results in an ordered structure that is 
convenient for a Recurrent Neural Network (RNN). Next, the features are unpooled to obtain a feature 
representation for every point in the point cloud after which a convolutional layer can predict the 
segmentation class of the object. 
 

6. Experiment 
Since PCRNet presented state-of-the-art performance, we compare it to the newly adapted algorithm 
(described below), which we denominate as 3DReg-RSNet. The evaluation is performed using the 
ModelNet40 [54] dataset which contains CAD models of 40 different object categories and has been 
used for training of many learning approaches such as PCRNet, PRNet, PointNetLK, iterative 
matching point, etc.  
To adapt RSNet to the task of 3D registration there are a few necessary modifications. Firstly, RSNet 
inputs 9-dimensional points where the first three dimensions represent the x, y and z coordinates, the 
next three dimensions represent the rgb colors and the last three dimensions represent the batch 
normalized coordinates. Hence, we expand ModelNet40 points by adding values of 0 for the rgb colors 
and batch normalized coordinates. 
Next, we omit the last few convolutional layers that compress the output to a 13-dimensional vector for 
every point which represents the class of the 3D segmentation task. We end up with a 512 dimensional 
representation of each point in the point cloud. We treat this embedding as a description of each point 
and find correspondences between the point clouds using the first K=10 closest points by their 
description. Using (9) we find the transformation matrix. 
To test the 3D registration capabilities of the algorithms each example in the ModelNet40 dataset is 
rotated by a random angle around each ax chosen from ቂ0, గ

ଷ
ቃ and translated by a vector chosen at 

random from[−1,1]ଷ . The performance of each method is evaluated observing the rotational error 
between the ground truth rotation and estimated rotation. 
The rotational error is calculated as the angle of the angle-axis representation of the matrix product 

ܴ ∙  ܴ௘௦௧
ିଵ ,  (13) 

where R is the ground-truth rotation matrix and ܴ௘௦௧
ିଵ  is the inverse of the estimated rotation matrix. The 

translational error is simply the Euclidean distance between the ground-truth translation vector and the 
estimated translation vector. 
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Fig. 4 Performance comparison of PCRNet and 3DReg-RSNet. 

 
The plot shows the success ratio versus success criteria on rotation error (in degrees). The y-axis 
represents how many examples had fewer rotational error represented on the x-ax. The results indicate 
that 3Dreg-RSNet has fewer rotational errors at smaller angles whilst having a higher number of errors 
at bigger angles. This indicates that the representation, meant for the task of 3D semantic segmentation, 
of RSNets is a good point cloud representation with the ability to register point clouds. 
 

7. Conclusion and future work 
In this work we presented the 3D registration process and the most prominent techniques currently 
present in the literature. The different transformation representations have been represented and the 
approaches have been classified into two categories: detection-description-matching and all-in-one. A  
3D segmentation algorithms has been adapted to the task of 3D registration and compared with the 
state-of-the-art registration algorithm PCRNet. The results presented indicate that the newly adapted 
algorithm, named 3DReg-RSNet presents potential for the task of 3D registration. 
Adapting the algorithm even further would surely provide even better results than those presented here. 
Changing the last few layers in RSNet to predict a transformation matrix instead of segmentation class 
and retraining the whole end-to-end process would surely provide better insight to the learning of the 
feature representations. 
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