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Abstract: 3D registration is a process of aligning multiple three dimensional (3D) data structures (such as 
point clouds or meshes) and merging them into one consistent and seamless 3D data structure. With the scope 
of 3D reconstruction, 3D human body scans from multiple views need to be registered into a single point cloud 
to create a seamless 3D representation. In this work, we provide an overview of rigid 3D registration methods 
as well as a breakdown of the different parts of its process, namely, detection, description, and matching (if 
available). We describe the motivation behind the process and explain in detail the different used approaches 
in determining the aligning transformation. 
Keywords: 3D computer vision, 3D registration, keypoint detection, keypoint description, keypoint matching 
 

1. Introduction 
 
3D registration is a fundamental problem in computer and robot vision. Given two 3D structures (usually 
represented as a set of points) in different coordinate systems, or equivalently in the same coordinate system 
with different poses, the goal is to find the transformation that best aligns one structure to the other. It arises 
as a subtask in many different vision applications such as: 3D reconstruction [1,2,3], object recognition and 
categorization [4,5,6], shape retrieval [7], robot navigation [8,9] and data fusion obtained from different sensors 
[10]. Fig 1. shows two 3D structures obtained from two different viewpoints of the same object that, when 
registered, merge into one seamless and coherent object.  
 
Even though some of these problems might be solved using hardware solutions [11] such as calibrated 
mechanics (e.g. movable robot arms) aware of their positional displacement, the applicability of such solutions 
is poor. Furthermore, problems such as object recognition, still require software solutions, thus making 3D 
registration a prominent research field. 
 
Whereas this paper focuses on rigid registration, where we assume a fixed rigid environment, there are 
approaches [12] that tackle the more general non-rigid registration problem in which articulated objects and 
soft bodies that can change shape over time might be present. 
 
3D registration methods are classified in two different categories: coarse and fine registration [13]. The former 
encompasses all techniques that return a rough initial alignment of the given 3D structures, without any given 
initial alignment. The latter starts from one such approximation and aims at finding a registration as accurate 
as possible. 
 

 

 
 
Figure 1: Example of partial registration of two point clouds. 
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2. Data representation 
 
Each of the many applications that use registration techniques has its preferred data representation type. The 
most commonly used one in the literature are point clouds, followed by meshes and volumetric data. The 
former is a collection of 3D points with no further information. The second is composed of a point cloud and 
additional connectivity information between points, usually represented as a graph. The most commonly used 
format are triangular meshes where the graph edges form triangles. Volumetric data is often used in medical 
imaging (e.g. MRI) due to the nature of acquisition, and is represented by an isotropic set of samples taken at 
regularly spaced intervals along three orthogonal axes. The values represent some measurable property of 
the data like colour, density or heat to name a few. In the next chapters we focus on point clouds and meshes. 

 
3. 3D Transformations 
 
A rigid 3D rigid-body transformation can be represented in several ways. The core elements of the 
transformation are a rotational component R and a translational component t which, obviously, rotate and 
translate the 3D object in hand. 
The rotational component R is a 3x3 matrix from the special orthogonal group SO(3), also called the rotation 
group, which contains all 3x3 orthogonal matrices having determinant equal to 1. The orthogonality condition 
is necessary because the rotation connects two coordinate systems while the unit determinant condition 
follows from the orthogonality condition and preservation of the "handedness" of the coordinate system. More 
intuitively, the rotation matrix R can be further divided into three matrices representing the rotation around each 
of the three axes x, y and z by the angles α, β and γ in the following way: 
 

𝑅 = 𝑅𝑧(𝛾)𝑅𝑦(𝛽)𝑅𝑥(𝛼)   (1) 

where: 

𝑅𝑧(𝛾) = [
cos(𝛾) − sin(𝛾) 0

sin(𝛾) cos(𝛾) 0
0 0 1

] 𝑅𝑦(𝛽) = [
cos(𝛽) 0 sin(𝛽)

0 1 0
− sin(𝛽) 0 cos(𝛽)

] , 𝑅𝑥(𝛼) = [

1 0 0
0 cos(𝛼) − sin(𝛼)

0 sin(𝛼) cos(𝛼)
]. (2) 

 
This representation indicates that there are only 3 degrees of freedom (DOF) when determining a rotation 
matrix as opposed to 9 when looking at the matrix as an element of the SO(3) group. 
The translational component t is a 3x1 vector from R3 and has 3 DOF as well. Consequently, in combination 
with a rotation, the rigid transformation has 6 DOF. 
If 𝑝 =  [𝑥, 𝑦, 𝑧]𝑇 is a point in space, then a rigid transformation can be written in matrix form as: 
 

𝑝′ = 𝑅 ∙ 𝑝 + 𝑡  (3) 
 

where ∙ represents matrix multiplication and 𝑝′ = [𝑥′, 𝑦′, 𝑧′]𝑇 is the transformed point. 
 
We can combine the rotation and translation matrices to form a more compact representation of the rigid 
transformation using homogeneous coordinates. Homogeneous coordinates are usually used in projective 
geometry and offer a simplified way of combining transformations using only matrix multiplications. They 
extend 3D points [𝑥, 𝑦, 𝑧]𝑇 with equivalence classes [𝑘𝑥, 𝑘𝑦, 𝑘𝑧, 𝑘]𝑇 which represent the same point for any 

𝑘𝜖𝑅 ∖ 0. Now, the transformation is as a 4x4 matrix from the special Euclidean group SE(3) with the form: 
 

𝑇 =  [

     

 𝑅  𝑡 
0

 
0

 
0

 
1

]  (4) 

 
where again 𝑅 𝜖 𝑆𝑂(3) and 𝑡𝜖𝑅3. 

If 𝑝 =  [𝑥, 𝑦, 𝑧, 1]𝑇 is a homogeneous representation of a point in space, the rigid transformation now takes form: 
 

𝑝′ = 𝑇 ∙ 𝑝  (5) 
 

where again ∙ is the matrix multiplication and p’ is the new transformed point in homogeneous coordinates. 
Both SO(3) and SE(3) are Lie groups with their appropriate Lie algebras so(3) and se(3). An exponential map 
connects these two structures and allows us to represent a transformation matrix 𝑇 𝜖 𝑆𝐸(3) as an element of 
the se(3) algebra as so: 

𝑇 =  𝑒𝑥𝑝(∑ 𝜀𝑖𝑖 𝑇𝑖)  (6) 

where 𝑇𝑖 are the generators of the exponential map with twist parameters 𝜀 𝜖 𝑅6. Now, the rigid transformation 
takes the same form as equation (5). 
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There exist other transformation representations, such as quaternions, but are rarely used in the context of 3D 
registration and are hence not relevant to our discussion. 
 

4. Problem Formulation 
 
As we've seen, the registration problem comes down to finding the rotation R and translation t matrices that 
best align the two point clouds. The problem can be approached by defining a cost function that represents 
the current error, and indicates how well the two point clouds overlap. This cost function is then minimized 
using common optimization techniques. The most common cost function is the L2 norm of the point cloud 
displacements. 

Let 𝑋 = {𝑥𝑖}𝑖=1
𝑁  be the source and 𝑌 = {𝑦𝑖}𝑗=1

𝑀  the target point clouds that need to be registered. Usually this 

terminology indicates that we are searching for a transformation of the target point cloud Y that registers it to 
the source X.  
Let 

𝐶 =  {(𝑥𝑖 , 𝑦𝑗)| 𝑥𝑖  𝜖 𝑋, 𝑦𝑗𝜖 𝑌 ℎ𝑜𝑙𝑑𝑖𝑛𝑔 ∀ 𝑦𝑘  𝜖 𝑌 𝑑(𝑥𝑖 , 𝑦𝑗)  <  𝑑(𝑥𝑖 , 𝑦𝑘) 𝑎𝑛𝑑 𝑑(𝑥𝑖 , 𝑦𝑗)  <  𝑡ℎ𝑟}  (7) 

 
be a set of correspondences between points from X and Y where 𝑑(∙,∙) is the Euclidean distance and thr is a 
threshold that discards distances larger than it, as to omit larger errors when dealing with partial registration. 
As opposed to full registration, where all the points from the source point cloud have a match in the target point 
cloud, partial matching assumes only some points are correspondent (as is the more typical case). Fig. 1 
shows one such example. Then, the registration problem can be written as a minimization problem: 
 

min
𝑅,𝑡

∑ ‖𝑅 ∙  𝑥𝑖 + 𝑡 −  𝑦𝑗‖
2

2
(𝑥𝑖,𝑦𝑗) 𝜖 𝐶    (8) 

 
Here, the set C was determined as the points from both clouds that have the smallest distance to one another 
which is a technique usually used in fine matching rather than coarse matching. More generally, the set C can 
be determined in many alternative ways as we'll see in later chapters. In practice, the correspondences are 
unknown which makes (8) a classic "chicken-and-egg" problem: if the correspondences are known, R and t 
can be easily found; if R and t are known, the correspondences are easily derived. 
To conquer this, some methods interchangeably search for the correspondences and transformation. Most of 
them, however, focus on finding reliable correspondences after which the transformation is derived. 
If C is the set of correspondences, (8) has a closed form solution: 
 

𝑅 =  𝑉𝑈𝑇 , 𝑡 =  −𝑅�̅� + �̅�  (9) 
 

where U and V are obtained using the singular value decomposition (SVD)  𝐻 =  𝑈𝑆𝑉𝑇 of the covariance 
matrix 

𝐻 =  ∑ (𝑥𝑖 − �̅�)(𝑦𝑗 − �̅�)𝑇
(𝑥𝑖,𝑦𝑗) 𝜖 𝐶   (10) 

and centroids  

�̅�  =  
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1 , �̅�  =  

1

𝑀
∑ 𝑦𝑗

𝑀
𝑗=1   (11) 

 
More intuitively, the process is similar to the principal component analysis (PCA) and extracts the major 
directions of shared change from the origin centered point clouds. 
As said before, there are two approaches towards solving (8). One is to first determine the correspondences 
and use them along with (9). We denominate this approach as detection-description-matching as the three 
major components of the pipeline. The second method is to try and solve directly for R and t in various methods. 
We denominate this approach as all-in-one since they cannot be broken down into the detection-description-
matching pipeline. 
 
4.1 Detection-description-matching 
 
In this approach, a detection step is firstly used to reduce the number of points being considered in the 
registration process. It consists of detecting a certain number of key points that are prominent according to a 
specific criterion. The sizes of the input data make the detection step necessary in many approaches to obtain 
computationally manageable datasets. The second step of the pipeline, description, consists of assigning 
values to the detected key points according to the local shape around them. Finally, searching strategies are 
used to find correspondences between points in the two point sets. Descriptor values are used to prioritize the 
best apparent correspondences and a minimum of three are needed to determine the coarse alignment in 3D. 
The goal here is to avoid exhaustive search of the whole correspondence space which would yield a cost of 
O(n6) since triplets from both clouds need to be checked. 
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After achieving a coarse alignment, a refinement step is applied. This step usually consists of using iterative 
methods to align the shapes as accurately as possible. 
 
 

 
 
Figure 2: Pipeline of the detection-description-matching approach. Taken from [13]. 

 

Detection is a crucial step in the optimization of the whole pipeline. A good detector should be computationally 
efficient and should extract repeatable and distinctive key points under a number of nuisances that can affect 
the input data, like for example viewpoint changes, missing parts, point density, clutter and sensor noise 
[14,15]. Repeatability is the capability to detect the same keypoints accurately under various nuisances, whilst 
distinctivity is the ability to detect keypoints that can be effectively described and matched, to prevent wrong 
point-to-point correspondences. 
 
Following evaluation papers and algorithm comparisons [13-17], some of the most promising hand-crafted 
detectors are: ISS [18], MeshDoG [19], Harris 3D [20] and HKS [21]. ISS uses eigen decomposition of the 
neighbourhood’s covariance matrix of a point to describe it. Keypoints are selected as the points with large 
three dimensional variations in their neighbourhood. These variations are measured using the smallest 
eigenvalue of the covariance matrix of its spherical neighbourhood. MeshDoG is based on the Difference of 
Gaussians (DoG) operator. It finds the extrema of the Laplacian of a scale-space representation of any scalar 
function defined on a discrete manifold. Harris 3D is a 3D version of the Harris operator which is applied on a 
2D projection of the points, without losing relevant information. The point set is rotated and translated according 
to the centroid of the neighbourhood around a point with the goal of finding the best projection. Finally, HKS, 
both a detector and descriptor, detects mesh zones with high curvatures and uses the points with the highest 
curvatures as keypoints. This results in very repeatable keypoints. 
 
On the deep learning side in Salti et al. [16] use random forests to learn the best keypoint detector for a hand-
crafted descriptor as to improve the final step of the pipeline, matching. Their method betters the matching of 
three distinct descriptors, namely SHOT [4], FPFH [22] and Spin Images [6], but can be trained for any 
descriptor. Lin et al. [17] formulate 3D keypoint detection as a regression problem using deep neural networks 
with sparse autoencoders. The model makes use of both local and global information of a 3D mesh in multi-
scale space to detect whether a vertex is a keypoint or not. Suwajanakorn et al. [23] introduce  KeypointNet  
which tries to learn an optimal set of category-specific 3D keypoints; more concretely it tries to learn a list of 
3D keypoints on both views that would result in the best matching of the point clouds. This pose estimation 
objective helps significantly in producing a reasonable and natural selection of latent keypoints. 
 
Descriptors are sets of values that represent the contained geometric and spatial information within the local 
surface. These descriptors can be classified by the fact if they are based on a local reference frame (LRF) or 
just the local geometry. LRF is an independent 3D coordinate system from the world coordinate system that is 
established on the local surface. The goal of a LRF is mainly to make the feature description invariant to rigid 
transformation. LRF based methods have generally surpassed LRF-independent ones on most publicly 
available datasets [24]. Some LRF based methods are SHOT [4], RoPS [5] and LoVS [25]. SHOT divides the 
local 3D volume into a set of subspaces and concatenates the histograms of normal deviation in each 
subspace as the final feature representation. RoPS proposes a rotation and projection mechanism that 
continually rotates the local surface with respect to the LRF and performs 3D-to-2D projections for each rotated 
surface. The eventual feature is the integration of the statistical information of the projected maps. LoVS uses 
a cubic volume to determine the local surface and performs a uniform spatial partition to generate voxels. Each 
voxel is encoded by a binary code to judge whether the voxel is empty or not.  
 
Some LRF-independent methods are Spin Images (SI) [6], Point feature histogram (PFH) [26] and Fast PFH 
(FPFH) [22]. Spin Images projects the neighbouring points of a keypoint on a 2D plane by calculating their 
horizontal and vertical distances with respect to the tangent plane of the keypoint normal, and the ratio of 
points in each 2D grid is taken as the bin value. PFH and FPFH leverage the point pair features extracted from 
the local surface to generate statistical histograms, where PFH considers all possible points but FPFH speeds 
up the procedure by requiring each point pair to include the keypoint. 
There are deep learning based descriptors as well, such as: PointNet [27], 3DMatch [28], CGF [29], PPFNet 
[30], PPF-FoldNet [31] and 3DFeat-Net [32]. Deep learning descriptors have surpassed many hand-crafted 
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local geometric descriptors. Nevertheless, the majority of learned descriptors from raw data suffer from 
sensitivity to rotation. An effective solution is to first use traditional feature descriptors for parametrization and 
then employ convolutional neural networks to further boost the performance.  
 
PointNet is a pioneer in designing a permutation invariant network which doesn't use voxelized inputs but 
rather point clouds. 3DMatch is a learning based representation that uses truncated distance function (TDF) 
to parametrize input local patches and learns the feature representation using a Siamese network paired with 
a metric learning network. PPFNet employs the point pair features between the keypoint and its neighbors to 
encode the raw local point cloud and proposes an N-branch network for feature learning. PPF-FoldNet further 
improves PPFNet by leveraging rotational invariant point pair features and uses a point cloud auto-encoder 
network to achieve unsupervised feature learning. 
 
Once the point clouds have been filtered (keypoints have been detected) and described, in order to solve the 
registration problem, the correspondences are needed. Rather than using brute-force methods which are 
computationally expensive, we strive for more elaborate algorithms in order to report results in a reasonable 
amount of time. This is where searching (matching) algorithms take over. Following [33,34], the state-of-the-
art methods for finding correspondences are geometric consistency (GC) [35], 3D Hough Voting (3DHV) [36] 
and game theory matching (GTM) [37]. 
 
For an initial set of correspondences C as in (7), the goal is to find a set of inlier points that truly are matches. 
GC determines the inlier set by finding the largest cluster formed by calculating compatibility score of a single 
correspondence with all the other correspondences. The compatibility score is a thresholded absolute 
difference between the distance of the correspondence points. In 3DHV, each correspondence casts a vote in 
a 3D Hough space. It finds the vectors from the correspondent points to its appropriate centroids, and 
transforms them into their appropriate LRFs. If the points truly do match, these vectors should be equal. GTM 
interprets the correspondence grouping as a non-cooperative game. Candidates in the initial correspondence 
set C are treated as available strategies. Pairs of players play a symmetric game and adapt their behaviour to 
prefer strategies that receive larger payoffs. Eventually such dynamics converge to a Nash equilibrium. 
 
4.2 All-in-one approaches 
 
In this chapter we present approaches that cannot be separated into the detection-description-matching 
pipeline as the approaches before. There are several methods [38] that take completely different approaches 
of finding the optimal transformation. 4-point congruent sets (4PCS) [39] is a global registration algorithm. The 
global optimality references the finding of the global minima when solving (8). The goal of 4PCS is to find the 
best aligning transformation according to the largest common point set (LCP) between the source X and target 
Y point clouds. The LCP of a rigid transformation is the cardinality of the largest subset of the transformed 
source point cloud X, with the property that every point in the subset is within an ε distance to Y. The method 
is based on efficiently finding the set of congruent 4-point bases in the source point cloud X, to a 4-point base 
selected from the target point cloud Y.  
 
A set of 4 coplanar points is selected from X, S = {a,b,c,d}, not all collinear, such tat ab intersects cd at the 
intermediate point e. Given a 4-point base constructed from two intersecting pairs, two ratios can be defined: 
 

𝑟1  =  ‖𝑎 − 𝑒‖/‖𝑎 − 𝑏‖,   𝑟2  =  ‖𝑐 − 𝑒‖/‖𝑐 − 𝑑‖  (12) 
 

These ratios are preserved under affine transformations and therefore act as invariants to constrain the search 
for congruent 4-point bases in X. Under rigid transformations, distances are also preserved and therefore the 
distances of the two pairs, d1 and d2, are also used as invariants. The runtime complexity of the algorithm is 
O(N2 + k) where N is the number of points in X and k is the number of congruent bases to be reported.   
Generalized 4PCS [40] generalizes 4PCS by allowing the pairs to fall on two different planes which have an 
arbitrary distance between them. This separation exponentially decreases the search space of matching 
bases. 4PCS presents two bottlenecks: the extractions of congruent pairs from X and the verification of the 
large number of reported congruent sets. By addressing these bottlenecks, Super 4PCS [41] improves the 
total runtime complexity to O(n+k1+k2) where k1 is the number of pairs of a given distance, and k2 is the number 
of congruent bases. In order to extract pairs efficiently, X is organized using a 3D grid. A regular splitting 
strategy, like the one used for an octree, is applied to the 3D grid. Using the 3D grid, for each point p from X, 
the cubes that intersect the spheres of radius d1 and d2 cantered at p are computed to form the pairs. To 
address the second bottleneck, the search is constrained to searching source bases that have the same angle 
of intersection as the target base, since angles are preserved under rigid transformation. Lastly, Super 
Generalized 4PCS [42] combines the two solutions.  
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A completely different approach is done by PointNetLK [43] which tries to utilize the classical Lucas & Kanade 
(LK) algorithm [44]. PointNetLK uniquely uses the Lie algebra se(3) representation of the transformation matrix, 
as shown in (6),  that needs to be found between the PoinNet embeddings of the source and target point 
clouds. With the inverse compositional formulation of the problem, linearization, and approximation of the 
Jacobian matrix of the linearization process with finite differences (that only need to be computed once), 
PointNetLK iteratively updates the transformation matrix that it searches for. This process exhibits great 
efficiency since the only calculation in each iteration is the difference of the embedded point clouds. DeepICP 
[45] is an end-to-end learning-based point cloud registration framework. The algorithm firstly extracts feature 
descriptors from both the point clouds using PointNet++ [46]. After that, a point weighting layer is executed to 
learn the saliency of each point. Ideally, points with invariant and distinct features on static objects should have 
higher weights. The most significant K points are selected as the keypoints. Next a deep feature embedding 
(DFE) layer is applied to learn even more detailed keypoint descriptions that can better represent their 
geometric characteristics. More concretely, a smaller PointNet, denominated mini-PointNet, network is applied 
for extracting those features. After that, a corresponding point generation (CGP) layer is applied to generate 
correspondences from the extracted features. The alignment is generated from (9). Admittedly, the algorithm 
resembles a more complex approach from the detection-description-matching pipeline since the layers can be 
observed as detection, description and matching layers. Nevertheless, since the method offers an end-to-end 
process, it makes more sense to describe it as such, and not split the different parts in different sections. 
 
Deep Closest Point [47] is another end-to-end deep learning framework that could potentially be classified as 
a detection-description-matching approach since the various components of the algorithm resemble 
approaches from that group. The algorithm firstly embeds the point clouds using PointNet or DGCNN [48]. 
Next, they encode contextual information using an attention-based module that modifies the embeddings 
taking into consideration all of the information gathered from the source and target point clouds. The 
correspondences are generated using a softmax function over the matrix product of the point cloud 
embeddings. Iterative Matching Point [49] is a very similar approach to DCP, with the biggest difference being 
that it wraps the whole algorithm in an iterative process. Every iteration then inputs the newly updated 
transformed point clouds which allows for more refined transformation results. 
 
PRNET [50] is a sequential decision-making framework designed to solve a broad class of registration 
problems. As in DCP, the network embeds points using PointNet or DGCNN after which it selects keypoints 
as the ones with the greatest L2 norms. The correspondence is generated using a combination of (14) and the 
softmax solution from DCP. The reason being that (14) offers a sharp keypoint matching at the cost of non-
differentiability, whereas softmax offers a "blurred" keypoint matching at the cost of the matches not being 
resolute. Hence, they use a Gumbel-Softmax [51] approach to sample a matching matrix. Here, a "blurring" 
parameter is added to use a softer matching in the begging of the training, to a more sharp matching at the 
end. From there, the alignment is easily determined. PRNet is designed to be iterative, and the process above 
is repeated multiple times using the newly transformed point cloud with the approximation of the alignment. 
PCRNet [52] uses PointNet in a Siamese architecture to encode the shape information of a source and target 
point clouds into feature vectors. Next it concatenates those representations and uses a fully connected layer 
to estimate the transformation matrix. The whole approach is wrapped in an iterative component that in each 
iteration tries to align the target to the newly aligned source point cloud. 
 
After two point clouds have been coarsely matched, the alignment can further be refined by fine registration. 
The goal in fine registration is to align the two point clouds as best as possible given the initial conditions 
calculated by the coarse registration algorithm. Here, Iterative Closest Point (ICP) [53] is the go-to method. 
Even though the algorithm has problems with wrong local minima solutions, it is still one of the most famous 
and used algorithms today since its conception in 1992. Very similarly to (7) and (8), ICP tries to minimize the 
point-to-point distances between the clouds: 
 

𝐸(𝑅, 𝑡) =  ∑ 𝑒𝑖(𝑅, 𝑡)2 =𝑁
𝑖=1 min

𝑅,𝑡
∑ ‖𝑅 ∙  𝑥𝑖 + 𝑡 −  𝑦𝑗∗‖

2

2
(𝑥𝑖,𝑦𝑗) 𝜖 𝐶  (13) 

 
Where 𝑒𝑖(𝑅, 𝑡) is the per-point residual error for xi. Given R and t, the point yj* from Y is denoted as the optimal 
correspondence of xi, which is the closest point to the transformed xi from Y, i.e. 
 

𝑗 ∗ =  argmin
𝑗 𝜖 {1,...,𝑀}

‖𝑅 ∙  𝑥𝑖 + 𝑡 −  𝑦𝑗‖
2

2
.  (14) 

 
Again, these equations pose an chicken-and-egg problem: if the true correspondences are known a priori, the 
transformation can be optimally solved in closed form (9); if the optimal transformation is given, 
correspondences can also be readily found. However, the joint problem cannot be trivially solved. Hence, given 
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an initial transformation (R,t), ICP iteratively solves the problem by alternating between estimating the 
transformation with (13), and finding  closest-point matches with (14). However, since (13) is non-convex, there 
is no guarantee that ICP will reach a global optimum.  
 
Another issue with point-to-point distance is that the correspondence of a given point in the first cloud may not 
exist in the second cloud because of the limited number of points acquired by the sensor. Point-to-plane ICP 
tries to address this issue using the distance between a point and a planar approximation of the surface at the 
corresponding point. More concretely point-to-plane minimizes: 
 

argmin
𝑅,𝑡

∑ ‖(𝑅 ∙  𝑥𝑖 + 𝑡 − 𝑦𝑗)  ∙  𝑛𝑗‖𝑖 2

2
.  (15) 

 
where nj is the surface normal in point yj. When the initial position of the data is close to the model, and when 
the input has relatively low noise, ICP with the point-to-plane error metric has faster convergence than the 
point-to-point version.  
 
Many other variants of ICP [54] have been proposed that try and solve its drawbacks. Gelfand et al. [55] try to 
improve the efficiency and quality of the algorithm by introducing a sampling method of the point clouds. If too 
many points are chosen from featureless regions of the data, the algorithm converges slowly, finds the wrong 
pose, or even diverges, especially in the presence of noise or miscalibration in the input data. Hence, they try 
different cloud sampling methods such as uniform, random and normal-space sampling. They conclude that 
covariance sampling gives the best results along with the fastest convergence. Other than the point-to-point 
and point-to-plane methods mentioned before, there are other proposed variants to determine the matches. 
The point-to-projection [56] approach finds the correspondence of a source control point by projecting it onto 
a target surface from the point of view of the target. Combinations of point-to-projection and point-to-plane 
approaches have also been explored [57]. 
 
The proposed variants can still create mismatches. By rejecting point pairs using a threshold and reserving 
only the points with the smallest distances, the algorithm becomes more robust. Other criteria to remove 
mismatches include geometric properties and invariance of data, such as normal consistency and reciprocal 
correspondence. 
 
Nevertheless, most ICP variants, as well as ICP, have a few fundamental drawbacks and because of these 
reasons, Yang et al. propose GO-ICP [58] which was the first globally optimal algorithm that performed rigid 
registration. The algorithm parametrizes the rotation by using a solid radius-𝜋 ball in R3 with the angle-axis 

representation. It parametrizes the translation with a bounded cube [−𝜀, 𝜀]3. The algorithm uses the branch-
and-bound (BnB) method to repeatedly search the space of SE(3). Whenever a better solution is found, it calls 
the ICP algorithm initialized at this solution to refine the objective function value. Next, it uses the ICP result 
as an updated upper bound and continues the BnB search. The procedure is repeated until convergence. Fig. 
3 shows how the BnB and ICP methods complement each other to find a globally optimal solution. 
 

 
Figure  3: Alternation of the BnB and ICP for global optimality [58]. 

 
Other than ICP, there are other fine matching algorithms that are based on random sample consensus 
(RANSAC) [59], normal distribution transform methods (NDT), genetic algorithms or usage of auxiliary data 
along with the point clouds. RANSAC [60,61,62] methods involve three steps: find 3 correspondences by some 
heuristic, find the alignment of the point clouds with these 3 correspondences and finally count the number of 
inliers (points between two clouds that are within a threshold distance). The quality of every choice of 3 
correspondences can be measured using the number of inliers. The more inliers a choice has, the more 
trustworthy is the alignment.  
NDT was originally developed in the context of 2D laser scan registration [63]. The algorithm represents the 
observed range points as a set of Gaussian probability distributions. Assuming the point clouds have been 
drawn from a Gaussian distribution, the maximum-likelihood estimates of the mean and covariance can be 
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obtained from the observations. The fitness of the Gaussian distribution might not be good for the entire point 
cloud since generally there is no reason a surface should behave normally. Nevertheless, at a sufficiently small 
scale, a normal distribution can be considered a good estimate of the local surface shape. Therefore, the basic 
principle of NDT is to represent space using a set of Gaussian probability distributions. 
 
The point-to-distribution (P2D) variant of NDT for 3D registration [64] maximises the likelihood of points from 
one scan, given the NDT model created from the source scan X, whilst the distribution-to-distribution (D2D) 
variant of NDT [65] minimizes the sum of L2 distances between pairs of Gaussian distributions in two NDT 
models. The NDT algorithms have fast computational speed and high precision. They are especially suitable 
for processing large-scale point clouds. However, initialization requirements still remain high. 
 

5. Conclusion 
 
This paper presented the 3D registration process and the most prominent techniques currently present in the 
literature. The different used data types have been presented, as well as the different transformation 
representations. The approaches have been classified in two different categories: detection-description-
matching and all-in-one. The former use detectors to filter the number of points, descriptors to describe the 
remaining points and "matchers" to find correspondences from which the rigid transformation can be estimated. 
The latter try to approximate the transformation directly. The approaches have also been classified to coarse 
and fine registration methods. The former roughly align the point clouds without any initial requirements, while 
the latter need an already good estimation of the transformation to further improve the alignment. The 
approaches have also been labelled as hand-crafted or deep learning approaches depending on the algorithm. 
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