
UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 2323

ADVERSARIAL ATTACKS IN NATURAL LANGUAGE

PROCESSING

Josip Jukić

Zagreb, June 2020

UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 2323

ADVERSARIAL ATTACKS IN NATURAL LANGUAGE

PROCESSING

Josip Jukić

Zagreb, June 2020

UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Zagreb, 13 March 2020

MASTER THESIS ASSIGNMENT No. 2323

Student: Josip Jukić (0036491111)

Study: Computing

Profile: Computer Science

Mentor: prof. Domagoj Jakobović

Title: Adversarial Attacks in Natural Language Processing

Description:

Describe the problem of adversarial attacks on machine learning models given the model type and

capabilities of the attacker. Study the possibilities of an attack based on adversarial examples with particular

emphasis on natural language processing domain. List possible attack scenarios with different levels of

knowledge of the observed system. Devote special attention to the approach with limited information about

the model. Define attacker's task as an optimization problem to enable the possibility of applying optimization

algorithms in the attacks. Compare the effectiveness of various optimization algorithms with respect to

available information, application domain and model type. Include the source codes, the obtained results with

necessary explanations and the used literature with the thesis.

Submission date: 30 June 2020

SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Zagreb, 13. ožujka 2020.

DIPLOMSKI ZADATAK br. 2323

Pristupnik: Josip Jukić (0036491111)

Studij: Računarstvo

Profil: Računarska znanost

Mentor: prof. dr. sc. Domagoj Jakobović

Zadatak: Suparnički napadi u obradi prirodnog jezika

Opis zadatka:

Opisati problematiku suparničkih napada na modele strojnog učenja s obzirom na vrste modela i mogućnosti

napadača. Proučiti mogućnosti napada temeljenih na neprijateljskim primjerima s posebnim naglaskom na

domenu obrade prirodnog jezika. Navesti moguće scenarije napada s različitim razinama poznavanja

promatranog sustava. Posebnu pažnju posvetiti pristupu s ograničenim informacijama o modelima. Definirati

zadatak napadača u obliku optimizacijskog problema, uz otvaranje mogućnosti primjene optimizacijskih

algoritama u napadima. Usporediti učinkovitost različitih algoritama za optmizaciju s obzirom na dostupne

informacije, domenu primjene i vrstu modela. Radu priložiti izvorne tekstove programa, dobivene rezultate uz

potrebna objašnjenja i korištenu literaturu.

Rok za predaju rada: 30. lipnja 2020.

iii

CONTENTS

1. Introduction 1

2. Natural Language Processing 3

2.1. Text Classification . 4

2.2. Natural Language Inference . 5

3. Attacks in Machine Learning 7

3.1. Attack Types . 7

3.2. Attack Settings . 9

3.3. Adversarial Attacks on Textual Models . 10

3.4. Vulnerability of Deep Learning Models 12

4. Adversarial Arsenal 14

4.1. Why Not Gradient? . 15

4.2. Targeting Words with Inner Bias . 15

4.2.1. Embeddings and Vocabulary . 16

4.2.2. Word Bug . 17

4.2.3. Word Drop . 20

4.3. Lexical Substitution . 25

iv

4.4. Reinforced Genetic Attack . 28

4.4.1. Threat Model . 28

4.4.2. Chromosome Design . 29

4.4.3. Components Connection . 30

5. Experiments and Results Analysis 34

5.1. Datasets . 34

5.2. Models . 37

5.3. Attacking Efficiency . 38

5.4. Reinforced Genetic Attack Analysis . 42

5.5. Attack Transferability . 47

5.6. From Adversarial Examples to Data Poisoning 48

6. Defence Mechanisms 50

6.1. Adversarial Training . 50

6.2. Attract-Repel Embeddings . 51

7. Conclusion 52

Bibliography 53

A. Dataset Sources 55

B. Image Sources and Tools 56

v

LIST OF FIGURES

2.1. Basic NLP pipeline . 4

3.1. Adversarial example . 8

3.2. Data poisoning . 8

3.3. Summary of adversarial attack categories 11

3.4. Adversarial training gone wrong . 13

4.1. Adversarial attack flow . 14

4.2. Sequence packing . 23

4.3. BERT language model . 26

5.1. Perturbation vs. attack success . 42

5.2. Human impression loss vs. perturbation level 44

5.3. Target loss vs. perturbation level . 44

5.4. Boxplot: RGA’s target loss with different lexical models 45

vi

LIST OF TABLES

2.1. Textual entailment examples . 6

4.1. Word transformations . 20

4.2. Regular vs. counter-fitted vectors . 28

5.1. Accuracy of victim models on IMDB & SST datasets 40

5.2. Accuracy of victim models on Yahoo Questions & AG News 40

5.3. Accuracy of victim models on SNLI & MultiNLI datasets 41

5.4. Accuracy of BERT classifier under attacks 41

5.5. Non-targeted adversarial example (IMDB) 46

5.6. Targeted adversarial examples (Yahoo questions) 46

5.7. Adversarial examples in NLI domain (SNLI) 47

5.8. Accuracy of transferred attacks (AG news) 48

5.9. Accuracy on poisoned data (IMDB) . 49

6.1. Influence of adversarial training on LSTM’s accuracy (IMDB) 51

vii

1. Introduction

Thanks to the rapid development of machine learning algorithms and their unbelievable ef-

fectiveness, they have become prevalent among many computing systems and applications.

Even though deep learning models are almost ubiquitous, there is a worrying lack of interest

in defence mechanisms and security of those models. Awareness in general computer secu-

rity seems to be on the rise, but deep learning continues to be the black spot. Because of the

novelty and recentness of mentioned algorithms, the emphasis is put on results and models’

performances rather than their robustness1 and security.

It is quite difficult to cover all of the bases for a quality defence of deep learning models.

Weaknesses sometimes appear in the most unexpected places. To grasp the scope of poten-

tial threats, studying attack techniques comes as a natural approach for that problem. By

exploring invasive schemes, it is possible to pinpoint vulnerable areas and patch them up.

Due to the popularization of social networks and massive collections of forums, there

has been a surge in textual data available on the Internet. This trend has been accompanied

by the development of copious machine learning models targeted for text-based tasks. Large

quantities of text demand more processing and analysis. Users require support for various

problems regarding natural language. Many solutions are provided online in the form of

application programming interfaces or just plain applications. Most of them run some kind

of machine learning model in the background to solve specific tasks.

Machine translation, sentiment analysis, information extraction, question answering -

these are only a few of the many problems that require the power of deep learning for auto-

mated and effective answers. Mentioned applications often handle sensitive user data. They

can also make important and critical decisions based on their underlying models. That leaves

those applications susceptible to security breaches and various malicious exploitations. It is

essential to invest in model’s protection, as well as in its robustness. Security requirements

are often neglected in these products. More significant thought has been put into constructing

attacks on models that predominantly work with images. The interest has been a product of

1characterization of how effective the model is on a new independent dataset or slightly altered data

1

academic curiosity rather than a real attempt to fortify the models. Development of attacks

that could lead to better defences has only scratched the surface in natural language prob-

lems. It is generally harder to design attacks on textual models than on image-based ones.

The reason lies in the unstructured nature of text. Consequently, attacks are also harder to

detect and prevent.

Malicious techniques can seriously jeopardize deep learning models. They can be ma-

nipulated into providing specific answers for certain questions or queries. To mitigate this

problem, it is necessary to analyze attacking approaches and use them as an advantage in

building defence mechanisms.

Attacks don’t only provide insights about security, but they can also be the key to un-

locking a better understanding of used models. One of the glaring problems in deep learning

is poor interpretability and black-box treatment. This means that human users know very

little of the model’s behaviour and they often view it as a series of inputs and outputs. What

happens internally and what is the underlying logic of a certain model, remains a complete

mystery. Identifying what affects model the most is a first step in revealing some of the an-

swers. Changes in data for targeted attacks can be connected with the model’s performances

and thus, it can lead to a better internal image.

The main goal of this thesis is to explore the possibility of attacks in the natural language

domain, with deep learning models as the most prominent targets. This focus is based on

their impressive performances and increasing employment. Furthermore, extensive analysis

of many attacks in varying situations is offered in order to gradually develop strong coun-

termeasures. The research is concentrated on realistic set-ups where not much is known

about the targeted models. As an additional important task, the correlation between hu-

man perception of text and word representation in natural language is also investigated. The

whole process ultimately leads to developing novel attacks, mostly based on the adversar-

ial approach. By accumulating all of the constructed attacks, it is possible to provide an

assessment of the model’s security and robustness. As the climax of this thesis, comes the

fifth chapter with plentiful experiments and extensive analysis. Last chapters are dedicated

to defence mechanisms and ultimate conclusions.

2

2. Natural Language Processing

Natural language processing (NLP) and computational linguistics (CL) are two areas of com-

putational study of human language. NLP strives to construct methods for solving practical

problems involving language, while CL employs computational methods to explore proper-

ties of human language (Rao and McMahan, 2019). How do we understand language? That

question seems to be one of the greatest motivators in dealing with the described problems.

In the past decade, NLP has become an essential part of our daily lives. With the increase

of shared information, natural language applications thrive. They are based on a combination

of several areas such as algorithms, linguistics, logic and statistics (Eisenstein, 2019).

There are plentiful natural language tasks, but a deeper dive is taken into text classifica-

tion and natural language inference problems. Those problem set-ups are widespread and

can be utilized for plenty of specific tasks. In their essence, all of the approaches share a

common logic. Models transform textual inputs into vector space to recognize as many pat-

terns as possible. The chosen task then instructs a model to come up with answers in an

appropriate form. While the bases of the models are similar, additional effort is invested

to ensure that models’ outputs satisfy desired needs. Additions are usually built on top of

models.

Solving a natural language problem requires a breakdown into smaller steps. They are

combined to make a coherent sequence called pipeline. Typical NLP pipeline is consisted of

several steps:

1. language detection,

2. text cleanup (boilerplate removal, normalization),

3. sentence segmentation,

4. tokenization - breaking a text up into tokens1,

1words and other meaningful elements

3

better results. The last example illustrates the power of text classification, how it disperses

and makes an impact in many natural language tasks.

Text classification can be achieved manually or in an automated fashion. Since the former

method requires human annotators and is very time-consuming as well as expensive, the

latter is embraced more often. As in any other domain, there are several types of classification

problems that can be distinguished:

• binary - there are only two distinct categories and an instance can only be assigned

to one of them,

• multi-class - instance is classified into one of three or more classes,

• multi-label - multiple categories may be assigned to each instance.

The standard set-up of text classification involves unstructured textual data as input. Text

is being numericalized4 and forwarded to the model via NLP pipeline. The model produces

the output which represents the prediction of categories assignment. This procedure can be

put into the context of sentiment analysis, topic categorization, spam detection, etc.

2.2. Natural Language Inference

Natural language inference (NLI) or textual entailment aims to determine directional rela-

tions between text fragments. In a typical NLI framework, the entailing and entailed texts

are termed premise (p) and hypothesis (h), respectively. Textual entailment is not equivalent

to pure logical entailment, as a more relaxed definition is assigned to it. Typically, “t entails

h” (t ⇒ h) is considered true if a human reading t would be justified to infer that h is true.

There are three distinct relations which can be assigned to a pair of texts. Relation is

determined by the truthfulness of hypothesis as follows:

• entailment - hypothesis is true,

• contradiction - hypothesis is false,

• neutral - it cannot be determined.

Premises are considered to be fixed texts, while any number of hypotheses can be as-

signed to them. Each pair is observed as a separate example. Despite the loose definition,

the judgement must be derived only if the facts in the premise necessarily imply all of the

facts in the hypothesis. For example, if the hypothesis is a conjunction of several statements,

4quantified or represented with numbers

5

every single statement must be implied from its premise for it to be true. To acquire famil-

iarity with textual entailment, some examples from Bowman et al. (2015) are displayed in

Table 2.1. An instance of the described situation with the hypothesis in a conjunction form

can be seen in the second example.

Table 2.1: Textual entailment examples

Premise Judgement Hypothesis

A man inspects the uniform of a fig-

ure in some East Asian country.

contradiction The man is sleeping.

An older and younger man smiling. neutral Two men are smiling and laughing

at the cats playing on the floor.

A black race car starts up in front of

a crowd of people.

contradiction A man is driving down a lonely

road.

A soccer game with multiple males

playing.

entailment Some men are playing a sport.

A smiling costumed woman is hold-

ing an umbrella.

neutral A happy woman in a fairy costume

holds an umbrella.

6

3. Attacks in Machine Learning

Algorithms and models in deep learning live off data since the ultimate goal is to find pat-

terns in learning examples. Judging by the current situation, data sources seem to be virtu-

ally inexhaustible, thus only amplifying the need for their usage. Thriving in those trends,

machine learning has become an integral part of large systems which completely automate

the process of decision-making. Endangering those systems can lead to disastrous conse-

quences. Computer-aided diagnostic medicine is vulnerable to this kind of attacks, as well

as autonomous vehicles. This poses a serious threat in mentioned cases and other critical,

life dependent decisions made by machines.

Attacks often target data that are used in the learning process. By compromising the data,

the whole scheme is brought into question. Suddenly, the model can become corrupted with

suspicious examples that are designed to trick the model.

The attacking algorithm is called the threat model, and the target is referred to as the

victim model.

3.1. Attack Types

On a high level of abstraction, attacks on machine learning models can be distributed to three

main subgroups that are listed hereafter.

• Adversarial inputs are specially designed to trick the model while making a deci-

sion. In a classification task, their goal is to cause a false prediction without alarming

the system. Adversarial examples have to be stealthy and they cannot deviate too

much from the usual data. This type of attack can be often seen in action: malicious

documents for avoiding antivirus programs, electronic mail that seeks to bypass filters

of unwanted messages, etc.

• Data poisoning is based on the technique of adversarial inputs, but it attacks the

model during its learning phase, providing the examples to tear down the model’s

7

3.2. Attack Settings

There are several different viewpoints that can be used to categorize attack methods (Zhang

et al., 2019):

• model access - refers to the knowledge of attacked model,

• target mode - represents whether the goal of the attack is enforcing incorrect predic-

tion (undirected) or targeting specific results (directed),

• model type - considers the model’s architecture and optimization process (e.g. feed-

forward networks, recurrent networks, convolutional networks, reinforcement learn-

ing models).

Model access strongly affects the attacking process. Two polar approaches are distin-

guished: black-box attack where the information is withheld from the attacker and white-box

with opposite assumptions. The white box represents transparency and the full access to

model’s information, including architecture, parameters, loss functions, activation function,

inputs and outputs. Even though this type of attack is usually very effective, it is not a realis-

tic set-up. Chances are small for the model to be completely open-sourced with every detail

known. The black-box scenario is much more sensible in real situations. That is the main

reason for setting focus to black-box attacks in this thesis. There is also a middle ground,

where some information is known, but still not all of it. This concept is appropriately called

grey-box scenario.

The levels of adversarial access are another important aspect of the attacker’s potentials.

They are as follows:

• logic corruption,

• data manipulation,

• data injection,

• transfer learning.

The threat level of listed items is decreasing, from the most to the least dangerous sce-

nario. Logic corruption refers to the attacker’s possibility of changing the algorithm and

learning method. In this case, absolute control can be achieved.

The second scenario, data manipulation, considers the possibility of altering the data ex-

amples. Similarly, data injection is a more restricted version of the former method where

manipulation is allowed only in the form of adding new instances. Transfer learning is

9

considered as the lowest level of interference since it refers to framing a model that had pre-

viously been trained on adversarial data. The victim uses the corrupted model in the learning

process for other tasks. The impact of adversarial examples fades as correct instances are

newly added.

3.3. Adversarial Attacks on Textual Models

Generating adversarial examples is generally motivated by two goals: attack and defence

mechanism. The attack’s purpose is to evaluate the robustness of targeted models, while the

defence takes the process a bit further by exploiting adversarial inputs to make models more

robust.

There are certain viewpoints specific to the natural language domain when considering

adversarial attacks. One of the most important is the semantic granularity. Since the input for

textual models is almost exclusively unstructured text in the form of sentences, the question

of granulation arises. The approach depends on the model’s embedding2 level. Embeddings

can be based on the following constructs:

• character,

• word,

• sentence.

The attacking strategies are largely influenced by embedding levels.

Altering text without being noticed is a very delicate task. There are several obstacles

on the way. Firstly, it is difficult to preserve the text’s semantics when employing an attack.

Additionally, it must be kept in mind how much has the adversarial example changed com-

pared to the original data instance. This is described with the perturbation measure. The

perturbations themselves are intently created noises added to the original input. Usually, the

size of the perturbation is calculated as the distance between clean data and its adversarial

example (Zhang et al., 2019). The ultimate goal is to make small changes, imperceptible to

human, just enough to fool the model.

Adversarial example x′ can be regarded as artificially fabricated data. Given the original

data x and the set of all inputs X, it can formally be defined as:

2distributed representation for text in numerical form

10

3.4. Vulnerability of Deep Learning Models

Data dependency is an inherent vulnerability of deep learning models. In order to guarantee

the trustworthiness of a model, all of the data, used both in training and testing phases, must

be clean and uncompromised. That is extremely hard, almost impossible, to achieve.

Models have to train on adversarial examples in order to detect them later on. This

presents a problem because of the vast number of different perturbations. Model robust-

ness should increase with the number and variety of adversarial inputs. Nevertheless, that

approach is flawed because those examples are designed specifically to shift the decision

boundary. If the model sees and trains on too many of them, it can ruin its internal logic and

alter the boundary beyond repair.

Training on adversarial data is risky business because a balance has to be achieved. A

simplified example of an unsuccessful one is shown in Figure 3.4, where abbreviation AE

stands for adversarial example. Model boundary collapses to an almost straight line. Nearly

linear boundary won’t suffice for correct predictions, and there are many errors as a con-

sequence. The model has become virtually useless. The process of making models more

resilient must be done with great caution, in order to avoid counterproductive results.

12

4.1. Why Not Gradient?

Studies on adversarial attacks in image domain are much more prolific than ones in texts.

Because of that, researchers try to transfer approaches in image domain to text and hope

to achieve better results (Wang et al., 2019). This type of attack has shown great promise

for images. That has not been a surprise, considering that these attacks exploit the essence

of the training procedure. The learning process is pushed in the opposite direction, aiming

to achieve the worst possible loss, which makes it so successful. The downfall is the pre-

requisite of knowing the model’s internal logic - loss function, optimization algorithm and

model’s complete structure (architecture, parameters, activation functions), in order to be

able to accurately calculate information necessary for the attack. This essentially puts the

attack in a white-box scenario.

The basic idea of any gradient-based attack is to find perturbation as a value proportional

to the gradient of model’s loss function with respect to its inputs. For instance, in fast gradient

sign method (Goodfellow et al., 2014), perturbation is calculated as:

δ = ϵsgn(∇xJ(θ,x,y)), (4.1)

where J is model’s loss function, θ are its parameters and ϵ is a small positive constant (e.g.

ϵ = 0.25). Signum function takes the sign of the calculated gradient. It is defined simply as:

sgn =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−1 if x < 0,

0 if x = 0,

1 if x > 0.

(4.2)

Function is applied for each component of the vector (i.e. element-wise).

The described idea works great for images, but it stumbles upon problems in text. Adding

adversarial noise to images produces a new image with slightly altered pixels. On the other

hand, coarse-grained space of words in text isn’t convenient for small shifts, since it is very

unlikely to perfectly match another word when noise is added. This problem can be circum-

vented by searching for nearest neighbours in the vector space, which can be challenging to

do without ruining the semantic properties of text.

4.2. Targeting Words with Inner Bias

Deep learning models search for patterns. In textual data, that can mean the identification of

certain words important for prediction. For instance, in sentiment analysis of movie reviews,

15

the model has to focus on words that contribute to the impression of sentiment. Here is an

example of a movie review with negative sentiment:

This movie had horrendous acting, disappointing plot, and terrible choice of actors.

And here is an example of a positive movie review:

The movie was absolutely stunning, I unpacked a decade worth of admiration.

The words in bold are the sentiment indicators, without them, it would be impossible to

determine the overall sentiment. A good model should have a preference for them when

making a prediction. This leaves room for the attacks to exploit the model’s inner bias for

those words.

4.2.1. Embeddings and Vocabulary

Text has to be converted to some form of numerical information, for the model to be able

to understand it. Representing discrete types (e.g. words) as dense vectors is the core of

deep learning’s successes in NLP (Rao and McMahan, 2019). The term embedding refers to

learning the mapping from a discrete type to a point in the vector space.

A finite set of words used in a certain NLP problem is called vocabulary. It is typically

collected as all of the words that appeared in a dataset. To reduce the size of the vocabulary,

it is possible to filter out the words by their frequency (dismiss low-frequent words) or some

other measurement.

Distributed representations have been on a rise for some time. These low-dimensional

dense vectors have multiple benefits over the one-hot and count-based encodings (e.g. term

frequency - inverse document frequency): they are more computationally efficient, tend to

reduce the redundancy of information and can be fine-tuned for task-specific data. As another

positive side effect, the phenomenon called the curse of dimensionality1 can be mitigated.

Embeddings are the chains that link actual words with their numerical representations. They

represent an important part in any NLP model and that is why they are a key figure in some

of the following attacks.

A special type of embedding that will be important later on, is the one that maps unseen

words or words that are not in the vocabulary. This embedding is usually marked as unknown

or UNK for short. The underlying consequence is that the model will encode every word that

1various phenomena that arise when analyzing and organizing data in high-dimensional spaces that do not

occur in low-dimensional settings

16

is not in the vocabulary with the same embedding, typically with all of the components set

to zero.

4.2.2. Word Bug

In a black-box scenario, the only available information is the model’s prediction vector. Let

the classifier be denoted as F . It maps an input text sequence to an output vector. A data

example is a pair (x,y), where x = x1x2x3...xn (xi represents an embedded token). The

label y is encoded as one-hot or multi-hot (if it is a multi-class problem) vector. It is required

that the model produces probabilities for each class: F (x) = y′, where y′ is a probability

vector whose elements sum up to one.

A good starting point for an attack is to find important words in text for a given task.

Without the guidance of gradients, it is necessary to target words with another scoring system

(Gao et al., 2018). It has to be independent of the model’s parameters since they are not

observable. When those words are identified, the threat model needs to transform target

words, keeping in mind the edit distance - how much and in which way will the word be

changed. This approach is called Word Bug attack.

To employ the attack, two steps have to be considered. Firstly, using the scoring system,

most relevant words (generally tokens) are selected. This includes ranking the tokens by

their produced score. After that, a transformation algorithm is utilized to alter the words.

Scoring system is a function that uses the model’s prediction for determining word im-

portance. It should follow these guidelines (Gao et al., 2018):

1. Scoring function should appropriately reflect the importance of words for a specific

task.

2. Knowledge of the model’s parameters is considered unavailable.

3. Score calculation should be fairly efficient, because it has to be done for every word in

a given text, to make a complete picture.

Gao et al. (2018) propose several scoring functions: temporal score, temporal tail score

and their combination.

17

Temporal Score

How to measure importance of the i-th word of an input sequence x = x1x2x3...xn? One

way is to determine its impact on the classification prediction by comparing model’s outputs

with and without it in a temporal context.

Let δi denote the perturbation of the i-th token. In the continuous domain (e.g. im-

age), it is possible to alter the original input’s i-th element by making a superposition of the

corresponding token with δi. With x′
i as the newly created token, the resulting change of

prediction output ∆iF (x) can be approximated using the partial derivative of the i-th feature

(Gao et al., 2018):

∆iF (x) ≈ (x′
i − xi)∇xi

F (x) . (4.3)

Considering a black-box setting, the term ∇xi
F (x) cannot be calculated because of the lack

of needed information about the model. Furthermore, it is difficult to calculate the difference

x′
i−xi since words in text are discrete by their nature. To bypass the posing problem, ∆iF (x)

can be measured directly by removing the i-th token. Comparing the model’s prediction with

and without the observed token reflects the word’s impact on the output. Since most of the

NLP models process input in a sequential manner, the token is observed in temporal context.

The temporal score St of the i-th element in a sequence is defined as:

St(xi) = F (x1x2...xi−1xi)− F (x1x2...xi−1) . (4.4)

The described temporal score of every token in an input x can be calculated inexpensively

by one forward pass of the used model.

Temporal Tail Score

The previously described temporal score can be considered myopic since it only takes pre-

ceding words of a sequence into account. Following tokens cannot simply be ignored if

expected to have full insight in token’s significance for the prediction.

An another extreme approach would be to observe only the targeted word’s following

tokens. New measurement, the temporal tail score Stt should describe whether the word

influences the final prediction when coupled with tokens that follow it. The score of the i-th

token in a sequence of length n, of which only n − i + 1 elements are actively observed, is

defined as:

Stt(xi) = F (xixi+1...xn−1xn)− F (xi+1...xn−1xn) . (4.5)

18

Combined Score

Temporal and temporal tail scores are two extreme approaches and they can be viewed as

mutually exclusive. This leaves room for their combination. When both directions are taken

into account, a clearer picture can be achieved. The combined score Sc can simply be con-

structed as:

Sc(xi) = St(xi) + λStt(xi), (4.6)

where λ is hyperparameter used for adjusting the relevance of used measures.

Token Transformer

How to change the most important words selected by some scoring criterion? The main goal

is to confuse the model as much as possible during its prediction phase. Small changes are

preferable, some transformation that can have controlled edit distance. It would be sufficient

to alter the targeted token just enough for it to be unrecognizable, which means that it does

not exist in the model’s vocabulary.

One way of achieving the described goal is by using a simple transformation to deliber-

ately create misspelt words. Since vocabulary knowledge of an NLP system is crammed into

a finite set of possible words, it is a relatively easy task to convert a token into unknown.

Modifying the words with one of the following methods keep the Levenshtein distance

at low value:

1. substitution of a character in a word with a random letter,

2. insertion of a random letter,

3. deletion of a random character in the targeted token,

4. swap two adjacent characters in the word.

First three methods result with the edit distance equal to one while swapping makes it two.

The generated adversarial inputs should appear visually and morphologically similar to hu-

man observers (Gao et al., 2018).

A somewhat different transformation function would be replacement of a character with

its homoglyph - another character that has an identical or very similar shape, but it is not

essentially the same character (i.e. it possesses a different encoding).

19

A few transformation examples are shown in Table 4.1. Homoglyph column contains

instances with visually distinctive letters, for demonstration purposes. In a real attack, ho-

moglyphs can be so similar that is nearly impossible to tell them apart.

Table 4.1: Word transformations

Original Substitute Insert Delete Swap Homoglyph

keyboard kezboard keuyboard keboard kebyoard keẙboard

astonishing astonizhing astoniishing astonshing astonihsing astonişhing

horrible horriboe horriblse horrible horribl horriblé

4.2.3. Word Drop

By studying the model’s behaviour with input as a temporal sequence, it is difficult to keep

the whole rest of the text when eliminating a single word. Removal is necessary for compari-

son which leads to a conclusion about the token’s importance. Word Bug variations described

in the subsection 4.2.2 can only partially view the input sequence. The most informative vari-

ation is combined score, but that approach is also flawed since it looks at the context before

and after the targeted word one at a time. This obstacle can be bypassed if the sequences’

lengths are fixed. They also must be equal in size. A novel approach of estimating word im-

portance, called Word Drop is based on that idea without significant losses in computational

performance.

Sequence Packing

When training a deep learning model, input data usually come in batches. To ensure that

model can accept every instance in a batch, they must all be the same length. This can

typically be achieved by padding the sequences to the length of the longest one (e.g. fill them

up with zeros until they reach the wanted length). The downside of that is the unnecessary

calculation of pad tokens which will result in zero either way.

Circumvention can be done with sequence packing. Let the following be the input exam-

ples (i.e. batch consisting of three sequences):

20

Long input sequence with many words.

Short sentence.

Medium is the best.

With <pad> representing the pad token, vocabulary that only contains words appearing in

the provided batch is a set:

{<pad>, best, input, is, long, many, medium, sentence, sequence, short, the, with, words}.

For the process of sequence padding to work, sequences need to sort in descending order by

their lengths. After conversion of tokens into indices of corresponding vocabulary elements

and sorting by length, the batch may look like this:

[4 2 8 11 5 12] [4 2 8 11 5 12]

[9 7 0 0 0 0]
descending sort
−−−−−−−−−→ [6 3 10 1 0 0]

[6 3 10 1 0 0] [9 7 0 0 0 0]

Next step is packing - token by token is taken from each sequence, until it runs out of non-pad

tokens. This procedure with randomly initialized five-dimensional embeddings is illustrated

in two phases. The first phase considers the input as follows:

21

[2.1511 0.1019 −0.3452 1.2028 0.7754] long

[−0.4189 0.6132 0.2892 −0.3298 −1.5918] input

[0.0982 2.9812 1.1096 1.4319 −1.8320] sequence

[0.4260 −1.3618 0.5322 0.9163 0.9982] with

[0.1999 0.3618 −0.1872 −0.5123 0.2221] many

[−0.7612 −1.0899 0.1991 0.2214 −0.0210] words

[3.1209 0.1129 0.6426 −0.9102 0.5713] medium

[0.1120 0.3214 −1.2106 0.5317 −0.3109] is

[0.8823 −1.5561 −3.2210 1.2020 −1.8744] the

[−0.2291 0.2718 0.4672 −0.9910 0.0781] best

[0.4261 −1.3618 0.5322 0.9163 0.9982] <pad>

[0.4261 −1.3618 0.5322 0.9163 0.9982] <pad>

[0.8111 0.2199 −1.0439 −1.3451 −0.7189] short

[2.4012 −0.9901 −2.3310 0.5512 0.0916] sentence

[0.4261 −1.3618 0.5322 0.9163 0.9982] <pad>

[0.4261 −1.3618 0.5322 0.9163 0.9982] <pad>

[0.4261 −1.3618 0.5322 0.9163 0.9982] <pad>

[0.4261 −1.3618 0.5322 0.9163 0.9982] <pad>

The shape of the input tensor is currently 3 × 6 × 5 (batch size × maximum length ×

embedding size). Pad token removal is left to be done. After token reorganization, the re-

sult tensor should look like:

[2.1511 0.1019 −0.3452 1.2028 0.7754] long

[3.1209 0.1129 0.6426 −0.9102 0.5713] medium

[0.8111 0.2199 −1.0439 −1.3451 −0.7189] short

[−0.4189 0.6132 0.2892 −0.3298 −1.5918] input

[0.1120 0.3214 −1.2106 0.5317 −0.3109] is

[2.4012 −0.9901 −2.3310 0.5512 0.0916] sentence

[0.0982 2.9812 1.1096 1.4319 −1.8320] sequence

[0.8823 −1.5561 −3.2210 1.2020 −1.8744] the

[0.4260 −1.3618 0.5322 0.9163 0.9982] with

[−0.2291 0.2718 0.4672 −0.9910 0.0781] best

[0.1999 0.3618 −0.1872 −0.5123 0.2221] many

[−0.7612 −1.0899 0.1991 0.2214 −0.0210] words

22

i.e. transformed with a chosen transformation function. The described process is shown in

discrete steps in Algorithm 1.

The method word_drop_scores presents the batch version of described score calculation.

Relevance for each word in every sequence is processed at once. The packing process is ex-

ecuted in pack_sequence method, while sort_by_sequence_length sorts inputs in decreasing

order.

Algorithm 1 Word Drop Attack

Arguments:

input sequences X = x1x2...xn−1xn,

model classification algorithm,

vocab model’s vocabulary,

attack power P := maximum number of changed tokens,

iterator object for batch navigation,

transform function for adversarial token transformation

Returns:

Set of newly created adversarial examples.

adversarial_examples = ∅

for batch in iterator.generate_batches(X) do

token_indices = vocab.convert_tokens_to_indices(batch)

token_indices, lengths = sort_by_sequence_length(token_indices)

packed_batch = pack_sequences(token_indices, lengths)

y_preds = model.predict(packed_batch) // prediction vectors

scores = word_drop_scores(model, batch, y_preds)

indices = argsort(scores) // sorted argument indices of every sequence

top_indices = indices[:, 0 : P] // take only top P indices for every sequence

for i = 0 .. row_count(top_indices) do

adv_ex = transform(top_indices[i]) // single adversarial example

adversarial_examples += adv_ex

end for

end for

return adversarial_examples

24

4.3. Lexical Substitution

Lexical substitution is an NLP task of identifying replacements for a word in the context of

a clause. For instance, given the text:

“After the match, athletes go through recovery phase.”,

word game can be a satisfying substitute for the word match.

This task is closely related to word sense disambiguation (WSD), in a way that both aim

to determine the meaning of words. While WSD deals with the automated assignment of

sense from a fixed set of option inventory, lexical substitution does not impose any limitations

on which word substitution to use. Ideally, the provided substitutes should be synonyms

of targeted words. Moreover, the predicted synonym must semantically fit into a sentence

context.

Word substitution will be the key component in the upcoming attacks. The main flaw

of previously described methods Word Bug and Word Drop is the lack of semantic integrity.

With adversarial word transformation, the model can no longer interpret the altered token.

Those methods are relatively easy to discover by setting up an automated process of word

integrity - checking for consistent misspells or unfamiliar character encodings.

Language Model

Generally, a language model represents a statistical probability distribution over sequences of

words. It provides context to distinguish between parts of sequences that can sound similar.

Nevertheless, language models can be utilized in lexical substitution tasks.

One such model is BERT (Bidirectional Encoder Representations from Transformers).

It is called a mask language model because it is possible to mask one or more words in a

sentence and have the model predict those masked words given the corresponding context.

These kinds of models are usually pre-trained on an extremely large text corpus.

The simplest way of using BERT for substitution is taking the words with the highest

probability within a given context. An example of BERT prediction in language model

context is shown in Figure 4.3. The [CLS] token is used to mark the sequence beginning and

[MASK] denotes the masked word - model will produce the most likely options to fill in the

spot. If the best answer corresponds to the actual word (i.e. the word that is masked), the

substitute can be the next best prediction.

25

is based on the distributional hypothesis which assumes that semantically similar or related

words appear in similar contexts (Harris, 1954). However, learning word embeddings from

co-occurrence information in text corpora can lead to coalescence of two similar but different

notions: semantic similarity and conceptual association (Hill et al., 2015).

Another way of lexical substitution relies heavily on vector space. Encoded words should

be closer together if they have similar meanings or are connected somehow. Since training

word embeddings is connected to training language models, it is required to find a way to

correctly link synonyms. Mrksic et al. (2016) propose a way to ensure linguistic constraints

by utilizing a counter-fitting procedure. It seeks to bring the word vectors of known synony-

mous word pair closer together in the vector space.

The core of the idea is to use an optimization method (e.g. stochastic gradient descent)

to squeeze distance between synonyms close to zero. As as starting point, an indexed set

of word vectors V = {v1,v2, ...,vn} is collected. Newly constructed word vectors, into

which semantic relations will be injected, are denoted as V ′ = {v′
1,v

′
2, ...,v

′
n}. A set

of constraints S is consisted of pairs of indices such that the corresponding words from

vocabulary are synonyms. Formally, the procedure SA, called synonym-attract, can be

defined as (Mrksic et al., 2016):

SA(V ′) =
∑︂

(u,w)∈S

d(v′u, v
′
w), (4.8)

where d is an arbitrary distance measure (e.g. Euclidean distance).

A few examples are shown in Table 4.2, taken from Mrksic et al. (2016), that show the

difference between pre-trained GloVe2 vectors and counter-fitted ones.

2Global Vectors for Word Representations: https://nlp.stanford.edu/projects/glove/

27

Table 4.2: Regular vs. counter-fitted vectors

east expensive British

Regular

west

north

south

southeast

northeast

pricey

cheaper

costly

overpriced

inexpensive

American

Australian

Britain

European

England

Counter-

Fitted

eastward

eastern

easterly

-

-

costly

pricy

overpriced

pricey

afford

Brits

London

BBC

UK

Britain

4.4. Reinforced Genetic Attack

To avoid limitations of gradient-based attacks and employ constructed mechanism for lex-

ical substitution, it is necessary to design an optimization procedure that meets all of the

constraints. It has already been demonstrated that genetic algorithm copes well with this

type of problem (Alzantot et al., 2018). However, the algorithm can be refined and enhanced

to achieve even better results.

4.4.1. Threat Model

The threat model is designed to work in a black-box scenario. It can only query the victim

model to obtain the probability vector of its output. Any information about the model’s

parameters, architecture, loss and activation functions are off the limits.

There are a few different options, regarding the attack goal. Adversarial examples can be

directed - used to force the model to predict a specific class, or they can be undirected where

the threat model only aims for the victim model to misclassify the example.

28

4.4.2. Chromosome Design

One of the crucial components of the attack is chromosome representation. The algorithm

should be able to operate with compact structures. Given that the threat model works with

textual data, the input sequences are already encoded with vectors assigned to each token.

For easier manipulation with chromosomes, the actual structure contains only indices of rep-

resentational vectors that are stored in the embedding matrix E. The size of a chromosome

depends on the number of its tokens. For instance, if a text is broken into n tokens, the corre-

sponding chromosome would be an array consisting of n indices. In the process of crossover

and mutation, the word substitutions are always conducted as one-to-one mapping. Thus, the

chromosome’s size remains fixed even after applying genetic operators.

To put things into context, let the example of a vocabulary with mapped indices be de-

fined as:

{ a: 0, captivating: 1, character: 2, compelling: 3, engrossing: 4,

is: 5, main: 6, movie: 7, of : 8, profile: 9, psychological: 10,

the: 11, very: 12, with: 13 }.

As an example of a movie review with positive sentiment, the following sentence represents

the initial textual sequence and its phenotype: “The movie is very engrossing with a com-

pelling psychological profile of the main character.”.

Once the mapping to corresponding indices is completed, the chromosome (i.e. genotype)

should be represented as [11 7 5 12 4 13 0 3 10 9 8 11 6 2]. The indices may reoccur

if the same word is repeated throughout the text. Furthermore, the token vector is easily

accessible in a single operation via the embedding matrix. In particular, the embedding of

the i-th token can be extracted in constant time simply by retrieving E[i]. If the fifth token

“engrossing” is substituted with a synonym, the corresponding word index merely needs to

be switched with the substitute’s index. For instance, if the synonym in question is “capti-

vating” with index equal to 1, the chromosome will undergo a minor transformation:

[11 7 5 12 4 13 0 3 10 9 8 11 6 2] → [11 7 5 12 1 13 0 3 10 9 8 11 6 2].

By using the vocabulary’s inverse mapping, the chromosome can easily be reverted to its

textual representation.

29

4.4.3. Components Connection

A lot of constraints have been imposed on the procedure. As few as possible words should

be modified in the attack, but they have to maintain semantic similarity with the original

ones, as well as the syntactic coherence. To achieve this task, a population-based genetic

algorithm is employed (Alzantot et al., 2018).

There are several steps involved in the attack. Firstly, the lexical substitution model has

to be chosen. As variations of previously described methods, the options are as follows:

• Euclidean model - employs counter-fitted vectors to calculate nearest neighbours

using Euclidean distance,

• WordNet model - uses WordNet3 database to retrieve synonyms for certain words,

• Lin thesaurus model - utilizes a powerful thesaurus that is a part of the NLTK4

(Natural Language Toolkit) library,

• BERT - used as a masked language model that serves as a proxy in finding lexical

substitutions.

Listed lexical models provide the possibility of preserving the semantic soundness of targeted

text. They serve as the first component used repeatedly by the genetic algorithm during the

optimization process. Furthermore, these models should be able to filter words that are

supposed to be skipped during the attack. This often relates to stop words and punctuation

tokens, which can easily ruin text integrity if substituted.

To ensure that a certain substitute word fits well, the substitutability measure is intro-

duced. It calculates the word’s affiliation towards other tokens in text, based on the context.

This can be done by computing distances from each token and finding the mean value. For-

mally, the substitutability value Vsubst of i-th word in a text can be defined as follows:

Vsubst(vi) =

∑︁N−1
j=0,j ̸=i d(vi, vj)

N − 1
, (4.9)

where N is the number of tokens in the text, vi corresponds to the embedding vector of the

i-th word and d is arbitrarily chosen distance measure.

For an additional enhancement of the attacking procedure, the part-of-speech tagging can

be utilized. Lexical databases such as WordNet often benefit from grammatical categories

when delivering an answer to a query. That is a simple way of integrating word sense in

synonym search.

3WordNet website: https://wordnet.princeton.edu/
4NLTK platform: https://www.nltk.org/

30

As a second step, genetic perturbation must be carefully designed. This method will

eventually be used in mutation, as well as in the creation of the initial population. The

perturb procedure uses lexical substitution model to retrieve top n candidates, where n is

defined as the magnitude of search space. With the increase of this parameter, it is more

likely for the semantic correctness to be disrupted, but the search space is larger so it’s easier

to find an adversarial model that would fool the victim model.

Finally, the implemented steps are used in the full-blown genetic algorithm to slightly

perturb the given text in order to achieve false prediction. The population initialization is

done by perturbing a random word with the lexical model. If the wanted population size is

N , the process is repeated N times. There are several options for crossover:

• uniform crossover,

• k-point crossover,

• segmented crossover.

The segmented crossover presented with the best behaviour, when considering how believ-

able were the adversarial examples - meaning how hard it is to detect that text was meddled

with. In the used variation of segmented crossover, the procedure traverses through elements

of parents. It points to one parent at a time. If the focus is on the first parent in the i-th step,

the i-th element in the child chromosome will be from the first parent and similarly for the

second parent. In each step transition, there is a small probability that the focus will switch

to the other parent. The process is repeated until all of the elements are exhausted.

With the described components put together, the only thing left to do is used one of

the word-targeted attacks to reinforce the procedure, such as Word Drop described in 4.2.3.

This secondary attack evaluates the importance of each word in a given text, which can

be converted to weighted probability. Newly constructed probability vector is now used in

selection processes by the genetic algorithm. For instance, in the population initialization

and mutation methods, the vector is utilized to achieve roulette wheel5 selection on the token

level.

The whole attack procedure is summarized in Algorithm 2. Lexical substitution model re-

trieve top results with get_neighbours function. The used criterion is specific to each model,

as previously described. It is crucial for computational benefits to convert the population of

adversarial examples (in numerical format) to a compact batch. Prediction results can now

be effectively calculated for all instances. Selection, crossover and mutation operations are

all done in bulk - for the whole population. The genetic algorithm ensures that elitism is

5fitness proportionate selection

31

applied by always adding the best example to the next generation. Regarding the termination

conditions, the halt function simply compares predicted and targeted classes. If the attack is

directed and the predictions match, the procedure is successful and it returns the best adver-

sarial example. On the other hand, in undirected attacks, mismatch of predictions indicate

the favourable outcome.

32

Algorithm 2 Reinforced Genetic Attack

Arguments:

original text xorig,

weights w := reinforcement weights from the secondary attack,

directed boolean flag that is true if the attack is directed,

target_class target class can be directed or undirected,

generation count G := maximum number of generations,

lexical substitution model MLS ,

victim model MV ,

candidate count ncand := number of top results taken into consideration by MLS ,

substitute count nsubs := number of best substitutes extracted from candidates,

pop_size wanted population size.

halt_fn function that determines if the attack is successful.
Returns:

Best adversarial example based on the success in fooling the victim model.

neighbours, lengths = MLS .get_neighbours(xorig, ncand, nsubs)

pop = generate_pop(xorig, neighbours, weights, target, pop_size)

for i = 1 .. G do

batch = prepare_batch(pop)

pop_preds = MV .predict_proba(batch)

pop_scores = pop_preds[:, target]

if ¬directed then

pop_scores = 1 − pop_scores

end if

top_attack = argmax(pop_scores)

select_probs = softmax(pop_scores)

prediction = argmax(pop_preds[top_attack, :])

best = pop[top_attack]

if halt_fn(prediction, target) then

return best

end if

parent_pairs = select_parents(pop, select_probs, pop_size − 1)

children = crossover(parent_pairs)

children = perturb(children) // equivalent to mutation

pop = concat(best, children) // apply elitism

end for

return best

33

5. Experiments and Results Analysis

A battery of experiments was conducted to properly evaluate the efficiency and characteris-

tics of certain attacks. A wide spectrum of models was adjusted to different datasets, achiev-

ing greater diversity in experiments. Extensive analysis that followed afterwards, aimed to

dive in different aspects of the observed attacks, as well as their pros and cons. Because of

the abundance of data examples throughout the used datasets, the corresponding split pro-

portions are as follows:

• train set - 35%,

• validation set - 15%,

• test set - 50%.

Large test sets help in providing more reliable evaluations.

Most of the functionality was implemented in Python programming language. For the

construction of various models, the powerful PyTorch machine learning framework was used

along with Torchtext library, designed for NLP experiments.

5.1. Datasets

Since experiments are conducted on two types of tasks, text classification and natural lan-

guage inference, there are two corresponding sets of datasets. For attacks in regular classifi-

cation, the following datasets are used:

• Internet Movie Database (IMDB) reviews,

• Stanford Sentiment Treebank (SST),

• Yahoo questions,

• AG news corpus.

Textual entailment experiments are conducted on these datasets:

34

• Stanford Natural Language Inference (SNLI),

• Multi-Genre Natural Language Inference (MultiNLI).

IMDB

IMDB movie reviews dataset (Maas et al., 2011) consists of 50, 000 examples. Each instance

can belong to one of two categories: positive sentiment or negative sentiment. The reviews

are informal and mostly polar regarding their sentiment. For better performances, a few

preprocessing steps were executed before running any experiments. Texts were collected in

HTML (Hypertext Markup Language) format, so the corresponding tags and variables were

stripped along with the special characters that bear no significance for sentiment analysis.

Inclusion of other standard steps, like stop words removal and stemming or lemmatization

is based on the goals of certain experiments. Thus, they are carried through only in some of

the microstudies.

SST

The Stanford Sentiment Treebank includes fine-grained sentiment labels for 215, 154 phrases

in the parse trees of 11, 855 sentences (Socher et al., 2013). Initially, there had been 25 differ-

ent sentiment values, with 1 being the most negative and 25 the most positive. Dataset labels

were reduced to three separate classes: positive, negative and neutral sentiment, similar to

IMDB reviews dataset with the addition of neutral sentiment.

Yahoo Questions

Large corpus of questions used both for question answering and topic classification tasks

is gathered from the Yahoo search engine. Regarding the possible topics of user’s queries,

there are ten distinct classes:

1. Society & Culture,

2. Science & Mathematics,

3. Health,

4. Education & Reference,

35

5. Computers & Internet,

6. Sports,

7. Business & Finance,

8. Entertainment & Music,

9. Family & Relationships,

10. Politics & Government.

The dataset is quite large, so for the experiment purposes, a total of 120.000 examples had

been randomly taken from it.

AG News

AG news dataset is a collection of more than one million news articles. Texts are collected

from more than 2, 000 sources. Each article is assigned one of the four following topics:

1. World,

2. Sports,

3. Business,

4. Science & Technology.

SNLI

The SNLI corpus is is a collection of 570, 000 human-written English sentence pairs manu-

ally labelled for balanced classification with the annotations: entailment, contradiction, and

neutral, supporting the task of natural language inference (Bowman et al., 2015), described

in section 2.2. Each pair contains its premise and hypothesis, between which relation is

questioned.

MultiNLI

Similarly to the SNLI dataset, the MultiNLI corpus is a crowd-sourced collection of 433, 000

sentence pairs labeled with textual entailment information. The corpus is modelled on the

36

SNLI corpus but differs in that it covers a range of genres of spoken and written text, and

supports a distinctive cross-genre generalization evaluation (Williams et al., 2018).

5.2. Models

As mentioned at the beginning of the chapter, deep learning algorithms were implemented in

PyTorch ecosystem. All of them extend an abstract base class, which defines several methods

that every model has to implement:

• forward - represents a forward pass resulting with logits which are non-normalized

raw predictions generated by the model,

• predict_proba - outputs a probability estimation vector, typically calls the forward

method with inputs and then applies sigmoid function for binary classification or

softmax for multi-class data,

• predict - retrieves predicted classes for the provided input, it essentially the argmax

value of predict_proba function’s output.

For standard classification, most of the models are built on top of a recurrent neural

network (RNN). Diversity is achieved by changing the RNN cell type with the following

three options:

1. plain RNN,

2. long short-term memory (LSTM),

3. gated recurrent unit (GRU).

Sequential models can process inputs unidirectionally or from both ends. This is left as

an option since the victim model’s bidirectionality can be significant for the attack behaviour.

Finally, every model also has two working modes: normal and packed. Sequence packing,

described in subsection 4.2.3, is a useful tool because it improves models’ performances and

it ensures the feasibility of the Word Drop attack.

Finally, a transformer model used for text classification experiments is a BERT classifier,

whose base was introduced in section 4.3 where BERT is used as a foundation for a lexical

substitution model. Implementation is relied on the Hugging Face1 library. The model itself

1Hugging Face website: https://huggingface.co/

37

is based on attention mechanism that learns relations between words. A transformer includes

two separate entities - an encoder that reads the textual input and a decoder that estimates a

prediction for the given problem.

The models for textual entailment require a somewhat different approach. It is necessary

to provide components for both the premise and hypothesis part (depicted in section 2.2). In

addition to RNN-based layers, there are several fully connected linear layers to deepen the

model. Two separate parts are processed in parallel and concatenated at the end to form a

single tensor output. As in standard classification models, it is possible to choose one cell

type among plain RNN, LSTM and GRU. Model’s directionality and activation functions are

adjustable as well.

All of the implemented deep learning models are parameterized so that they can have

arbitrary architectures. It is possible to adjust the number of layers and dimensions of each

layer, excluding the input and output layer which are dependent on data. Furthermore, there

is an option of applying dropout throughout the models’ layers. For the sake of comparabil-

ity, every model uses pre-trained GloVe embeddings.

5.3. Attacking Efficiency

The attacks are executed under the assumption that the victim model is at least better than a

random prediction. Otherwise, the model would be useless and the attack could only increase

the model’s performance by changing its decisions which contradicts the attack’s purpose. If

the actual labels of original data are omitted, then the process of forging adversarial examples

is led strictly by the model’s predictions. For instance, if the targeted model predicts class

y for the provided input, the adversarial example y′ should be such that y′ ̸= y, regardless

of the input’s true label (i.e. gold label). Some experiments are also conducted with known

gold labels, whose results are displayed later on in this section.

Tables with results are divided by dataset pairs. There are three pairs in total, where each

dataset is coupled with one that is the most similar to it. The outcome of coupling is:

• (IMDB, SST) - sentiment analysis,

• (Yahoo questions, AG news) - topic categorization,

• (SNLI, MultiNLI) - textual entailment datasets.

The RNN-based models listed within tables are implemented with sequence packing, two

recurrent layers and dropout probability set to 0.5. Hidden layer size is 256 and embedding

38

dimension is 100. Models are trained for 20 epochs with the possibility of early stopping

after 3 epochs with a consecutive decrease in validation performance. The batch size is set to

64. Adam optimizer (Kingma and Ba, 2014) is used in combination with cross-entropy loss

for the training process.

Results denoted with “regular” present models’ performances without applying any at-

tack. The first baseline (i.e. baseline I) is derived by taking random words and changing

them to unknown token, modelled by Word Bug and Word Drop attacks. On the other hand,

the greedy swap attack (i.e. baseline II) is designed to take only the most important words

in a text and swapping them with a first available synonym (statically mapped in WordNet

database). These models are primarily developed to achieve a more nuanced comparison

between other attacks and them. All of the other adversarial methods are described in detail

in chapter 4, along with RGA denoting the Reinforced Genetic Attack which is defined in

section 4.4.

Results marked with † in superscript are statistically better than other listed attacks on

the same dataset with the same models. Statistical tests are conducted with significance level

α = 0.01, as 10-fold t-tests. Numbers displayed in bold represent the best scores, i.e. the

most effective attacks in their respective categories. Maximum allowed perturbation is 10%

(equation 3.1). First set of attacks, including Word Bug variations and Word Drop always

perturb the maximum permissible amount of text. Greedy swap and RGA may result in a

maximum perturbation or lower.

Firstly, the accuracy measures on IMDB and SST datasets with varying models and at-

tacks are shown in Table 5.1. RGA is a clear winner, certified by statistical tests. Attacking

efficiency seems to be correlated with the quality of a model, with attacks having a greater

relative impact on better models rather than on poorer ones. This can be explained by the

higher ratio of incorrect labels provided by the poor models. Nevertheless, attacks seem to

be effective in either case. Lower accuracy of certain models corresponds to more effective

attacks.

Table 5.2 contains results for RNN-based models on Yahoo questions and AG news topic

categorization. All of the attacks outperform their corresponding baselines, but Word Drop

and RGA tend to be the most effective ones.

Judging by the results of temporal and tail attacks, it can be hypothesized that in many

cases the context before is more important than the context after for understanding the text.

Moreover, temporal score consistently outperforms tail score on IMDB, SST, Yahoo and AG

datasets, which is supported by statistical t-test with significance level α = 0.01.

39

Table 5.1: Accuracy of victim models on IMDB & SST datasets

Dataset IMDB SST

Model bi-RNN bi-LSTM bi-GRU bi-RNN bi-LSTM bi-GRU

Regular 0.8966 0.9153 0.9056 0.6220 0.6381 0.6197

Random (Baseline I) 0.8648 0.8821 0.8617 0.6114 0.6211 0.6093

Word Bug - Tail 0.6747 0.6754 0.6727 0.5229 0.5213 0.5319

Word Bug - Temporal 0.6132 0.6121 0.6097 0.4892 0.4831 0.4956

Word Bug - Combined 0.4914 0.5178 0.5097 0.4274 0.4301 0.4194

Word Drop 0.2772 0.3188 0.2957 0.1674 0.1761 0.1719

Greedy Swap (Baseline II) 0.7921 0.7984 0.7899 0.5372 0.5415 0.5399

RGA 0.2127† 0.2099† 0.2879 0.1612 0.1455† 0.1821

Table 5.2: Accuracy of victim models on Yahoo Questions & AG News

Dataset Yahoo Questions AG News

Model bi-RNN bi-LSTM bi-GRU bi-RNN bi-LSTM bi-GRU

Regular 0.6106 0.6238 0.6211 0.8550 0.8691 0.8458

Random (Baseline I) 0.5913 0.5942 0.5891 0.8152 0.8275 0.8177

Word Bug - Tail 0.5220 0.5421 0.5439 0.7057 0.7344 0.7391

Word Bug - Temporal 0.5007 0.5121 0.5094 0.6742 0.6811 0.6796

Word Bug - Combined 0.4821 0.4312 0.4111 0.6132 0.6227 0.6308

Word Drop 0.4314 0.4101 0.4121 0.4703 0.4501† 0.4819

Greedy Swap (Baseline II) 0.5775 0.5813 0.5644 0.7710 0.7927 0.7699

RGA 0.1971† 0.1877† 0.1902† 0.4613 0.4911 0.4864

40

A drop in performance under RGA is even more expressed in NLI tasks. It is the undis-

puted winner for every model type on both SNLI and MultiNLI datasets.

Table 5.3: Accuracy of victim models on SNLI & MultiNLI datasets

Dataset SNLI MultiNLI

Model bi-RNN bi-LSTM bi-GRU bi-RNN bi-LSTM bi-GRU

Regular 0.7795 0.7814 0.7803 0.6370 0.6419 0.6283

Random (Baseline I) 0.7511 0.7529 0.7689 0.6298 0.6324 0.6210

Word Bug - Tail 0.6157 0.6098 0.6209 0.5114 0.5017 0.5045

Word Bug - Temporal 0.6014 0.6122 0.6137 0.4988 0.5007 0.4834

Word Bug - Combined 0.5422 0.5326 0.5307 0.4327 0.4201 0.4339

Word Drop 0.4188 0.2928 0.3219 0.2978 0.3779 0.3135

Greedy Swap (Baseline II) 0.6987 0.6981 0.7270 0.6107 0.6094 0.6113

RGA 0.2201† 0.1135† 0.1577† 0.2177† 0.0954† 0.1225†

Due to longer training time, experiments with BERT classifier are conducted only under

Word Drop attack and RGA, along with both baselines. Despite the fact that BERT achieves

better results on most datasets, it tends to be more susceptible to attacks.

Table 5.4: Accuracy of BERT classifier under attacks

Dataset IMDB SST Yahoo Questions AG News

Regular 0.9078 0.6412 0.6297 0.8812

Random (Baseline I) 0.8801 0.6214 0.5914 0.8271

Word Drop 0.1847 0.0751† 0.2101 0.1458

Greedy Swap (Baseline II) 0.8014 0.5783 0.4922 0.7541

RGA 0.1424† 0.1233 0.1215† 0.1403

The real power of attacks lies in their success with low levels of perturbation. It is easy

to fool models if adversarial examples are extremely altered, but that approach is easily de-

41

adversarial examples. Three criteria have been picked as a priority:

1. perturbation level - the measure of the difference between the original and the adver-

sarial example,

2. target loss - how far-off is the attack from switching the model’s prediction,

3. human impression loss - how likely it is for a human to detect anomalies in adversarial

text.

The first two metrics are straightforward to express numerically. Counting the different

words at the matching positions serves as perturbation level, whereas target loss has two

scenarios. Firstly, in targeted attacks the target loss is measured as 1 − P (Y = y′), where

y′ is the targeted class. Secondly, in undirected attacks, where the goal is for the model to

predict any class but the current one, the loss is simply P (Y = y), where y is the original

prediction. The last metric, human impression loss, requires a more advanced technique.

The tool of choice is a BERT-based masked language model described in section 4.3. The

main idea is for the model to predict a loss for a given input, where the lower loss means that

the words are more likely to appear together in the provided context. Metric is supposed to

mimic the human judgement because it implicitly provides an evaluation for structural and

semantic soundness.

In Figure 5.2, the chromosomes of targeted RGA on IMDB dataset are displayed. Pop-

ulation size is set to 50 and the maximum number of generations is 20. The green circles

represent the adversarial examples that managed to change the model’s prediction and the

dark red crosses are the ones that failed. Pareto front is shown as a red line. Two groups

are distinguishable, located in the left and right corner. The left group with fewer examples

presents the medium perturbed examples with high semantic integrity and human impres-

sion. On the other hand, the right group is dispersed on different levels of perturbation,

whereas their human impression loss is quite high. The gap can be explained by the diffi-

culty of achieving fine-grained perturbation with adjustable integrity. In most cases the result

is binary, either the text is semantically sound or it contains discerning holes in integrity.

Figure 5.3 represents an attempt of showing the dependency of target loss and perturba-

tion level. The set-up is the same as in Figure 5.2 with the corresponding 50 chromosomes,

but with different scores. The successful adversarial examples are quite dispersed when it

comes to the amount of alteration. If the human impression is not a concern, there is a diverse

spectrum of dominant solutions that can be picked.

43

Table 5.5: Non-targeted adversarial example (IMDB)

Original & adversarial texts Prediction

Amazing movie. Script writing is quite good. Beautiful scenery and

great acting.

positive 0.95

Astonishing movie. Script writing is quite good. Nice-looking scenery

and wonderful acting.

negative 0.84

The next set of examples shows the directed version of the attack. Table 5.6 displays the

original text from the Yahoo questions dataset and several examples of adversarial text with

different target classes. Most of the cases provide quality solutions, but sometimes there

are some obstacles in the way. For instance, the first adversarial example in the first block

has made change accounts → accountants, in order to switch the model prediction from

Entertainment & Music to Business & Finance category. The substitution word is not an

actual synonym, but it is morphologically similar. Other examples successfully executed the

perturbation, preserving the original semantics and tricking the model as well.

Table 5.6: Targeted adversarial examples (Yahoo questions)

Original & adversarial texts Prediction

If you guys want to ask more questions why don’t you just

create multiple accounts?

Entertainment & Music 0.77

If you guys want to ask more questions why don’t you just

get multiple accountants?

Business & Finance 0.82

If you guys want to pose more subjects why don’t you just

generate multiple accounts?

Education & Reference 0.68

I am trying to get along with my fiance but I don’t know how

to settle our difference.

Family & Relationships 0.85

I am trying to get along with my fiance but I don’t under-

stand how to solve our differential.

Science & Mathematics 0.76

I am trying to get along with my fiance but I don’t know

how to address our variance.

Computer & Internet 0.59

Lastly, there are some examples from the SNLI dataset in Table 5.7. Most of the hypothe-

ses are short and the attack has to carefully pick one or two words to appropriately substitute.

46

The relation between the premise and its hypothesis must also be taken into consideration.

Table 5.7: Adversarial examples in NLI domain (SNLI)

Premise Original & adversarial hypotheses Prediction

Two dogs in a grassy field.
Two dogs are outside. entailment 0.98

Two canines are out. contradiction 0.63

A man is giving a presentation.
The man is not talking. contradiction 0.94

The human is not speaking. entailment 0.71

A blond woman in a white shirt

demonstrates her talents to a crowd.

The woman is a street performer. entailment 0.92

The woman is a road entertainer. contradiction 0.79

The lady is a street performer. neutral 0.82

5.5. Attack Transferability

The transferability of an adversarial attack represents its ability to be effective on models that

haven’t been used in the process of adversarial examples generation (Szegedy et al., 2013).

Table 5.8 shows transferred accuracy of four different models: bi-RNN, bi-LSTM, bi-GRU

and the BERT classifier. Each block contains results for the models which the adversarial

examples are generated on - generator models (denoted with • in superscript), and their

corresponding transferred performances (for other models). For each attack and base model,

the next best accuracy is displayed in bold.

The most surprising results are indicated in green colour and they appear in cases where

the BERT classifier is the generator model. Unexpected fact is that the models LSTM and

GRU achieve better results when using transferred adversarial examples.

47

Table 5.8: Accuracy of transferred attacks (AG news)

Attack

Model
bi-RNN bi-LSTM bi-GRU BERT

Regular 0.8550 0.8691 0.8458 0.8812

Word Bug - Combined 0.6132• 0.6352 0.6374 0.6471

Word Drop 0.4703• 0.5122 0.5231 0.5549

Greedy Swap 0.7710• 0.8245 0.8297 0.8566

RGA 0.4613• 0.5334 0.5013 0.5578

Word Bug - Combined 0.6521 0.6227• 0.6309 0.7119

Word Drop 0.4933 0.4501• 0.4680 0.5123

Greedy Swap 0.8306 0.7927• 0.7982 0.8231

RGA 0.9078 0.4911• 0.6297 0.8812

Word Bug - Combined 0.6892 0.6436 0.6308• 0.6998

Word Drop 0.5216 0.4907 0.4819• 0.5564

Greedy Swap 0.8122 0.7725 0.7699• 0.8308

RGA 0.5062 0.4913 0.4864• 0.5411

Word Bug - Combined 0.6320 0.6455 0.6495 0.4921•

Word Drop 0.5211 0.4726 0.5147 0.1458•

Greedy Swap 0.8144 0.8221 0.8019 0.7541•

RGA 0.4702 0.3741 0.4201 0.1403•

5.6. From Adversarial Examples to Data Poisoning

In a scenario where restrictions are more relaxed and there is a possibility to influence train-

ing set, the generated adversarial examples can be used to poison the learning data pool. The

idea is to provide incorrect labels in the learning process, in order to simplify the decision

function. The model becomes too generic and its predictions are virtually useless.

Although the adversarial examples aren’t crafted to undermine the learning process, they

still show some potential in poisoning attacks. Experiments are conducted on IMDB dataset

with an LSTM model (pre-trained LSTM) that has already been trained on regular data and

also an LSTM model (LSTM zero) that had no prior training. Original training set size of

the pre-trained LSTM is the same as the poisoned data size. Thus, the half of the training

48

set consists of regular data and the other half are adversarial examples (i.e. poisoned data).

Accuracy on test data is calculated in every set-up. Results are shown in Table 5.9 for RGA

and Word Drop poisoning, as well as for normal training. If the model is trained only on

poisoned data, it serves no further purpose. In the case of an already trained model, its

performance is significantly dropped.

Table 5.9: Accuracy on poisoned data (IMDB)

Model pre-trained LSTM LSTM zero

Normal training 0.9153 0.5079

Word Drop poisoning 0.6329 0.0139

RGA poisoning 0.1424 0.1233

49

6. Defence Mechanisms

How to properly protect a model from attacks, especially from adversarial examples? There

isn’t a definitive answer and there are very few methods that achieve any success in defence.

The main problem is the sheer variety of adversarial data. Plenty of angles can be used to

approach the attack. The consequence is that there is no silver bullet. The model has to be

fortified with multiple defence methods to stand any chance against attacks.

There are some simple approaches to mitigate the danger from simple attacks. Models

can be protected with:

• text sanitization,

• checking if there is a concerning number of unknown tokens,

• checking for frequent misspellings.

When it comes to more sophisticated attacking methods, a more elaborate approach to secu-

rity measures is required.

6.1. Adversarial Training

One of the straightforward ideas is adversarial training as a defence mechanism. Training the

model on adversarial examples, but with correct labels, is the essence of it. There are some

inherent problems with it, as described previously in section 3.4. The main point is that too

much of adversarial training can oversimplify the model and make it useless.

The adversarial training has to be combined with training on regular data. Models can

achieve better generalization with small batches of adversarial examples to train on. To ex-

plore the possibilities, an LSTM model was used on IMDB data. Initially, the model had

been trained on 25, 000 regular examples. It was evaluated on an adversarial test set, consist-

ing of combined data generated by Word Drop attack and RGA. Furthermore, five different

instances had been trained on other adversarial examples with different sizes. The first model

50

instance was evaluated immediately after its standard training, and the other four used, re-

spectively, 10%, 20%, 50% and 100% of the other adversarial set with 25, 000 instances in

total. The results are shown in Table 6.1. Initially, there is a bump in accuracy at 10% of

examples, but later on, a decrease can be identified when using 20%, 50% or 100% of the

generated adversarial data. The best result is indicated in bold.

Table 6.1: Influence of adversarial training on LSTM’s accuracy (IMDB)

Adversarial pool size 0 2, 500 5, 000 12, 500 25, 000

Accuracy 0.2099 0.3891 0.3511 0.3112 0.1203

6.2. Attract-Repel Embeddings

Adversarial training turned out to be somewhat limiting when it comes to defence, especially

the amount of adversarial data that a certain model can withstand to train on. In a search for

more robust defences, certain types of word embeddings transpired to work well. The idea

is based on the counter-fitted embeddings that are used in some of the attacks described

previously.

In order to make a model resistant to synonym replacement, it is necessary to set certain

linguistical constraints on word vectors. The attract-repel algorithm uses synonymy and

antonymy constraints taken from lexical resources to tune word vector spaces (Mrkšić et al.,

2017). This leads to similar vectors (close in space) of synonym pairs, which effectively

means that the model’s prediction won’t differ much if a certain word is replaced with its

synonym. Furthermore, the antonym pairs are further apart in space, ideally orthogonal.

The method works to some extent, surpassing the capabilities of plain adversarial training.

Using the same experimental set-up as in the previous section, evaluating the accuracy of an

LSTM model on the adversarial test set, some improvements are shown. The accuracy has

risen from 0.2099 (model without defences) to 0.4521 when the attract-repel algorithm is

applied.

51

7. Conclusion

Adversarial attacks are not yet fully explored, especially in the NLP domain. When looking

back at today’s trends in machine learning and deep learning, it is very important to invest

attention in models’ security.

Attacks on text classification or natural language inference models can be achieved with

simple ideas, such as Word Bug variations and Word Drop attack. They have limitations

regarding semantic integrity, but they are quite successful in tearing down models’ perfor-

mances. On the other hand, these attacks are easily detectable, by both humans and comput-

ers. More sophisticated methods are required to fool the model and to generate semantically

and structurally sound adversarial models. Those advanced attacks are based on lexical sub-

stitution, searching for synonyms of targeted words in vector space.

Reinforced Genetic Attack has shown good properties. It can generate hard adversarial

examples with preserved text integrity, which is supported by the conducted experiments.

Furthermore, the attack is versatile, functioning well on different kinds of text. The threat

model still has some issues, which are influenced by the imperfection of word embeddings.

Nevertheless, it copes well with many challenges.

Attack is the best form of defence, so many of the developed methods can be also used

as defence mechanisms. Adversarial training is a functioning, but limited technique. The

proposed attract-repel defence is a more general approach and it produces decent results, but

there is still plenty of room for improvement.

In conclusion, there will be more and more machine learning models and more security

flaws that can be exploited. By studying the attacks, insights can be retrieved which can

be used in building quality defences. Security should always be respected and held in the

back of mind. Unquestionable responsibility comes with creating broadly used systems and

applications, especially ones powered by machine learning.

52

BIBLIOGRAPHY

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava, and Kai-

Wei Chang. Generating natural language adversarial examples. pages 2890–2896, 2018.

doi: 10.18653/v1/D18-1316. URL https://www.aclweb.org/anthology/D18-1316/.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large

annotated corpus for learning natural language inference. CoRR, abs/1508.05326, 2015.

URL https://www.aclweb.org/anthology/D15-1075/.

Jacob Eisenstein. Introduction to Natural Language Processing. The MIT Press, 1st edition,

2019.

J. Gao, J. Lanchantin, M. L. Soffa, and Y. Qi. Black-box generation of adversarial text

sequences to evade deep learning classifiers. pages 50–56, 2018. URL https://arxiv.org/

abs/1801.04354/.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing ad-

versarial examples. 2014. URL https://arxiv.org/abs/1412.6572/.

Zellig S. Harris. Distributional structure. WORD, 10(2-3):146–162, 1954.

Felix Hill, Roi Reichart, and Anna Korhonen. SimLex-999: Evaluating semantic models

with (genuine) similarity estimation. Computational Linguistics, 41(4):665–695, Decem-

ber 2015. URL https://www.aclweb.org/anthology/J15-4004/.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International

Conference on Learning Representations, 12 2014. URL https://arxiv.org/abs/1412.6980/.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christo-

pher Potts. Learning word vectors for sentiment analysis. pages 142–150, June 2011. URL

https://www.aclweb.org/anthology/P11-1015/.

Nikola Mrksic, Diarmuid Ó Séaghdha, Blaise Thomson, Milica Gasic, Lina Maria Rojas-

Barahona, Pei-Hao Su, David Vandyke, Tsung-Hsien Wen, and Steve J. Young. Counter-

53

fitting word vectors to linguistic constraints. CoRR, abs/1603.00892, 2016. URL https:

//arxiv.org/abs/1603.00892.

Nikola Mrkšić, Ivan Vulić, Diarmuid Ó Séaghdha, Ira Leviant, Roi Reichart, Milica Gašić,

Anna Korhonen, and Steve Young. Semantic specialisation of distributional word vector

spaces using monolingual and cross-lingual constraints. 2017. URL https://arxiv.org/abs/

1706.00374/.

Delip Rao and Brian McMahan. Natural Language Processing with PyTorch: Build Intel-

ligent Language Applications Using Deep Learning. O’Reilly Media, Inc., 1st edition,

2019.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew

Ng, and Christopher Potts. Recursive deep models for semantic compositionality over

a sentiment treebank. pages 1631–1642, October 2013. URL https://www.aclweb.org/

anthology/D13-1170/.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian

Goodfellow, and Rob Fergus. Intriguing properties of neural networks. 2013. URL

https://arxiv.org/abs/1312.6199/.

Wenqi Wang, Benxiao Tang, Run Wang, Lina Wang, and Aoshuang Ye. A survey on

adversarial attacks and defenses in text. CoRR, abs/1902.07285, 2019. URL https:

//arxiv.org/abs/1902.07285/.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus

for sentence understanding through inference. pages 1112–1122, 2018. URL https://

aclweb.org/anthology/N18-1101/.

Wei Emma Zhang, Quan Z. Sheng, Ahoud Alhazmi, and Chenliang Li. Adversarial attacks

on deep learning models in natural language processing: A survey. 2019. URL https:

//arxiv.org/abs/1901.06796/.

Wangchunshu Zhou, Tao Ge, Ke Xu, Furu Wei, and Ming Zhou. BERT-based lexi-

cal substitution. pages 3368–3373, July 2019. doi: 10.18653/v1/P19-1328. URL

https://www.aclweb.org/anthology/P19-1328/.

54

Appendix A

Dataset Sources

IMDB movie reviews https://ai.stanford.edu/ amaas/data/sentiment/

SST https://nlp.stanford.edu/sentiment/index.html/

Yahoo questions https://sourceforge.net/projects/yahoodataset/

AG news https://www.kaggle.com/amananandrai/ag-news-

classification-dataset/

SNLI https://nlp.stanford.edu/projects/snli/

MultiNLI https://cims.nyu.edu/ sbowman/multinli/

55

Appendix B

Image Sources and Tools

2.1 Basic NLP pipeline source: https://spacy.io/usage/processing-

pipelinest/

3.1 Adversarial example tool: draw.io (https://app.diagrams.net/)

3.2 Data poisoning tool: draw.io (https://app.diagrams.net/)

3.3 Summary of adversarial attack cat-

egories

tool: draw.io (https://app.diagrams.net/)

3.4 Adversarial training gone wrong tool: draw.io (https://app.diagrams.net/)

4.1 Adversarial attack flow tool: draw.io (https://app.diagrams.net/)

4.2 Sequence packing tool: draw.io (https://app.diagrams.net/)

5.1 Perturbation vs. attack success tool: Seaborn (Python library)

5.2 Human impression loss vs. pertur-

bation level

tool: Seaborn (Python library)

5.3 Target loss vs. perturbation level tool: Seaborn (Python library)

5.4 Boxplot: RGA’s target loss with dif-

ferent lexical models

tool: Seaborn (Python library)

56

Adversarial Attacks in Natural Language Processing

Abstract

Motivation for this assignment, crafting adversarial examples for textual machine learn-

ing models, is presented in the introductory chapter. Natural language processing and adver-

sarial attack concepts, important for understanding the experiments, are briefly described.

Main topic of this assignment is development of various attacks in the natural language do-

main. Emphasis is put on effective attacks and methods that can preserve structural and

semantic integrity of text. Novel approaches have been designed. They rely on evaluating

importance of certain words in text, along with the heavy use of lexical substitution models

and custom-crafted word embeddings. A series of experiments had been conducted in order

to evaluate and compare different adversarial attacks. The thesis is concluded with short

overview of possible defence mechanisms and insights gathered from numerous results.

Keywords: adversarial, attack, text, natural language, classification, entailment, machine

learning, deep learning

Suparnički napadi u obradi prirodnog jezika

Sažetak

Motivacija za problem izgradnje suparničkih primjera, opisana je u uvodnom poglavlju.

Obrada prirodnog jezika i koncepti suparničkih napada ukratko su opisani. Glavni cilj rada

je razvoj raznolikih napada u području prirodnog jezika. Naglasak je stavljen na učinkovite

napade i na metode koje mogu očuvati strukturalnu i semantičku cjelovitost teksta. Razvi-

jeni su novi pristupi napada. Oslanjaju se na procjenu značajnosti pojedinih riječi u tekstu,

kao i na intenzivno korištenje modela za leksičku zamjenu te ručno rad̄enih reprezentacija

riječi. Provedeni su brojni eksperimenti kako bi se procijenile i usporedile izvedbe pojedinih

suparničkih napada. Rad je zaključen kratkih pregledom mogućih obrambenih mehanizama

i uvidima koji su stečeni na temelju dobivenih rezultata.

Ključne riječi: suparnički, napad, tekst, prirodni jezik, klasifikacija, zaključivanje, strojno

učenje, duboko učenje

