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suradnju. Takod̄er, zahvaljujem se tvrtci RealNetworks, posebno mentoru
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1. Introduction

The hot topic in today’s technology and software development is face modeling. Techniques

such are facial recognition, detection, or landmark extraction play a key role in widely used

software. The need for described tasks has developed with the availability of devices for

digital image analysis. Nowadays, a key role in designing software that can handle these

tasks is put on increasing precision and reducing computational complexity.

One approach for reducing computational cost is transfer learning. After building a

model for a certain task, its knowledge can be used and distilled for another, closely related

task. Head pose estimation is an example of such a method that is going to be analyzed in

this thesis. The common solution that can generate a state of the art results is deep learning.

In this thesis, facial recognition is going to be used as the baseline task, which knowledge

will be transferred to estimate head pose.

In order to have a more precise model, a specific and compound neural network archi-

tecture must be found. Changing the depth (number of layers), width (number of channels),

used operations, and other hyperparameters of the neural network results in accuracy change.

Using evolutionary computing, the goal of this work is to manipulate a learning process in

such a way to generate more precise and less complex models. This will benefit the final

precision and latency.

1.1. Contribution

Among some of the previously used techniques, there are several contributions of this master

thesis. Although work on this thesis is focused on estimating head pose, multiple areas of

heuristic methods and deep learning are used. In the first chapter, the head pose estimation

problem is explained in detail, as well as associated work in that area. The main contribution,

a solving method, is also revealed and clarified in the first chapter. Moving towards the next

chapter, we demonstrate deep learning methods and building blocks that are part of the study.

Another type of analysis in the area of heuristic and optimization methods is conducted in the

third chapter. Following, real application and implementation of the optimization pipeline is

explained. The last chapter gives insight into the final results.
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2. Pose estimation problem

When given a photograph with a human face on it, even the most skillful people won’t be

able to give the answer to what is the angle that describes the orientation of the head. This

challenging problem usually seeks more resources in terms of depth cameras or 3D sensors

which will generate precise information on the presented task. Unfortunately, for usage in

real-world practice, these techniques would request spending a large amount of money given

the price of those products. However, nowadays developed software that depends only on

single-image is able to provide precise information about an angle.

Figure 2.1: Head pose angles showing roll, pitch and yaw, respectively [Vatahska et al. (2007)]

Head pose is defined with a 3D vector that describes yaw, pitch, and roll, meaning an-

gles defining rotation around Z, Y, and X-axis in a common coordinate system, respectively.

Better insight into previous statement can be found in the figure 2.1. It is the relative orien-

tation of the head with respect to the local head coordinate system. Such a problem can be

described in another way, it is the problem of mapping 2D data to a 3D space.

Information about head pose can be useful where there is a need for modeling information

about the human head. Industries such are healthcare, car industry, or security dependable

places like airports, offices, and educational facilities all use tasks where head pose informa-

tion is used. Use cases can vary across different practice areas. Such can include enhancing

gaze direction estimation, which can be used in driving for detection of the loss in focus.

Similarly, pose estimation is the backbone for any gesture detection software, vastly being

applied in the healthcare industry. Finally, using the task of estimating the head’s rotation,

more useful information can be introduced to other computer vision techniques such may be

facial identification.
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2.1. Problem formulation

In order to fully reconstruct head position and orientation in 3D space, 2 kinds of motion

should be presented.

1. Translation: moving an object from origin point to a new 3D location. Translation

vector that moves an object from point (x, y, z) to point (x′, y′, z′) can be written like:

t = (x− x′, y − y′, z − z′).

2. Rotation: operation of rotation depends on three different directions around x, y and

z-axis. It can be written as:

(a) 3x3 rotation matrix

(b) Euler angles representing yaw, pitch and roll

(c) Direction vector and angle

In this work, only rotational transformation is considered. Given the RGB image of a

face, the goal is obtaining all three Euler angles which fully describes the head’s pose.

2.2. Related work and solving techniques

In past years, researchers have yielded many different approaches in solving head pose es-

timation problem. However, two approaches stand out, being divided into landmark-based

and landmark-free approaches.

The landmark-based approach tends to fit a 3D head model using facial landmarks [Abate

et al. (2019), Vatahska et al. (2007)]. Facial landmarks are a representation of salient regions

on the face, including eyes, mouth, ears, jaw, etc. They are widely used in mapping the

structure of the face, therefore they are a valuable tool in many computer vision tasks, such

is pose estimation. To determine Euler angles from facial landmarks, one has to establish

the correspondence between landmarks and the 3D head model and calculate alignment pa-

rameters. Since regressing the pose from a face image isn’t its main task, obtained results

may not be sufficiently accurate. Another downside to this approach is a dependence on the

quality of the 3D model, which varies by the number of represented features. Also, high

computational complexity can be a time bottleneck that may make this approach unuseful

for practical implementation.

On the other side, landmark free methods directly regress pose angles from the input

image. Most of the approaches rely on the deep learning and automated feature extraction,

while historically several tried to handcraft features which they found to be important for

this task. Using mostly convolutional networks, authors proposed several different neural
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network architectures to deal with the problem. For example, [Wang et al. (2019)], as well

as [Ruiz et al. (2018)] proposed commonly used convolutional techniques, while modeling

different loss functions. By contrast to such approach, [Yang et al. (2019)] deliver FSA-Net,

a novel hybrid architecture which can obtain a state of the art results on standardized tests.

In the next chapter, a transfer learning method will be explained.

2.3. Proposed method

As mentioned above, different techniques and different approaches all led to the same con-

clusion. That is the motivation for proposing a new method that will be able to yield similar

results. Since head pose estimation is closely related to other facial modeling tasks, the sug-

gested method includes taking a different level of features from the model of the already

solved related task.

Such a task can vary and it can be facial recognition, facial detection, or another familiar

task. Using extracted features and deep learning model on top of them, the assumption is

that it will be sufficient enough to generate close to a state of the art results and will be useful

for fine practical application. This is the example of transfer learning which is going to be

explained later in the work. The advantages of this technique rely on the fact that developed

models can be used for another problem. Furthermore, if features are well selected, with

small data overhead it is possible to obtain accurate results (Figure 2.2).

Figure 2.2: Transfer learning visualization, taking the exraction layer from related face modeling

task
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3. Deep learning

Formally explained, deep learning is a subclass of machine learning algorithms that tends

to derive fine-grained features using matrix operations from raw input. The idea for deep

learning firstly came from the idea of the human brain, a fully neurologically connected unit

capable of solving complex problems. When it first came to the computer science scene with

trained perceptron [Rosenblatt (1958)], this method didn’t have the capacity to become what

it is today. Publications in this area have put the deep learning among top ranked research

areas [Goodfellow et al. (2016)].

In a few years, deep learning has become standard in various tasks, such as include image

processing, computer vision, natural language processing, bioinformatics, etc. None of this

would be possible if there was no investment in solving principal problems in the study of

deep learning algorithms. Such a scenario also became real with development in hardware

which was able to handle big amounts of matrix processing. The next section will explain

some of the basic concepts, then moving towards more advanced topics in the following

sections.

3.1. Basic concepts

3.1.1. Multi layer perceptron

As it is stated before, a deep learning concept is based on neural activity. Basic building block

for every neural network is perceptron, in biological terms it is a neuron that fires on some

kind of previous activity. Mathematically speaking, it is usually a non-linear function that

transforms input with respect to weights factor and activation. This simple transformation

can be written as:

a(
N∑
i=1

wixi + b) ≡ a(w · x + b) (3.1)

In the equation, a denotes some kind of activation function, regardless of it being linear

or non-linear. Summation of input (denoted as xi) with weights (wi) and addition of bias bi
(can be seen as activation threshold) simply mimics human neuron. Stacking those elements
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is used for building a complex model that tries to replicate the neural system. This model is

called a multi-layer perceptron, where layers are denoted as one-way transformation. "Train-

ing" such a model is considered in adapting weights factors to properly transform input to

wanted output.

3.1.2. Convolutional layer

To address problem of image processing, previously explained transformations have no ef-

fect. Effective fix to this problem has emerged from empirical tests. Another type of trans-

formation is used to reveal salient image features. These transformations are made from op-

eration of convolution. Because of the discrete domain and matrix operations, convolution

is mathematical operation of function w usually called kernel, and function f(i, j), original

image with elements on position (i, j). It is applied on image tensor with dimensions of

[width × height × depth]. Operation can be written as:

G(i, j) = w ∗ f(x, y) =
k∑

u=−k

k∑
v=−k

w(u, v)f(i− u, j − v) (3.2)

Where G(i, j) denotes filtered image and u, v are offset in kernel. In the general case

(described in figure 3.1) in large dimensional image data, a filter is the collection of ker-

nels across input dimension depth called the number of input channels. Each filter in the

convolutional network produces one output channel.

Figure 3.1: Visualization of 2D convolutional operation. Number of blue matrices stand for input

channels, while green matrices are produced by 2 different red filters and their quantity stand for

number of output channels. Illustration by [StanfordVisualLab]

6



3.1.3. Pooling layer

Not all features and information from convolution are useful for the final task. This is why

pooling layers are useful. Input tensor is split into regions of size [pool_size × pool_size],

each of these regions produces only one input, which is regularly a maximum or average

element, which is used in maximum pooling and average pooling elements respectively.

Figure 3.2: Maximum pooling layer [Illustration by Asad et al. (2018)]

3.1.4. Activation function

Mathematical functions that describe behavior in nature are usually complex and can not be

addressed with simple regression to some simple formula. Because of that, the deep model

uses a non-linear transformation to deal with this problem. The most popular and commonly

used is ReLU transformation, which stands for "rectified linear unit". It is defined as a

positive part of input:

f(x) = max(0, x) (3.3)

Furthermore, experience has shown that it is possible to improve accuracy of models by

introducing learnable leakage parameter a. This leads to the new activation function called

PReLU, or "parametric rectified linear unit". Finally, formula looks like this:

f(x) =

x, if x > 0

a · x, otherwise
(3.4)

The benefit of such activation function is gradient propagation of only important factors.

Moreover, it has been shown that the model can be trained faster once when ReLU activation

is applied, because of the non-saturating gradients (stuck in the same value for a large number

of epochs).

On the other side, problems might occur when defining a derivative in zero point, because

it is mathematically undefined. Finally, another problem is dead units. In terms of ReLU

activation, this happens once when the activation is constantly negative in a certain neuron,
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therefore it outputs the same value. Parametric ReLU prevents such behavior by adding

parametric leakage factor.

3.1.5. Batch normalization

A lot of improvement in the learning phase can be gained by normalizing input, shifting

inputs to zero mean and unit variance. Exactly that does batch normalization layer [Ioffe and

Szegedy (2015)]. The author’s suggestion is performing BN transformation immediately

before activation because constraining its first and second moments would not eliminate the

distribution covariance shift. Layer normalizes input in the training phase and subsequently

updates global mean and variance variables which will be used in inference.

Ideally, whole training data would need to be processed for estimating mean and variance,

but since the stochastic system is used, during training phase normalization is fixed to the

size of a learning mini-batch. For the inference step (equation 3.5), mean and variance are

calculated as expectancy and variance estimation for these parameters using the information

from training batches. Input and output are denoted as x and y, expectancy and variance are

calculated from training variables, while γ and β are learnable variables.

y =
γ√

Var[x] + ε
x+

(
β − γE[x]√

Var[x] + ε

)
(3.5)

The benefits of this method include faster learning because layers work better with nor-

malized input. Furthermore, the cost of data normalization offers the benefit of higher learn-

ing rates, easier weights initialization, and diverse activation of neurons.

3.1.6. Training

The most important element when using deep learning model is probably its learning phase.

Like it is mentioned before, training means adapting weights to properly transform input to

wanted output. Few things are important for the training phase: initialization of parameters,

loss function, and learning algorithm.

Parameter initialization. Since gradient vanishing and exploding can be a massive

problem in neural network learning, proper initialization can play a key role in preventing this

scenario. To maintain the level variance and mean of gradients through the whole network,

[Glorot and Bengio (2010)] proposed a new way of initialization:

±
√
6√

ni + ni+1

(3.6)

Where ni is number of incoming, while ni+1 is number of outgoing connections.
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Loss function. Quantization of how good the network performs is called a loss function.

It can be measured as properly classified examples, or distance between output and wanted

result. This function is optimized for better network performance.

Learning algorithm There are many ways to train a deep model, most popular, and

the way used in this work is backpropagation. First, we introduce examples of x and wanted

labels y. There is a requirement for loss function to be derivable. Loss function L = f(y, y′),

where y′ is network’s output y′ = g(x), shows how dependable are input and output in loss

function. By calculating an error gradient and therefore moving weights in the opposite way

of a gradient, the model will decrease a loss function value, therefore lower the error. It uses

a chain rule to calculate gradients layer by layer and optimize the network from it’s output

to the input layer. This is done by calculating partial gradients ∂L
∂w

, where L is a loss function

and w is network parameter.

Although it is a derivative method, because of stochastic behavior and the complex nature

of the loss function, there is no insurance that method will converge to a global minimum.

Also, when using backpropagation in the training process, complex operations can not be

used since every operation needs to be derivable. Such a constraint can be avoided by using

other, derivative-free algorithms.

3.2. Transfer learning

The same tool can be used multiple times in numerous closely related tasks in nature. In such

a way function machine learning algorithms. Using the basic knowledge obtained from one

task, it is a common assumption that sharing that knowledge can improve work on multiple

associated problems. If data comes from the same distribution, it is possible to acquire basic

knowledge about data, and use it in improving performance on the target task if such target

is a subcategory of provided task.

In the literature [Ruder (2019)], most of the scientists split transfer learning techniques

into a few categories. Those categories are:

– Inductive transfer learning: having both the same domains for source and target

tasks, inductive transfer learning uses basic domain knowledge and address it on spe-

cific tasks. It can be done in two distinct ways, by multi-task or sequential learning,

depending on do we introduce multiple tasks at once or one-by-one.

– Transductive transfer learning: there are lots of labeled data in the source domain,

but none in the target domain. Such a method is also called "domain adaptation".

By learning shapes and other important features, the model can learn to distinguish

objects in 2 different domains without explicitly showing the difference.
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– Unsupervised transfer learning: this is closely related to inductive transfer learning

where the target task is different but related to the source task. What differs these

techniques from the previous two is focus on the unsupervised task. The goal is using

the basic knowledge to solve clustering, reduction of dimensionality, etc.

This work will utilize sequential transfer learning, a subcategory of the inductive transfer

learning technique. A goal is to use a fully trained network that was used on one task, to be

able to operate with a new task, only by adding a small amount of newly trainable parameters.

3.2.1. Popular networks

Deep learning is a hot topic in modern computer science research. There has been a vast

majority of papers published in the last five years. Therefore, there has been a lot of dif-

ferent approaches in particular regions of computer vision that majorly exploit the benefits

of deep learning. With that in mind, it is important to mention widely and commonly used

networks for face modeling tasks. Once when the most similar task to estimating head pose

is addressed, the best working model is used for transferring knowledge.

As it was previously emphasized, to get the best out of image data, convolutional neu-

ral networks play a key role. Their architecture has been growing since the first commonly

known architectures, as well as the number of parameters and floating operations. With the

growth of the network’s complexity, accuracy has also increased. The main reason behind

that statement is an expansion of capacity, with larger width (number of convolutional chan-

nels) or more depth (number of layers) network performs better because it is able to find and

extract important hidden features related to the input image.

When it comes to face modeling tasks, two of them play a major role and arise as clear op-

tions for transferring knowledge. These are face recognition and face detection task. While

face recognition is nowadays strongly related to deep learning, face detection can use sim-

pler ways to deal with the problem. However, both use common architectures that can extract

important information about the image.

Historically speaking, with the introduction of AlexNet [Krizhevsky et al. (2012)], a hype

for solving computer vision tasks with deep learning has raised. That paper presented the

usage of the enormous dataset and GPU learning technique. The most popular architecture

in the face detection area is probably "Multi-Task Cascaded Convolutional Neural Network"

[Zhang et al. (2016)] or shortly, MTCNN.

It is a hybrid deep learning method. The name comes from multiple scales image is

resized on the start. Following the scaling, three parts of the network process the image

(Figure 3.3). First is called "Proposal network" (P-Net) which generates candidate facial

regions. The next step is the "Refine network" (R-Net) which refines those regions to single

bounding boxes. The final stage is called "Output network" or O-Net, which extracts features
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Figure 3.3: MTCNN architecture visualization [Zhang et al. (2016)]

and obtains facial landmarks. Although it is most popular, MTCNN is not a perfect face

detector. Nowadays, architecture like RetinaFace [Deng et al. (2019)] or AlnnoFace [Zhang

et al. (2019)] are used for the state of the art performance. Once again they feature multi

cascade pyramid network which is suitable for such task.

Moving to the next task, face recognition has used more networks over the years. The

first leap forward has come with DeepFace [Taigman et al. (2014)], a CNN in which the

input is a face image preprocessed with 3D-alignment. DeepID [Sun et al. (2014)] systems

were among the first ones that achieve better than human precision on facial recognition

datasets. Subsequent work has come up with techniques of FaceNet [Schroff et al. (2015)]

and VGGNet [Simonyan and Zisserman (2014)], which are used as the backbone network

for many of today’s face recognition architectures.

It is important to mention Inception-ResNet [Szegedy et al. (2016)] architecture. With its

deep layers and convolutional nature, it is the ideal fit for face modeling tasks. By introduc-

ing techniques such as dimensionality reduction blocks, batch normalization, and residual

skip connections, this network has achieved the state of the art performance on many prob-

lems. It is built from various building modules which were introduced in version v4, where

those modules became uniformly designed over the network. Adding residual blocks didn’t

contribute to increasing accuracy, but it allowed the network to train much faster, which is

the reason why those layers are still used in this architecture. Model is built with three main

modules of different names, module A, module B, and module C, which are used to change

the width and height of the grid. The first module outputs the grid size of 35x35, following

by 17x17, and 8x8 respectively from names. Model’s top-down architecture can be seen on

figure [3.4]. Inception ResNet is extremely fast, taking into consideration its complex and

deep architecture.
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Figure 3.4: Inception-ResNet-v2 (Illustration, [Szegedy et al. (2016)]), a backbone architecture for

FaceNet, with slight change in output layers and convolutional grid size.

3.3. Neural network architecture

The important detail in building the neural network is its structure or how layers are con-

nected. Since deep learning models can’t be interpreted as other common machine learning

algorithms, designing them brings intuition and specific domain knowledge. The model

strongly depends on its architecture and a lot of work has been performed in finding the

most suitable architecture for a particular task. Tuning such search requires lots of human

interventions, and there is no silver bullet on how to deal with that problem.

Today, deep learning models differ from a number of trainable parameters to variance in

used operations. Research in this area has been growing gradually, from simpler models to

more complicated ones. These complex models were often inspired by simpler ones.

The initial task is to determine which type of network should be employed for this prob-

lem. As it was already mentioned, certain network type is strongly correlated with the task
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it can solve. Recurrent network solves time dependable problems, radial basis networks are

connected with clustering and autoencoder networks sample from the distribution. Perfect

choice for image processing is a convolutional neural network (CNN).

Moreover, after the proper type of model has been picked, numerous types of operations

can be stacked together. Operations can be stacked into blocks, or be sparsely connected, as

can be seen in [3.7]. In that equation, N is a network, k denotes the number of layers, and

F is processing operation. Having in mind all the variations of different layers that can be

included in a deep model, search space for finding the most suitable one is enormous.

N = Fk � ...�F2 �F1(X ) (3.7)

Computational resource constraints may also affect the model’s architecture. By intro-

ducing more layers or a greater number of channels, an amount of parameters increases.

Processing those huge amounts of parameters on a graphical unit can be time-consuming.

Neural network speed is correlated with a number of operations needed for a forward pass.

That number is called FLOP, or floating point operations. That number, although it is heav-

ily theoretical since it does not depend on the number of memory accesses or branching, can

give a helpful insight into speed. The number of parameters may also be a good indicator for

speeding up performance. Reducing the number of fully connected layers and adding con-

volutional ones can exploit the power of the graphical processing unit, and therefore create

the lightweight and fast model.

3.4. Network scaling

When designing a convolutional neural network, general practice is to come up with a base-

line model and scale it for better performance. The premise is that with a larger number

of parameters and more floating operations, the network should be able to learn and there-

fore, generalize better. Balancing network width (number of convolutional channels), depth

(number of layers), and resolution (input height × width dimension) will lead to better per-

formance [Tan and Le (2019)]. Research has shown that scaling multiple dimensions at once

(also called compound scaling) can produce substantially better results than scaling one di-

mension at the time.

Today’s models rely on an increasing number of parameters to gain accuracy perfor-

mance. Fortunately, that is not always the case. Depending on the task, equivalent perfor-

mance can be obtained using ResNet-18 as well as using ResNet-200, two networks with

different number of layers expressed in name. Although there is four times more capacity in

ResNet-200, the network does not generalize better. The gain in efficiency and accuracy is

clear on that example.
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Following the cited research, the premise is that scaling up to 2N more computational

resources (FLOPs) requires increasing the network’s depth by a factor αN , width by βN , and

resolution by γN with respect to equation [3.8]. Such scaling is intuitive, by enlarging the

input resolution factor γ, fewer resources should be spent on broadening depth or width to

maintain a certain scale. The same applies to changing the other two factors.

Since dimensions of scaling are not independent, the empirical analysis came up with a

formula that describes behavior in scaling multiple dimensions at once. Given the target on

memory and FLOPs resources, the way that compound scale works can be written as [Tan

and Le (2019)] proposed:

depth: d = αN

width: w = βN

resolution: r = γN

s.t. α · β2 · γ2 ≈ 2

α ≥ 1; β ≥ 1; γ ≥ 1

(3.8)

In this scenario by the formula [3.8], N is a factor that determines how much more re-

sources can be added into the network, meaning, having this factor equal to 3, our network

will be scaled 23 times. In this thesis, 2N is called "FLOPs multiplier" and will be used as a

scaling factor. Also, α, β and γ describe how to assign those resources to the model. Empir-

ical formula says that if we want to double the resources we can linearly enlarge the depth

factor , or quadratically change the width or resolution scaling factors (β and γ). Moreover,

since dealing with transfer learning there is no need to talk about image resolution. Input is

a 3D tensor of the extracted layer and therefore it is less scalable. To come up with this, the

resolution is considered constant, width and depth are the only scalable factors.

Our goal is to generate a model with FLOPs resource restriction by scaling 2 dimensions.

To address the contribution of this work, the obtained model will only be used for a baseline,

on which neural architecture search method will be applied.

3.5. Building blocks

Neural networks can be built by stacking different blocks. These blocks may contain differ-

ent operations and therefore be optimized for a certain task. With multiple available convo-

lution types, each type of layer will be explained in the next sections.

Since neural network architecture searches should not have a large search space, to pre-

vent that, only a few different types of blocks are introduced in this paper. These were firstly
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proposed in [Zhu and Jin (2020)] and reused in this paper with a slight change in their archi-

tecture to benefit the need for pose estimation. They are convolutional [3.5], residual [3.6],

inverted residual [3.7], and depthwise separable block [3.8], each one of them containing

unique operations. Every block has two different variants, first is normal, and the second is

an upscale variant. With the first one, the number of channels is preserved, while the second

upscales, more specifically, doubles the channel size. To model a fully functional unit, those

blocks are connected to the so-called master module, which will be explained later in this

thesis.

3.5.1. Convolutional block

First block is simple convolutional (figure 3.5). Although research [Zhu and Jin (2020)]

proposes working with an identity block, which acts as an empty block, when having a small-

scale master module it is better to exploit the operation of convolution. Its normal variation is

simple convolutional block dependable on kernel size and same padding, while the upscale

alternative has two paths. Each of the two paths is convolution on its own. Finally, these

parts are concatenated and adapted with batch normalization and parametric ReLU. Output

has two times broader channel size than input does.

Figure 3.5: Image showing normal convolutional block (left), ad its upscale variant (right)

3.5.2. Residual block

The next described block is residual. It is a widely and commonly used block in neural

network design. Residual block in its normal version features two subsequently connected

convolutional blocks. Such a design can be seen in a typical ResNet structure [He et al.

(2015)]. Also, the major difference is a skip connection, which can help in simplifying

the network and a more stable and faster training process. This way information from the

first layer is passed and mixed with processed information after two convolutions and batch

normalizations.

On the other hand, an upscale block removes skip connections. It is based on doubling

channel width while still keeping residual block architecture.
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Figure 3.6: Image showing normal residual block (left), and its upscale variant (right)

3.5.3. Inverted residual block

An inverted residual block is a specific one. It features an "inverse bottleneck" structure.

The reason why is called inverse bottleneck is that it features expanding dimension in the

first 1x1 convolutional layer, moving towards depthwise convolution which is able to catch

multiple channel features and in the last part, another 1x1 convolution is there to reduce

dimensionality and mix output with the residual connection.

Figure 3.7: Image showing normal inverted residual block (left), and its upscale variant (right)

Again, as it was the case with a simple residual block, this block in its upscale variant

features the same architecture, but without skip connection.

3.5.4. Depthwise separable block

This block, as the name says, features more depthwise convolutions. Although it looks that it

may be computationally challenging, these depthwise convolutions consume less computa-

tional power than common ones. This block has almost the same architecture as the residual

one, only with the addition of depthwise convolution layers. On the other hand, an upscale

depthwise separable convolutional block features the same connections with the introduction

of parametric ReLU on output and missing skip connection.
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Figure 3.8: Image showing normal depthwise separable convolutional block (left), and its upscale

variant (right)
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4. Heuristic methods for architecture
search

Manually designing deep neural models can give headaches for the creators. With the growth

in computational power and a huge amount of accessible computational units, attention for

the automatic search for best model architecture has grown. Nowadays, many heuristic meth-

ods are used in terms of neural architecture search. Maybe the most common one in "rein-

forcement learning" [Zoph and Le (2016)], a machine learning method where agent evolves

with trial and error technique, each followed by a simple reward strategy. Another approach,

which may be seen in this thesis, is using an evolutionary strategy in terms of architecture

search. For detailed explanation of neural architecture search, three different issues need to

be addressed and these are: search space, performance estimation strategy and search
strategy.

Research has been conducted to divide two different types of architecture search. First

is searching in macro space, where network scaling is important and there is a need to op-

timize width, depth, or input resolution [Tan and Le (2019)]. Roughly said, macro search

tends to find the most suitable parameters for previously described "master module". On

the other side, a micro search space contains different operations that one module may in-

clude. Optimizing hyper-parameters for these operations is also a task for the micro search

algorithm.

An important step in designing the algorithm for finding the best model is constructing a

fitness function. It is an underlying objective function which is usually too complex to solve

with common methods of optimizations. These functions can be non-linear, non-smooth,

discontinuous, etc. and their dimensionality can be high. Furthermore, the evaluation of this

complex function may be time-consuming, and it is important to have as few evaluations as

possible. Because of that, a proper optimization algorithm must be applied to find a global

optimum.

Such functions are a perfect fit for metaheuristic methods. When dealing with complex

functions, heuristic methods are a smart way to bypass heavy function evaluation. To address

the ruggedness of objective function, the population methods are used, mostly in terms of
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the evolutionary algorithm (Algorithm [1]). These algorithms are biologically inspired. With

the biological process of recombination, mutation, and generation, the goal is to find the best

possible individual, i.e individual that matches global optimum. An individual is, the usually

numerical representation of solution.

Algorithm 1 Population based algorithm
procedure SEARCH

pop_size← number_of_individuals

pop← initialize_population(pop_size)

for max_iter do
pop← evaluate(pop)

new_pop← update_heuristic(pop)

pop← new_pop

end for
return pop[best]

end procedure

Given the algorithm above, constructing one solution representation (individual) may be

the hardest part of the algorithm. Traditional mapping usually includes binary or float type

representation. In this work, a vector of floating-point numbers will be used as a represen-

tation of the solution. This choice makes it easier to facilitate common mutation operations,

as well as implementing other search techniques.

4.1. Architecture representation

Previously mentioned macro and micro search spaces both have their representations. Macro

search space includes basic knowledge about a model, its width, depth, and extraction layer

from the transfer network. On the other side, the micro search space is designed as a block-

structured neural network. To distinguish these two types of representations, total search

space includes:

1. Transfer extraction layer (macro search)

2. Scaling factors (macro search)

3. Number of layers (macro search)

4. Operational blocks set (micro search)

5. Operational parameters - kernel size, stride, padding... (micro search)

19



To make it easier to work with, a few predefined sets of hyperparameters are prepared

in macro search space. As it is previously explained, equation [3.8] defines the behavior of

these parameters. Another task is to define the best performing extraction layer from the

transfer network, i.e. the fingerprint extraction layer that is used as a network input. With

these sets of variables, since there are only a few of them, a simple grid search (checking

each combination of parameters) is performed, and best is picked for baseline model for

micro search. Macro search yields set of width scaling, depth scaling and extraction layer
variables.

Micro search on the other side has a more complicated structure. Architecture is made

as a set of chained blocks. We distinguish two different types of blocks. First are "normal"

types of the block that process the information and output the same number of input features.

On the other hand, upscale blocks upsample the information with the introduction of larger

channel size. To reduce the search space we use a set of previously used and designed blocks.

As can be seen in figure [4.1], the design of blocks is pre-defined, while each block is then

populated with its parameters.

Figure 4.1: "Master module" architecture. With "w" is described model’s width scale while "d"

depicts the model’s depth scale

A solution instance in this work is designed as the array of doubles. Formally speaking,

the representationR of the neural network can be written as:

R = {b1, b2...bn} ∪ {p1, p2...pn} ∪ {s} (4.1)

Symbols of bi stand for different used blocks, as it can be noticed in the chained block
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structure above. The symbol pi depicts parameters used in a block bi, usually only kernel

size. Last one to mention is s, a 2N scaling factor from equation [3.8]. To map from this kind

of genotype to the double array, a trivial mapping technique is used. Each of the variables

is used as a floating-point in ther interval 0 − 1, where the interval is split according to the

size of the search space, where a position in the interval determines the used variable. For

example, in the search space of 4 different kernel sizes, interval 0− 0.25 is intended for the

first kernel, interval 0.25− 0.5 to the second, etc. Illustration of such individual can be seen

in figure [4.2]. This allows easy usage in the overall heuristic algorithm. Although, on the

other hand, this might lead to the problem where jumping from the first block to the last one

requires moving through the various others. That problem may lead to the objective function

being rugged and may slow the learning process.

Figure 4.2: Illustration of the kernel size choice. In this example, a kernel size 3 is picked

4.2. Problem formulation

The problem is formulated as the multi-objective search, but its exploration strategy does not

include multi-objective algorithms. Another approach is to derive a complex goal function

that connects each of the various objectives. In this case, we want to model a function that

will be able to maximize precision and reduce the number of floating operations needed. Let

LOSS(m) denote surrogate error function of the model m. Also, let FLOPs(m) address the

number of floating operations for a given model. Floating operations are just an approxima-

tion of the real model’s latency on the device. To describe the model’s precision, a proper

loss function is introduced in the next chapter.

The goal is to find criterion optimal solutions. In the usual situation, this means finding

Pareto-optimal solutions, where optimality refers to finding solutions where no criterion can

be better off without making another criterion worse off. Some algorithms specialize in these

tasks, however, without having a theoretical insight into optimization criteria, in this work

weighted criterion function [Tan and Le (2019)] is used to obtain solutions in which both

terms are optimized at once:

minimize(m): LOSS(m)× (
FLOPs(m)

T
)w (4.2)
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In this equation, T denotes the pre-defined desired number of FLOPS, while w is a con-

stant that determines how important is the complexity factor. Since it is problem specific

constant, w is derived empirically to match the target number of FLOPs. It is set to a con-

stant value of 0.06. Having such an objective function, we hope to minimize both model loss

and the number of floating operations to derive the best conceivable solution, or to come up

with solutions that satisfy both equations.

4.3. Heuristic algorithms

4.3.1. Naive approach - random search

To address the issue of search strategy few different algorithms are defined. The first ap-

proach is a naive one. An obvious algorithm for searching through state space is a random

algorithm. Just by random sampling points in the distribution, we hope to find the best so-

lution. This algorithm is tremendously simple, but it is not commonly used since search

space can be wide. Each individual is randomly created without any domain information,

and therefore there is no previous insight into how well will next individual behaves.

With this in mind, as search space dimensions grow, the random search algorithm per-

forms worse. The reason behind that is random sampling through large dimensionality space

without proper direction policy. In small dimensional space, a random search might succeed

in finding a global optimum. When underlying optimization function is too complex, with-

out any regularity on its behavior, in the some cases, the random search can perform similar

to other heuristic techniques. Furthermore, a random search can have its benefits in avoiding

local minima. Nevertheless, the convergence rate of such an algorithm is disastrous because

there is no way to direct the algorithm.

That being said, in this work, a naive approach is implemented to work like it is explained

above. In each iteration, a random population is sampled and the best performing individual

is preserved in solution. This way, we don’t lose the best solution in the next iterations.

4.3.2. Covariance Matrix Adaptation Evolution Strategy

Covariance matrix adaptation evolution strategy [Hansen and Ostermeier (2001)] or CMA-

ES is evolutionary strategy for non-linear black box function optimization, meaning it is

used for difficult optimization where underlying function is not known. It is a derivate free

method for numerical optimization. A method depends on sampling from multivariate nor-

mal distribution:

xi ∼m+ σ · Ni(0,C) (4.3)
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In terms of evolutionary strategy, recombination amounts to selecting a new mean (m) value

for distribution, where the mean vector represents the favorite solution. Sigmac (σ) stands

for step size in each iteration. Lastly, C stands for covariance matrix which determines the

shape of the distribution and it is hard to update from iteration to iteration [Hansen (2016)].

The goal is to properly adapt distribution parameters during the evolution process to

converge the population mean into global optimum. In the first step, population of size λ is

generated by sampling from normal distribution. In the next step, mean is a weighted average

from µ selected individuals from previous step. These individuals are selected according to

their fitness value in previous step, where (xi:λ stands for i-th ranked individual:

m(g+1) = m(g) + cm

µ∑
i=1

wi(xi:λ −m(g)) (4.4)

In the equation [4.4], weights wi adds up to a sum of 1. Another unknown constant is

cm, a learning rate, usually set to 1. To update the other two algorithm’s variables, we need

to introduce parameters pσ and pc which both stand for "evolutionary paths", a direction in

which distribution is updated.

Step size (σ) is updated subsequently. Firstly, its corresponding path is updated. How the

author came to formulas stated upfront is explained in the previously cited tutorial. In this

work, we aim to explain the aspect of each equation.

pσ
(g+1) = (1− cσ)pσ(g) +

√
cσ(2− cσ)µeff C(g) −1/2 m

(g+1) −m(g)

σ(g)
(4.5)

In this equation, cσ denotes the decay factor which enables us to store some amount of

information from previous steps. Notation under root is a normalization constant. C(g) −1/2

is the eigendecomposition of the covariance matrix in a single step. It is used to map the

mean difference to the new generation space. An important factor is a difference between

mean in consecutive generations, which is divided by the current step size.

σ(g+1) = σ(g) × exp

(
cσ
dσ

(
‖p(g+1)

σ ‖
E‖N (0, I)‖

− 1

))
(4.6)

Step size is updated with the formula above. It depends on the updated length of evolu-

tion path, divided by the expected value for standard normal distribution, depending on the

number of samples. If the resulting path length is larger than expected, a step will increase.

Constants cσ and dσ are used for exponential decay.

The major role in CMA-ES takes the update of a covariance matrix. Updating this matrix

is done via two different updates: rank-µ update and rank-one update. The first one is

just a maximum likelihood estimation of the covariance matrix in sorted best performing

individuals. The other is a rank-one update, which is constructed from the covariance matrix

evolution path, i.e history aware distribution updates.
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Figure 4.3: Illustration of three iterations of CMA-ES algorithm. Image shows progression in co-

variance, mean and variance adaptation in three steps. [Shir et al. (2011)]

p(g+1) = (1− cc)p(g)
c +

√
cc(2− cc)µeff

m(g+1) −m(g)

σ(g)
(4.7)

The final update can be seen below, with the first part of the summation being decay

factor from the previous generation, second being rank-one update, and last being rank-µ

update. This enables the covariance matrix to fit the exploration in a certain evolution step.

C(g+1) = (1− c1 − cµ
∑

wj)C(g) + c1p(g+1)
c p(g+1)T

c + cµ

λ∑
i=1

wiy
(g+1)
i:λ

(
y
(g+1)
i:λ

)T
(4.8)

This method behaves well in conditions of black-box optimization, where the objective

function is not known. It majorly benefits from global exploration in the first steps and local

exploitation in final steps.

4.3.3. Genetic algorithm

A typical evolutionary algorithm is a "genetic algorithm". It is a metaheuristic approach

inspired by the process of natural selection. A goal is evolving generations (population in

each iteration of algorithm) to progress with good quality of genes. We start by initializing a

random population that contains different possible solutions to the problem.

In standard genetic algorithm with methods of natural selection (mutation and crossover),

an old set of worst-performing individuals is replaced with better performing newly created

individuals. This is called elitism, where the genetic code of well-performing individuals is

preserved in the next epoch. In this work, to breed a new generation, only the process of

mutation is used, because there is a hypothesis that crossover wouldn’t benefit in terms of
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the creation of new individuals. This comes upon a fact that mutation makes larger steps in

the search steps.

Firstly, the population is sorted by the lowest objective function values. Half of the

population is preserved in each epoch. The other half of the population is generated with the

process of selection and mutation. For the selection process, simple tournament selection is

used, while mutation is done via Gaussian mutation.

– Tournament selection: this type of selection exploits genes of best individuals in

a structure called "tournament". The algorithm repeats itself several times firstly by

selecting k individuals from the population. These k individuals are sorted and the

best of them is taken for mutation. This is the way of preserving gene material. The

stochastic element of this type of selection is a random choice of an individual from

the population. Selection pressure can be easily adjusted by variation of the number

of chosen individuals (k). With more individuals in the selection process, there is a

higher chance of selecting globally best.

Figure 4.4: Tournament selection process

– Gaussian mutation: this type of mutation implements the addition of random noise

from a gaussian distribution. Parameters of this distribution are predefined and de-

fined empirically (standard deviation and mean). To keep the information from the

previous epoch, each gene (usually one floating point number) is mutated with muta-

tion probability (p = 0.3).

In each epoch, the best individuals are preserved, therefore, this directs the algorithm to

the convergence.
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4.3.4. Particle swarm optimization

Another population-based technique of heuristic optimization is particle swarm optimization

[Kennedy and Eberhart (1995)] (PSO). As can be seen from its name, its heritage comes from

natural inspiration. To determine nomenclature, having a population (here called "swarm")

means having a set of individuals (presented as "particles"). The major contribution of this

work is the introduction of particle dependency. Each is updated depending on local and

global particle performance.

With a few simple rules of moving through the search space, PSO exploits great results.

The first rule is keeping the best known found solution for each of the particle histories. Next

is the storage of the best known global solution. The final rule is determining the direction

where each particle should be moved to. Keeping both local and global solution can help in

locating local and global objective function’s optimums.

Algorithm 2 Particle swarm optimization
1: procedure PSO

2: p← random_initialize_population(pop_size)

3: for max_iter do
4: for pi in p do
5: if f(pi) ≤ f(pbi) then
6: pbi ← pi

7: end if
8: if f(pi) ≤ f(gb) then
9: gb← pi

10: end if
11: end for
12: for pi in p do
13: vt+1

i ← ω · vti + c1r1(pi − pbi) + c2r2(pi − gb)
14: pt+1

i ← pti + vt+1
i

15: end for
16: end for
17: return gb
18: end procedure

Having formally written the algorithm above [2], let’s discuss its behavior. We start by

initializing a random population of particles (pi), setting the locally best solution to the initial

one. Velocities (vi) are set to be random directions where particles are heading to.

In each iteration, we update globally and locally best solutions found by particles and

update its position in search space. Point is updated concerning direction it is heading in,

random movement in direction of local search (best-known location of the particle), and
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random movement into direction of the globally best location. Random movements are de-

termined by uniform random variables r1 and r2 which are bounded 0-1. Constants ci decide

the impact of different search strategies, local exploration, or global exploitation, respec-

tively. To adjust the velocity factor in the main formula, an acceleration (ω) is added to limit

the impact of the velocity.

This simple technique yields great results in black-box optimization because of the great

sampling of search space, and therefore, here is used as a neural architecture search method.

4.3.5. Powell’s derivative free optimization (BOBYQA)

Not only population base algorithms are popular among the derivative-free optimizations,

but also single-state methods. One of these techniques is designed by Michael J.D. Powell

by the name of "Bound Optimization BY Quadratic Approximation" or simply, BOBYQA

[Powell (2009)]. To fit the need of this work, an algorithm is adapted to work with the other

population-based methods.

Running the single-state algorithm as a population-based heuristic method can be struc-

tured as multiple single-state runs. This has the effect of running the population of random

and independent individuals. The downside of this technique is dependence on the random

initialization of starting points.

BOBYQA is a derivative-free method, which makes it a solver for the constrained prob-

lem without the usage of the derivatives of the objective function. It starts with the construc-

tion of the objective function approximate via a quadratic approximation using up to 2 ·n+1

points, where n denotes the dimension of the search space. Using the quadratic model and

generated trust regions, a regional subproblem is solved by a careful change in variables and

cautiously reducing the trust region. This is not a perfect match for the method in which a

minor change of genotype (individual) does not affect phenotype (final architecture). Further

implementation details are not part of this work, where the goal is to present the effect of the

single-state method.

When combining the population-based approach and BOBYQA, where the absolute goal

is to reduce the number of objective function evaluations, the effect of constructing the trust-

region might take up the unreasonable number of iterations, which might make this algorithm

inferior in the low amount of epochs need to construct the best solution.
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5. Optimization pipeline

With all the technical explanations above, a mix of these methods will generate a good

ground for the mentioned task. To enhance a transfer learning on the problem of head pose

estimation, above mentioned heuristic search methods are applied. Furthermore, standard

procedure on training head pose problems is used, with three standard datasets which will be

introduced later.

The backbone model used for extracting features is Facenet [Schroff et al. (2015)] with

the Inception-ResNet [Szegedy et al. (2016)] architecture trained for the task of face recog-

nition. The assumption is that head pose estimation and facial recognition should use the

same features. This way, with little parameters overhead it is possible to obtain pose angles

from structured fine-grained features.

That overhead is another model, built on top of the first one. Its architecture is yet to be

defined. The first set of experiments is dedicated to determining the scale of the model, set

of depth and width attributes that would fit the problem. For that task, the baseline model is

used in pair with the grid searching method, which will be explained in detail. Another task

is to adapt parameters to determine the best possible micro-architecture. Our goal function

is to minimize output and angle difference using the defined loss function. Another goal is to

determine architecture with as few parameters as possible, which would be able to generate

the same results as larger models. Illustration of such approach can be seen in figure [5.1].

On top of that, various heuristic methods include generative search, covariance matrix

adaptation, particle swarm optimization and single-state method are used to find the optimal

architecture. Once when architecture is generated, the model is adapted for real-world usage.

5.1. Technical details

A most common way to address machine learning problems is using Python programming

language. His modularity and an enormous variety of easy to use libraries offer simple usage.

Because of its simplicity, numerous different experiments were done.

Timely consuming neural architecture search can be accelerated with the proper hard-

ware. For the task of learning deep models, a graphical processing unit with 8 GB of graphi-
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Figure 5.1: Top down illustration of the optimization pipeline

cal memory is used. All training process was done on a single NVIDIA GeForce RTX 2070
SUPER graphical processing unit. In each algorithm, the models were trained subsequently.

For implementing deep neural network models, Tensorflow was used (version 1.14). It is

an open-source library made for machine learning tasks. To deal with images, it is important

to mention the image processing library. We used OpenCV, the most popular open-source

library for computer vision. It is optimized to work with various machines and does not

depend on programming language being used on top of it. Another major important library

is NumPy, a package for scientific calculations in Python. It offers simple API for working

with linear algebra operations, as well as dealing with array structures easily.

Heuristic algorithms are partly written from scratch and partly used as include libraries.

Such algorithms offer a clean API for optimizing objective function with constraints.This

offers easy to use optimization where there is only a need for parameter fixation.

5.2. Datasets

For the task of head pose estimation, the standard procedure includes training on a dataset

called 300W_LP and testing its performance on AFLW2000 and BIWI datasets. Illustration

of how those datasets visually look like can be seen in figure [5.2]. The goal is to train the

model to work on real data. Each one of the training and testing datasets will be explained

in subsequent paragraphs.

– 300W_LP [Zhu et al. (2015)] - derived from the 300W dataset, it contains syntheti-
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Figure 5.2: Visual representation of three datasets being used

cally made faces for larger poses. Dataset is a union of several datasets with labeled

68 facial keypoints. A pose is then derived from keypoint transformation into the

front-looking face model. It contains 3D generated 61,225 images, that are further-

more expanded to 122,450 samples simply by flipping images.

– AFLW2000 [Martin Koestinger and Bischof (2011)] - contains 2000 first identities in

the AFLW dataset, which stands for faces in the wild with large poses. Examples in-

cluded in this subset are a non-trivial benchmark for any face modeling method. This

dataset includes several conditions of lighting, brightness, and poses which makes it

difficult to test on.

– BIWI [Fanelli et al. (2013)] - gathered in laboratory settings using the Kinect device.

It contains 24 videos of 20 subjects that count up to 15,000 different frames to test on.

Dataset offers fine-grained annotations, which were precisely captured with the depth

sensors. Since it has better-made pose labels, it is widely used as a testing dataset.

Distributions of these 3 datasets vary (figure 5.3). This may lead to different performance

depending on the dataset being used to validate. The major difference is offset in pitch angle

distribution mean. This being said, when training on 300W_LP, a model might learn that

malicious offset and therefore make mistakes on real-world data. Although the training

dataset is gathered synthetically, it contains enough information for generalization in the real

system.

5.3. Optimization loop

Evaluation protocol can be easily described from start. The whole pipeline comes up from

previously described parts. This chapter concatenates earlier sections and interprets the op-

timization loop to gather best results on neural architecture optimization.

Optimization starts with the choice of optimization algorithm (random search, generation
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Figure 5.3: Yaw, pitch and roll distribution on 300W_LP, AFLW2000 and BIWI respectively

tournament search, CMA-ES search, particle swarm search, and Powell’s search). Each

one of the optimization algorithms codes the information of neural networks in the array of

doubles bounded from 0 to 1. One example of a single individual can be seen in the image

below.

Figure 5.4: One random individual, with possible architecture choices above

For example individual can be represented as the following array:

ind = (0.07, 0.65, 0.33, 0.71, 0.10, 0.67, 0.19, 0.17, 0.51, 0.47, 0.98, 0.41, 0.61) (5.1)

These numbers are mapped to indices representation as it is seen in the figure [5.4] (num-

bers do match with visual representation). Each index is representation in phenotype state,
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meaning that index 0 of blocks means ResBlock is going to be applied. The first step is

generating a population of such individuals. This population is evaluated with the evaluation

algorithm.

This algorithm takes the individual, creates a unique neural network, and starts the pro-

cess of training. To adapt the weights of a deep model, a pre-defined number of epochs

is specified. Learning rates are also constant values since each one of deep models should

have the same training hyperparameters. The evaluation depends on the multi-criterion func-

tion as was mentioned before. Both the number of floating operations and loss function are

optimized. Depending on the choice, certain different regression loss functions are used,

advantages and problems are described below:

1. Mean absolute error: calculates the absolute difference between true and predicted

value. Low magnitude can help the deep model to adjust weights without exploding

gradients and there is smaller weight emphasis on outlier examples. On the other

side, absolute error ensures that there is no direction of error, which might be valuable

information. Because outliers are adjusted with small weight factors, the model might

have a huge error on such angles in this case.

MAE =
1

n

n∑
i=1

|yi − xi| (5.2)

2. Mean squared error: the most common loss function calculates the squared error

from true labels and predictions. Since huge error is generated with outlier predictions

and labels, these do not occur in generalization because they are penalized in the train-

ing process. These huge penalties may result in enormous gradients that can deform

the process of decreasing error.

MSE =
1

n

n∑
i=1

(yi − xi)2 (5.3)

3. Huber loss: something in between the previous two losses is Huber loss. It uses the

best of the two worlds. If an error is large enough, the average error is used, treating

the model with small amplitude samples, while on the other side, if the error is beneath

threshold δ, a squared error is used.

Huber Loss =

1
2
(y − x)2 if |y − x| ≤ δ

δ|y − x| − 1
2
δ2 otherwise

(5.4)

When loss is obtained after several epochs, the fitness function is calculated from the

equation [4.2], depending on the targeted number of FLOPs and validation loss. While
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training loss can vary from previously mentioned, for validation, absolute error is calculated,

because it gives a nice insight into the real difference in between predictions and labels.

After each model is evaluated, using the optimization algorithm, new individuals are

created, and depending on the algorithm, inserted into the new generation. In each of the

different algorithms, the overall best solution is preserved and it represents the output from

the optimization algorithm.

In the next chapter, results generated using this optimization loop will be presented and

described between various methods of optimization as well as between currently known

mentioned state of the art methods.
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6. Results

After a comprehensive explanation of the training process, several different experiments

were conducted on the obtained models. In this chapter, both case study on different algo-

rithmic optimization methods and comparison to state of the art are conducted.

In the first section, a concrete set of parameters and operations used in research are writ-

ten down as an experiment setting. Next on, in the second section, a suitable extraction

layer is found. In the third section of this chapter, a search is employed using the network

scaling method. A grid search technique is applied to find the best performing scaling pa-

rameters. Furthermore, the fourth section brings an analysis of various heuristic algorithm

performance. Finally, the last section gains insight into comparison to the state of the art

methods, as well as real-world performance illustration.

6.1. Experiment settings

First, we need to define the settings for an experiment. The algorithm of choice first defines

the whole population set with a random number of architectures. Different algorithms use a

different set of parameters, each chosen set of parameters is defined in the table below.

CMA-ES

Parameter Value
Population size 10

Max iterations 20

Initial step size (σ0) 0.3

Genetic algorithm

Parameter Value
Population size 10

Max iteration 38

Mutation chance (pm) 0.3

Mutation scale (σm) 0.3

Tournament size (k) 3
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Particle swarm optimization

Parameter Value
Population size 10

Max iteration 20

Velocity factor (ω) 0.5

"Particle best" factor (φpb) 0.4

"Global best" factor (φg) 0.6

BOBYQA

Parameter Value
Population size (no. runs) 4

Max iter 50

Trust region radius (ρbeg) 0.3

Table 6.1: Parameters used in different heuristic methods for neural architecture search

Each individual (i.e architecture) is then trained with hyperparameters that were exper-

imentally selected. Parameters for deep learning model can be seen in table below (table

6.2).

Neural network hyperparameters
Hyperparameter Value

No. epochs 6

Batch size 32

Regularization L2 (0.001)

Learning rate [5× 10−4 , 2× 10−4 , 9× 10−5 , 4× 10−5 , 1× 10−5 , 1× 10−5 ]

Actvation function PReLU

Table 6.2: Parameters used in deep model training process

Since pre-trained Inception-ResNet modeled for the task of face recognition was a net-

work of choice in the feature extraction, its selected layers are predefined inputs into our

deep model. Furthermore, the extraction network requires an input image of size 160x160,

which is considered as the high resolution in the subtask of face modeling. To create as

many different examples as possible, training images are saved as RGB images with the size

of 190x190 which are randomly cropped to adapt input size. Moreover, during the training

process, random color transformations are subsequently applied to images, such are change,

in contrast, hue, and saturation. The last step in image processing is prewhitening of an input

image, subtracting the mean and normalizing the range of the pixel values for input images,
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which makes the training process easier.

6.2. Extraction layer search

As was previously explained, determining extraction layers is done by simply acquiring dif-

ferent layer outputs from the feature extraction model and running several training processes

on a simple baseline model. The extraction layer defines the input size and features being ex-

tracted. The premise of this work is to find the layer that encapsulates head pose information

into small resolution size which is an input into the head pose estimation model. To have a

visually pleasing representation of features in each of the major parts of Inception ResNet,

further heatmap images are obtained (figure 6.1).

In the features that are lower in a hierarchy, the shape of the face is visible with some

part being overly exposed. Moving towards middle layers, only major important head parts

are being visible, while high representation in higher-level features tends to lose visually

pleasing results and become non-interpretable.

Furthermore, in the table [6.3], different extraction layers are expressed alongside with

mean absolute error on the validation set. Used layer names are similar to the ones described

in figure [3.4]. Although, because of the different use-case, the grid sizes are not equivalent

to the ones in the original paper. Modules A, B, and C have a grid sizes of 17x17, 8x8, and

3x3 respectively.

Extraction layer name Loss value (MAE)

Module A - layer 3 4.153± 0.049

Module A - layer 5 3.998± 0.036

Module B - layer 1 4.018± 0.060

Module B - layer 3 3.967± 0.031

Module B - layer 5 3.920± 0.047

Module B - layer 7 3.889± 0.097

Module B - layer 10 3.793± 0.024

Module C - layer 1 4.031± 0.028

Module C - layer 3 4.105± 0.023

Table 6.3: Resulting loss values for different extraction pinpoints

The best performing layer is the 10th layer of middle block B, which might seem like a

surprise because lower level features hide activations from which humans can determine pose

angle. An important thing to acknowledge, when using such a transfer learning procedure,

importing features from low-level layers means having faster inference.
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(a) Activations in layer from module A (b) Activations in layer from module B

(c) Activations in layer from module C

Figure 6.1: Output activations from layers in different position in Inception-ResNet face recognition

model

6.3. Macro scaling search

To conduct an efficient scaling search, an experimental setup with a variety of different

scales is applied. After determining an extraction layer, the baseline model can be scaled to

different sizes to resolve what type of scaling can affect the learning process and accuracy.

Experiment on different types of scaling incorporated usage of grid search technique.

Defined in equation [3.8], for various different scaling factors (1,2,4 and 8), grid search is

performed on different scales of width and depth. Since the scaling model depends on the

linear depth and squared width, only round factors of depth are taken into consideration,

while the width is calculated as a square root of scaling factor multiplier and depth. This fact

allows us to perform a grid search on a small number of static parameters and include best
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Figure 6.2: Macro architecture search on scaling parameters, number on left side denotes depth

scaling, while the right is width scaling

performing into a micro-architecture search.

The results of such search were clear, scaling on depth didn’t improve the model’s per-

formance, while keeping the depth with a wider model allowed the reconstruction of features

from the extraction model. This research differed from EfficientNet [Tan and Le (2019)] re-

sults, where compound scaling generated better performing models. In this case, using the

resources to broaden the model’s width results in better precision.

The reasoning behind such a result might lay in the fact that input in such a network

isn’t an original image, but extracted features. Those features are low resolution and large

channeled data, which is the main reason why investing in the model’s depth doesn’t produce

intuitive results.

6.4. Comparison of heuristic methods

After gaining insight into the extraction layer being used as well as information about best

performing scaling factors, heuristic algorithms can be used for architecture search. Each

algorithm is set to be run in the predefined number of objective function evaluations, which

in this case is defined as the model’s accuracy and latency after training.

A multiple-criterion objective function was being used as a minimization goal function

for the algorithm. Each algorithm produced 200 new individuals split into a different number

of epochs. Figure [6.3] brings a breakdown of the performance in terms of convergence.

All algorithms are tested in the same conditions. The first one was the CMA-ES. In
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Figure 6.3: Behavior of heuristic neural architecture search algorithms. Color and scale define epoch

in which individual is obtained. Earlier epochs have colder colors, while later epochs have warmer

ones.
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terms of convergence, this algorithm certainly pulls individuals on both criteria, preventing

error, and a large number of floating operations. We can spot that large variance diversifies

individuals in later epochs, but keeps them on track for both criteria. This can be seen in

graphs that describe the behavior of PSO and Genetic algorithm as well. In their case, this

phenomenon is even more clear, the convergence rate is satisfying because the low amount

of epochs brings large pressure on both criteria.

Previously described behavior can not be applied to the BOBYQA. This algorithm stucks

in local optimum and because of local exploration in the first epochs it does not have enough

information about space around him. Larger changes in the direction of exploration should

make this algorithm better-performing. This can be done via enlarging the starting trust-

region radius.

Last to mention is the random algorithm. No information about the epoch is important

for this one because of its random nature. On the other hand, a comparable best performing

individuals can be found among the ones generated by other algorithms. This result can

mislead to the conclusion that each run would be as satisfying as this one. Reality is a bad

convergence rate and no guarantee that more iterations would generate a better solution.

We can conclude that, when it comes to neural architecture search, fast and stable results

can be gained using the PSO or genetic search.

6.5. State of the art comparison

When best performing individuals are gathered with a neural architecture search, they are

compared with other state-of-the-art methods. Talking about the state of the art methods,

multiple are mentioned across most-cited papers in this area. The first one is Dlib [Kazemi

and Sullivan (2014)] which is a face modeling library that contains landmarks detections

that are used to predict pose. Another 2D face landmark extractor is FAN [Bulat and Tz-

imiropoulos (2017)]. Authors of the 300W_LP dataset have come up with a convolutional

network 3D fit method called 3DDFA [Zhu et al. (2015)], which aligns 3D landmarks to es-

timate pose. Next are landmark-free methods, first is Hopenet [Ruiz et al. (2018)], a ResNet

architecture trained with the crossover of regression and classification loss applied on angles.

Last, the best performing is FSA-Net [Yang et al. (2019)], a fine-grained features extractor

with implementation of Capsule module.

First, we will analyze one of the best performing individuals in terms of generated archi-

tecture, after fine-tuning in a larger amount of epochs, for obtaining better results.

Architecture starts with a PReLU layer, a beneficial pre-processing for face image fea-

tures. Dimensionality reduction is done via the convolution layer with 8 channels. The

baseline model is scaled 4x, meaning channels are 2x broader than baseline. Moving next,
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Figure 6.4: Presentation of best performing model, stacked from left to right

4 simple convolutional and 2 residual blocks are concatenated sequentially. Blocks are con-

catenated with maximum pooling layers. This architecture was best performing architecture

in a search performed via a genetic algorithm.

It is important to mention that such a simple structure generates results that are close

to state of the art. Other close-performing individuals have diversified architectures, with

differences from the scaling method to used blocks. The interesting and common thing in

networks generated by automated search is using convolutional and residual blocks in normal

layers, rare usage of inversive residual blocks, and usage of depthwise separable convolution

in later blocks of master module.

After analysis of best performing individuals, best among them are trained across 30

epochs with decaying learning rate. Afterward, they are compared with the state of the art

methods. When comparing size, only the transfer module is calculated, while the initial face

recognition network is not taken into calculation. This model is compared on both testing

datasets, AFLW2000, and BIWI, results are commented in the tables below.
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Method MB Yaw Pitch Roll MAE
Dlib 23.1 13.6 10.5 15.8

3DDFA 5.40 8.53 8.25 7.39

FAN 183 6.36 12.3 8.71 9.12

SSR-Net-MD 1.1 5.14 7.09 5.89 6.01

Hopenet 95.9 6.47 6.56 5.44 6.16

FSA-Net 5.1 4.50 6.08 4.64 5.07

1111001121002_GEN 2.3 5.56 6.55 5.29 5.80

3000111212102_CMA 1.7 6.35 6.35 5.32 6.01

0100120200113_BOBYQA 2.8 5.51 6.45 5.28 5.74

2003102200002_PSO 1.8 6.01 6.36 5.46 5.94

Table 6.4: Comparison with the state-of-the-art methods on AFLW2000 dataset

First testing dataset is AFLW2000. With low model complexity, there is a large error

between state of the art yaw angle, while pitch and roll are included into satisfying margin of

one degree. This result is compared with SSR-Net-MD [Yang et al. (2018)], another transfer

learning method, but fine-tuned to specific task, which is not the same technique.

Method MB Yaw Pitch Roll MAE
Dlib 16.8 13.8 6.19 12.2

3DDFA 36.2 12.3 8.78 19.1

FAN 183 8.53 7.48 7.63 7.89

SSR-Net-MD 1.1 4.49 6.31 3.61 4.65

Hopenet 95.9 5.17 6.98 3.39 5.18

FSA-Net 5.1 4.27 4.96 2.76 4.00

1111001121002_GEN 2.3 4.39 6.97 3.43 4.93

3000111212102_CMA 1.7 3.61 8.22 3.18 5.01

0100120200113_BOBYQA 2.8 3.81 8.17 2.89 4.96

2003102200002_PSO 1.8 4.10 8.10 3.28 5.16

Table 6.5: Comparison with the state-of-the-art methods on BIWI dataset

The next dataset is BIWI. This dataset is interesting because labels are extracted in lab-

oratory conditions. That specific attribute makes it more precise than other datasets, but

different distribution training datasets makes it harder for inference. High pitch error is ex-

plained with a discrepancy between pose distributions across datasets as well as dependency

on extracted features.

To visually present how well the model generated with the genetic algorithm performs,

labels are generated across some of the most iconic television moments, shown below on

figure [6.5].
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Figure 6.5: Example of pose estimation on images contaning collection of "in the wild" faces, de-

tected with MTCNN.
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7. Conclusion

This work employs various strategies for finding optimal deep model architecture for the

task of estimating head pose. To obtain both precise and small models, optimization which

combines multiple criteria was conducted. Having fine coding structure for the architec-

tures, heuristic methods have shown that their use can help automatize the neural architecture

search task. Also, this work has shown that using the related task to head pose estimation,

features can be applied from another model as a transfer of knowledge. This enables us to

use the same network for various tasks, with minor overhead in the number of parameters.

The benefits of that approach lie in the inference speed and memory consumption.

On the other hand, neural architecture search can be time and resource exhausting task.

This is the main reason for putting an effort into more advanced algorithms which increase

convergence speed and allow generation of models with better precision. Such improvement

would enable us to reduce the time spent in finding suitable architecture and therefore apply

that resource into different research areas.

Future work in this area would include several different approaches that were not ad-

dressed in this work. A study should be done on different feature extrapolation techniques,

which might be additionally trained to fit the transferred task. On the predictor side, disen-

tangling the correlation between features and used blocks would help in understanding the

underlying cause that helps the model to successfully predict angles. Finally, some state

of the art automated architecture search techniques may gain additional benefit in terms of

reducing speed or increase in precision.
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Enhancing transfer learning for head pose estimation

Abstract

Estimating head pose is a useful practice in many industries, especially those of a medi-

cal, technical, or automotive nature. Precision and speed of execution are the key things that

make these methods useful in real-world practice.

The solution to this task is offered by the current hot topic in deep learning, a machine

learning subset. The main contribution of this paper is the transfer learning technique and

several different search methods for the best neural network architecture, built from prede-

fined blocks. The results presented in the paper suggest that features extracted from the face

recognition method are sufficient for estimating head pose. Also, deep model architecture

optimization methods have shown improvements in execution speed and precision by opti-

mizing the multi-criterion objective function. Although this is a task that requires time and

memory resources, automated search allows users to change the main focus of research into

different problems in the same domain.

Keywords: transfer learning, deep learning, heads pose estimation, evolutionary computing,

neural architecture search, heuristic methods



Prijenosno učenje za odred̄ivanje smjera gledanja

Sažetak

Odred̄ivanje smjera gledanja korisna je praksa u mnogim industrijama, naročito onim

koje su medicinske, tehničke ili automobilske prirode. Preciznost i brzina izvod̄enja ključne

su stvari koje ove metode čine prilagod̄enima korištenju u praksi.

Rješenje za takvu zadaću nudi sve češće korištena grana strojnog učenja, duboko učenje.

Glavni doprinos ovog rada je tehnika prijenosnog učenja, te nekoliko metoda pretrage na-

jbolje arhitekture neuronske mreže, sagrad̄ene od prije definiranih blokova. Rezultati koji su

izloženi u radu sugestiraju da su značajke izvučene iz metode prepoznavanja lica dovoljne

za ekstrakciju smjera gledanja. Takod̄er, metode optimiranja arhitekture dubokog mod-

ela pokazale su unaprijed̄enje brzine izvod̄enja i preciznosti optimiranjem više-kriterijske

funkcije cilja. Iako je zadatak koji zahtjeva vremenske i memorijske resurse, automatizirana

pretraga omogućuje usmjeravanje ka drugim smjerovima istraživanja istog problema.

Ključne riječi: prijenosno učenje,duboko učenje, estimacija smjera gledanja, evolucijsko

računarstvo, pretraga arhitekture dubokog modela, heurističke metode


