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1. Introduction

With the development of mathematics and natural sciences throughout history, the need has

arisen for the formulation of all processes in nature in order to describe their motions and

actions, furthermore to predict its behavior in the future. Persistence in the formulations and

notation of the process spawned the entities we call mathematical equations today. In every-

day life, they serve us to come up with certain research results or to calculate an interpretable

measure that can be expressed numerically. On the other hand, by observing new systems, it

may happen that all values are known to us in the set of moments in which they are recorded,

but at first glance it is not obvious which formula connects them. By sampling the system

against a reference variable (e.g. time [Bongard i Lipson (2007), Brunton et al. (2016)]), one

can obtain a set of points and drive some of the modern regression methods with which one

could describe the whole system, and predict its behavior in future moments. One of such

methods is symbolic regression, which in this paper deals with a specific set of mathematical

functions - implicit equations.

The second chapter describes the problem of symbolic regression as well as the nature

of implicit functions. The issue of functions and the distinction made in relation to explicit

functions will be the main motivation for research.

The third chapter introduces approaches that can make it easier to search for solution

space. Of all the methods, the one with the comparison of partial derivatives in a data set of

points will be of the greatest importance. In addition, simpler but equally interesting methods

will be mentioned that look at the scattering of the values of the points themselves in space.

Given the expressiveness of implicit functions, refinements of the usual objective function

method which works well for explicit equations should have been made for the improve-

ment of effectiveness. In this regard, great effort has been put into the mathematical part to

determine the derivations from the points experimentally. Tools suitable for working with

symbolic regression are also described, emphasizing genetic programming and their varia-

tions. Their specifics and structure of individual solutions will be suitable for mathematical

modeling of equations.
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The fourth chapter describes the used methods, developed algorithm models and main

challenges that needed to be overcome in order for the model to work properly. The imple-

mented goal functions, their algorithms and the intuition behind them have been presented.

The fifth chapter describes the results obtained by symbolic regression for different sets

of functions. The types of functions over which the implementation works satisfactorily are

described, as well as the types of functions over which the implementation fails to contribute

significant knowledge about the underlying correlation between points. Different variants of

genetic programming were tested and the results were recorded with comments.

The sixth chapter contributes to the conclusion with possible directions for further work

on the project. The advantages of the research, the progress in relation to the starting point

during the whole project, but also the space for progress in the mathematical part of deter-

mining the experimental partial derivatives are pointed out.
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2. Motivation for symbolic regression

Symbolic regression is a type of mathematical regression that uses a certain procedure to ob-

tain a function that satisfactorily describes the behavior of a set of points in an N-dimensional

coordinate system (Figure 2.1). The term is reminiscent of linear regression, however the

important difference is that the line is used as a mold for modeling a function in linear re-

gression, while symbolic regression does not place restrictions on operators and they can be

arbitrary, whether they are linear or nonlinear. Such an approach gives the function additional

degrees of freedom to model its expressiveness, but also increases the search space in which

lie the mathematical functions that represent potential solutions to the problem. The problem

is therefore classified as NP-heavy and therefore brute-force function searches are out of the

question. An algorithm that would solve such a problem can be represented by a black box

in which the input is a data set of points sampled from, say, a dynamical system [Gaucel

et al. (2014), Schmidt i Lipson (2009)], and the output is a closed mathematical equation.

Methods that can facilitate the process of searching for such functions will be described in

detail in the next section.

2.1. Explicit functions

Functions more often researched in symbolic regression are explicit in nature, and are de-

noted by the following notation:

y = f(x1, x2, ..., xn) = f(x) (2.1)

where y denotes the dependent and the vector x the independent variable of the function.

Such functions are much easier to understand intuitively, since for a given value of the vector

x there is a definite value of the dependent variable y. With the above notation, it is easy to

use it for symbolic regression if the quadratic error function is applied:

L(ŷ, y) =
1

N

n∑
i=1

(yi − ŷi)2 (2.2)
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Figure 2.1: The equation itself is not known in symbolic regression, but the set of points that

represent it

where y indicates the actual value of the function, ŷ the value estimated by the current

function, and N the number of examples in the training set. The error function written in

this way can be easily used in various methods such as genetic programming and others to

obtain a final solution for a given data set. During training, the better the function estimates

the values of the dependent variable, the smaller the error will be and thus the algorithm is

directed towards the best possible functions.

2.2. Implicit functions

Much more expressive functions than explicit ones are the implicit ones, which are denoted

by the following notation:

f(x1, x2, ..., xn) = 0 −→ f(x) = 0 (2.3)

From the notation itself it can be seen that all variables are on one side, i.e. all variables

of the vector x are independent. Permissible values of the function are all values of the

vector that evaluate the function on the left to zero. Functions of this nature can model much

more complex mathematical relationships. A simple example is a circle, which is explicitly

defined with 2 formulas, while the implicit form requires only one function (Figure 2.2)

At first glance, nothing has changed in defining the equations, except that the dependent
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Figure 2.2: Expressiveness of the implicit equations enable the mathematical description of circle in

only one equation

variable has disappeared. Therefore, the error function could be the same as the above one

(2.1), with the inclusion of zero in place of the independent variable y:

L(ŷ, y) =
1

N

n∑
i=1

(yi − ŷi)2

=
1

N

n∑
i=1

(yi − 0)2

=
1

N

n∑
i=1

y2
i

Intuitively, the formulation seems to be correct. However, such a formulation is too

general because a large number of trivial equations satisfy such an equation. Also, many

trivial functions are very close to zero for all points of the set. The consequence of all this is

that as a regression solution can be functions such as:

x1 − x1 = 0

sin2(x) + cos2(x)− 1 = 0

x− x · y
y

= 0

1

1000 + x2
= 0 ...

All of the above functions are trivial and should not be considered at all in the method for

searching the function space. The focus of the paper, however, is to find nontrivial equations
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that satisfy the formula (2.2). As a "quick" solution to such a problem, constraints can be

introduced on functions, more precisely on their form, thus eliminating trivial solutions since

they are not useful. With this approach, one of the problems that arises is that no matter what

the constraints were, or how they were written, the function can be complex enough (with

more operands and operators and nested operators) to eventually bypass the same constraints.

In this paper, such an approach is not discussed, and in the next chapter, 2 possible methods

of solving are proposed as a starting point for correct solutions.
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3. Methods and tools for symbolic
regression

3.1. Direct method of solving

The method presented in this subchapter uses the standard deviation as a tool for manipu-

lating algorithm solutions. Since the evaluation of all points in the mathematical formula

should be zero, the scattering of the points around the center can be represented by the stan-

dard deviation:

σ =

√√√√ 1

N

N∑
i=1

(ŷi − µ) (3.1)

Where σ represents the standard deviation, N the number of points in the data set, ŷi the

estimated value for each point, and µ the mean value of the estimated points. The scattering

can be present around any real coefficient. However, this is good enough since the shape of

the formula itself is of greater importance than the free coefficient offset from zero.

To eliminate trivial functions, the following mechanism is proposed. An arbitrary set

of random points is selected from which the standard deviation as input is checked. If the

standard deviation for these points is very small, there is a good chance that this function is

trivial. The individual is discarded in that case. Otherwise, the individual is evaluated over

all points of the set and the standard deviation is tried to be reduced, since all results must

be of the same amount, regardless of the deviation from zero. An algorithm using the direct

standard deviation method is proposed below.
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Input: K – number of random points, N – dimensionality of the system, J – invidividual

being evaluated, threshold – arbitrarily small number

T := sampleRandomlyFromGaussDistribution(K, N)

E := [] (evaluations of random points)

for (point := x1, x2, ...xN from T) do
evaluation = J.evaluate(point)

addToSolutions(E, evaluation)

end for
stdev = calculateStandardDeviation(E)

if stdev < threshold then
discardSolution(J)

else
acceptSolution(J)

end if
Algorithm 1: Method for rejecting trivial solutions using standard deviation

3.2. Solving using partial derivatives

The following method uses partial derivatives as a tool with which to more effectively evalu-

ate a solution that estimates an error over a data set. In the paper [Schmidt i Lipson (2010)],

a comparison of model derivatives with experimentally obtained derivatives at each point in

the data set is proposed. The principle is based on the idea that if the model has as similar a

derivation amount as possible to the actual solution, it will more faithfully describe the data

set.

3.2.1. 2-dimensional system

Given the above, the two-dimensional solution formula would look like this:

L =
1

N

N∑
i=1

log

(
1 +

∣∣∆xi
∆yi
− δxi
δyi

∣∣) (3.2)

where N is the number of points in the data set, ∆x
∆y

is an experimental implicit derivation

from the data at point i, and δx
δy

implicit derivation of the solution at the point i. A more

efficient function would be one that, according to the formula (3.2), would correspond more

to the experimentally obtained derivatives from the data.

For a two-dimensional data set of a system with corresponding coordinates (x, y), one

could record the values x(t) and y(t) over time. The derivation would then be ∆x
∆y

= x′

y′
where
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x′ and y′ are the derivatives of each coordinate in time, while the derivation obtained by

subtracting adjacent points at appropriate coordinates. For a single function f , differentiation

could be used to derive the variables of the function:

δx

δy
=

δf
δy

δf
δx

or
δy

δx
=

δf
δx
δf
δy

Finally, with experimental and individual derivations obtained, the total loss of the func-

tion can be calculated with the formula (3.2).

3.2.2. N-dimensional system

The two-dimensional principle can be easily generalized to a multi-dimensional system. Let

the point Ti be determined by the coordinates (x1, x2, ...xD) where D denotes the dimen-

sionality of the system. By sampling each coordinate xi(t), a trajectory can be obtained for

each individual coordinate of the point. In this case, each pair of different coordinates would

have its own evaluation of the derivation error deviation. The final formula for a system with

N points would look like this:

L =
1

N

N∑
i=1

D−1∑
j=1

D∑
k=j+1

log

(
1 +

∣∣∆xj
∆yk

− δxj
δyk

∣∣) (3.3)

where the first sum moves along all points of the set, and the second and third sums move

along all pairs of coordinates. The expression can be further normalized with division by the

number of combinations of different pairs of derivatives, so the final formula can also look

like:

L =
1

D·(D−1)
2

1

N

N∑
i=1

D−1∑
j=1

D∑
k=j+1

log

(
1 +

∣∣∆xj
∆yk

− δxj
δyk

∣∣) (3.4)

For an ordered set of points having a particular trajectory this system would theoretically

work well. However, the limitation on the order of the points is too high a price to guarantee

the correctness of the system. Regression systems for explicit equations do not depend on

the order of the points and get such robustness “for free”. For implicit systems, it is nec-

essary to introduce additional modifications or adjustments with which derivations could be

determined experimentally with satisfactory accuracy. Moreover, the method of determining

experimental derivations depends only on the data set, and pre-processing of points could al-

ready provide ready-made information on points and their derivatives. Given the conditions,

the following method is proposed.
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3.2.3. System with unordered data

For working with unordered data, there are multiple methods for determining the deriva-

tives. The paper [Schmidt i Lipson (2010)] suggests determining hyperplanes in a local field

of the point for which the derivative wants to be estimated. Another paper suggests a similar

method [Brabanter et al. (2013)]. For 2 dimensional data, that plane would be the tangent

on a point, while in a multi-dimensional system, the derivative would be calculated with an

N -dimensional hyperplane (Slika 3.1).

Figure 3.1: Reconstruction of the hyperplane on unordered data for cicle (2D) and sphere (3D)

In essence, a hyperplane denotes a surface of appropriate dimension that well describes

locally related points. It is implicit in form, can be modeled and evaluated using a derivation

definition to obtain experimental values. Since the hyperplane corresponds to only one point,

their number would be equal to the set of points. Assuming that the hyperplane (denoted

by H(x1, ...xD)) is found for the point, a partial derivative for the point coordinate can be

obtained with

δH

δxi
=
H(x + ∆h)−H(x)

∆h

where the offset ∆h = (0, ..., 0, εi, 0, ..., 0) has an infinitesimal shift in the coordinate in

which one wants to calculate the implicit derivative. With given partial derivatives for each

coordinate respectively, differentiation of coordinates in 2 dimensions would look like:
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f(x, y) = 0
∣∣ d

∂f

∂x
dx+

∂f

∂y
dy = 0

dx

dy
= −

∂f
∂y

∂f
∂x

or
dy

dx
= −

∂f
∂x
∂f
∂y

This calculation agrees with the equation (3.2.2) and can be used to evaluate the individ-

ual as an experimental derivation part in the formula.

3.2.4. Determining hyperplane using conic sections

The least squares method was used to determine the hyperplane equation. The paper [Shpi-

talni i Lipson (2001)] has taken the fitting of scattered points into conical shapes from the

paper [Bookstein (1979)], although any shape can be used for the underlying model. The

results obtained by the following model are described in the results chapter. The currently

described model works well for spherical and rounded shapes while for most other types of

functions it has proven to be insufficiently good.

The shape of the plane in 2 dimensional space with the coordinates of the points (x, y) is

described with the formula:

Ax2 +By2 + Cxy +Dx+ Ey + F = 0 (3.5)

where the coefficients (A,B,C,D,E, F ) denote the coefficients obtained by the method

of least squares, and the variables (x, y) include the "center" of the hyperplane around which

the derivation is determined. The equation is actually a polynomial of degree 2, but its shape

resembles an ellipse, so it is said that scattered local points "fit" into elliptical and conical

sections. If one denotes the cardinality of closest points (can also be referred to as local

points) by N , the system of equations would look like:

Ax2
1 +By2

1 + Cx1y1 +Dx1 + Ey1 + F = 0

Ax2
2 +By2

2 + Cx2y2 +Dx2 + Ey2 + F = 0

...

Ax2
N +By2

N + CxNyN +DxN + EyN + F = 0
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By shifting the free component F to the right and then dividing by the same member, the

equations are in the form of:

−A
F
x2

1 +
−B
F
y2

1 +
−C
F
x1y1 +

−D
F

x1 +
−E
F
y1 = 1

...

−A
F
x2
N +
−B
F
y2
N +
−C
F
xNyN +

−D
F

xN +
−E
F
yN = 1

where coefficients beside the variables can be denoted as a new arranged couple (A′, B′, C ′, D′, E ′)

and it can be written in matrix as:

∣∣∣∣∣∣∣∣∣∣
x2

1 y2
1 x1y1 x1 y1

x2
2 y2

2 x2y2 x2 y2

...

x2
N y2

N xNyN xN yN

∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣∣∣∣

A′

B′

C ′

D′

E ′

∣∣∣∣∣∣∣∣∣∣∣∣∣
=



1

1

1

1

1


Such a system is a matrix equation Ax = b where the column vector x is a vector of coef-

ficients (A′, B′, C ′, D′, E ′) that are sought, A is a matrix derived from the values of local

points, while b is a column vector filled with ones. It should be noted that the following

hyperplane equation is equivalent to the formula (3.2.4), but has one less unknown variable:

A′x2
1 +B′y2

1 + C ′x1y1 +D′x1 + E ′y1 − 1 = 0

The solution of such a system depends on whether the system is indeterminate or pre-

determined. With the notation N for the number of unknown hyperplane coefficients and

M for the number of system equations, the following conclusions can be drawn. When the

number of system equations is equal to the number of system dimensions (M = N), the

system has only one solution. Given the equality of the number of equations and the number

of dimensions, the matrix A is quadratic and the solution can be obtained by left division:

x = A−1b

When the system is indeterminate, the number of system equations is less than the num-

ber of system dimensions (M < N). The matrix in this case is "wide" (it has more columns
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than rows) and often has more solutions. An attempt is made to take a solution x with a

minimum norm:

min
x
||x||22 (3.6)

such that Ax = b. Lagrange multipliers with the constraint in the form of a system equa-

tion are defined, however this sub-case is not so important for the work itself. The excerpt

described in (Selecnick (2013)) gives the following system solution:

x = AT (AAT )−1b = AT (AAT )−11 (3.7)

When a system is predetermined, the number of equations describing it is greater than the

number of variables (M > N). It often happens that such a system has no solution and the

matrix of such a system is "tall" (it has more rows than columns). Due to the large number

of equations, such a matrix mostly has no solution, but an attempt is made to find a solution

with the lowest minimum norm that satisfies the following equation:

J(x) = ||b− Ax||22 (3.8)

In the expansion of the norm it follows:

J(x) = (b− Ax)T (b− Ax)

= bTb− bTAx− xTATb + xTATAx

= bTb− 2bTAx + xTATAx

Deriving with respect to vector x and setting the derivation to zero gives:

∂

∂x
J(x) = −2ATb + 2ATAx

∂

∂x
J(x) = 0 −→ ATAx = ATb

Assuming that the matrix ATA is invertible, the hyperplane coefficients are obtained

using the formula:

x = (ATA)−1ATb = (ATA)−1AT1 (3.9)

and that is the least squares solution (Selecnick (2013)). The matrix (ATA)−1AT is called

a pseudoinverse and is often referred to in the literature as A+. Since with the obtained solu-

tion J(x) is the smallest, such a solution will be closest to the zero-vector in case the solution

13



does not exist.

The obtained expression is of special importance because in practice the cardinality of a

set of points is many times higher with respect to the cardinality of the system dimension.

Moreover, the neighborhood can then be chosen such that the cardinality of neighborhood

for each point is greater than the dimensions of the system to determine the coefficients us-

ing pseudoinverses. However, the parameter describing the size of the neighborhood of local

points is not in itself trivial to determine nor is it obtained in the paper exactly. Also, the

problem with this mathematical approach to determine the hyperplanes is that the matrix A
or A+ can always be singular due to the configuration of points in the environment, and in

that case it will not be possible to obtain the hyperplane coefficients, i.e. no derivation point

can be reached for such a neighborhood. The success results of determining the derivation

of hyperplanes with respect to size of the local field are described in the chapter with results.

The positive point is that the matrix A is mostly rarely singular.

The formula (3.2.4) would only be useful for a 2 dimensional case, so it should be gener-

alized for multidimensional points. This is not so difficult since for the second degree of the

polynomial there is a correlation between the 2 variables only at the first power. Expanding

the formula for a multidimensional ellipse/cone in N dimensions would look like:

A1x
2
1 + A2x

2
2...+ ANx

2
N

+B1x1x2 +B2x1x3 + ...+BN(N+1)
2

xN−1xN

+C1x1 + C2x2 + ...+ CNxN +D = 0

The equation of a multidimensional ellipse would then have N coefficients for each

squared coordinate, N coefficients for each linear component, N ·(N+1)
2

coefficients for each

pair of coordinates that can correlate these one free coefficient which would disappear in

simple mathematical operations. The total number of coefficients then for each hyperplane

is then 2N + N ·(N+1)
2

.

3.2.5. Other shapes for determining the hyperplane

The conical shape is just one of the models that can be included in the least squares method

for the final determination of experimental derivations. In practice, the choice of shapes is

infinite. The premise of the thesis initially was that the ellipsoidal model would describe any

neighborhood of points well and give a sufficiently good approximation of the derivative for

any implicit function of multiple variables. For spherical and spherical functions, the model
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describes derivatives with great accuracy, while for others this was not true. The accuracy of

the derivation approximations themselves is described in the results section.

In addition to second-degree polynomials, experiments were performed with a linear model

described for the 2D system as:

Ax+By + C = 0 (3.10)

and with a polynomial of third degree:

Ax3 +By3 + Cx2y +Dxy2 + Ex2 + Fy2 +Gxy +Hx+ Iy + J = 0 (3.11)

The results of the experiments with these 2 models only served to compare the approxi-

mations with the elliptic model for some functions and were not used as input for the regres-

sion algorithm.

3.3. Genetic programming

Of all the methods suitable for solving the problem of symbolic regression, the most com-

monly used is the method of genetic programming. Such a method works based on find-

ing the best algorithm or model for a particular problem. In doing so, it uses an expres-

sion/syntactic tree as a genotype (also called a chromosome), which is extremely suitable for

displaying mathematical formulas. The representation of a mathematical formula by a tree is

done with the rule that the internal nodes form the operators, and leaves form the operands.

Operands can be constants (values that do not change), or variables (in practice points from

a data set). Operators can be mostly binary (i.e. addition, subtraction, etc.) or unary (i.e.

sine, exponential, etc.)

The figure (Figure 3.2) shows a description of the function in such view. By visiting the tree

in-order, the same formula is obtained in infix form, which is humanly readable. Another

advantage of the tree as a genotype is the simple evaluation of the individual, i.e. the calcula-

tion of the value of the function. The value calculation, however, is not done by the in-order

procedure, but mainly by pre-order reading the tree. The procedure boils down to a recursive

reading of children’s values at greater tree depths until all values are known. When all the

values are known, the operator calculates the value between his children and propagates the

result upwards. The following is a simple recursive algorithm for calculating the value of a

function.
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Figure 3.2: Expression/syntactic tree which represents a mathematical function

SOLVE ALGORITHM
Input: T – expression tree

if T != null then
if T.type == operand then

return T.value

end if
else

(T is an operator)

if T.operatorType = unary then
X = solve(T.child)

return operator X

else
(operator is binary)

A = solve(T.left)

B = solve(T.right)

return A operator B

end if
end if

Algorithm 2: Algorithm for evaluating a mathematical function written as a expression

tree
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In addition to genotypes, the parts involved in genetic programming are selection, crossover,

and mutation, as in any other evolutionary algorithm. The way when and how they are used

is determined by the internal algorithm of genetic programming. Namely, the only fixed part

of genetic programming is the tree as a genotype, while the progression algorithm can be any

evolutionary algorithm (or some other). Thus, genetic algorithms (e.g. SteadyStateTourna-

ment), ClonAlg and others are often used.

The figures (3.3, 3.4) show simple crossover and mutation operations. A simple crossing

between two individuals is performed by the process of determining the breaking point on

both individuals, from which the subtrees of each are taken and replaced. Such a replace-

ment may not always succeed if a maximum or minimum tree depth limit is set. A simple

mutation is performed by selecting a random node in the tree, and replacing it with another

operator or operand.

Figure 3.3: Example of a simple crossover operation for genetic programming. Point of crossover is

chosen for each tree and the nodes are switched

Hyperparameters, such as the probability of mutation, the crossover probability, the

method of selection, the size of the population (number of individuals) and others, play a

role in the success of the algorithm. Experiments with hyperparameters were performed in

the results section.
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Figure 3.4: Example of a simple mutation operator for genetic programming. A node in the tree is

chosen, following a random subtree generation

3.3.1. Gene expression programming (GEP)

Genetic programming bridged the genotype disadvantage of a genetic algorithm that was al-

ways fixed and represented by bitstring or decimal numbers. With its tree as a genotype that

is also encoded in the same phenotype, solutions of variable length are enabled and greater

expressiveness is obtained [Koza i Poli (2005)]. However, shortcomings in the use of genetic

operators have also arisen. Manipulating a tree and changing it is a harder job than changing

a decimal number or bitstring. For example, mutating a single node of a tree in such a way

as to remove that part of the tree and construct a new random subtree has the disadvantage of

constantly paying attention to the maximum size of the tree. Iterating through generations,

trees are built on a large number of nodes, which is called bloating [Ferreira (2001)].

In response to these problems, the Gene Expression Programming Algorithm was born

at the turn of the century. The genotype of such an algorithm is a fixed-length character

string encoded as a tree in the phenotype. Since this type of programming found a pattern

in the natural process of protein synthesis, the genotype thus written resembles the sequence

of nucleotide bonds that make up proteins, and their arrangement and number determine the

behavior of the organism, in this case the expression tree as a phenotype.

The tree is coded from the character string by building the root first, then the children of

the first depth (root children) from left to right, then the children of the second depth from

left to right, and so on. The algorithm stops when all the children are filled with terminal

nodes because it is no longer possible to stack new nodes on them. The figure (Figure 3.5)

shows the genotype in the character string and the phenotype in the expression tree of the

same individual.
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Figure 3.5: Description of an expression tree in GEP notation

Furthermore, each character string is composed of a head and a tail. The head of a string

is an area with terminal and function characters, while the tail of a string is an area with

only terminal characters and is always longer than the head. The goal of such a tail is to

allow complete and valid tree construction in the case of a large number of operators in the

head. If the number of head characters h is determined a priori, with the maximum number

of children in a node as n, the formula for the tail length of the genotype looks like:

t = h · (n− 1) + 1 (3.12)

and the total length of the genotype is h + t. It can often happen that there are enough

terminals in the head for the tree to be built even after only a few elements. The other el-

ements in this case represent non-coding regions (named identically by the biological term

protein structure). By such a principle, multiple genotypes can yield the same phenotype,

but not the other way around, which corresponds to the correctness of the character string as

the tree representation.

In addition to this presentation, minimum restrictions must be introduced. These are that

in all genetic operators, if there is a change in the string, the members of the head can be
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changed by terminals or function nodes, and the tail should be changed only by terminals.

This is a consistency constraint, which allows the products of each genetic operator to remain

valid trees. The images (3.6, 3.7) show simple crossover operations and mutations between

individuals. Since changes occur at the genotype level, the need to cut the tree to preserve

maximum depth has ceased. In the event that a change is made in a non-coding region, such

a change is called neutral. It is still preserved, but due to the current construction of the tree

it is not applied and does not affect the fitness. For the most part, such neutral changes are

also encouraged in the general case as they encourage diversity and the search for solution

space.

Figure 3.6: Example of a simple crossover operation for GEP. Crossover points are chosen from

each tree and switched, with head and tail constraints maintained

Multiple trees can be recorded in the genotype, provided that the size of each tree repre-

sentation respectively is determined in advance. In that case, the size representation of the

whole genotype would be N · (h+ t), where N denotes the number of trees, and h and t the

length of the head and tail, assuming that all the trees would have the same size. The opera-

tion that connects them can be arbitrary, and when evaluating an individual, the evaluations

of each tree are calculated first, following a common operator that is applied to the results.
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Figure 3.7: Example of a simple mutation operation for GEP. Random node in the expression string

is replaced, with head and tail constraints maintained

The advantage of this approach is the possibility that if the solution contains multiple parts

that are separable, each tree could learn a separate part of the solution, thus simplifying the

work that would have to be done by an individual with only one tree in the genotype.

3.3.2. Analytical programming (AP)

This variation of genetic programming can also be combined with any evolutionary algo-

rithm as a core. However, the key difference between the two is using discrete set handling

(DSH) as a method for building the genotype of the solution [Kominkova Oplatkova et al.

(2013)].

Before the start of algorithm, all the operators and operands must be known, as well as

the number of arguments each operator takes. They are reorganized into sets, with one gen-

eral function set (GFS) where all the operators and terminals are put, and additional subsets

of GFS ordered by the number of arguments each operator takes (all terminals are considered

to have zero arguments).

The genotype of the algorithm consists of a set of integers denoting the indices in the

GFS. Since all elements in function sets can be numbered, genotype indices will denote pre-

cisely the operators and operands that are arranged in GFS. The phenotype is also a syntactic

tree and the conversion from genotype occurs in two stages. The first consists of mapping

each index to the required operators and operands in GFS, while the second phase is serves

for security to fix invalid solutions if the genotype does not have enough terminals to com-

plete the tree representation. The figure (Figure 3.8) shows the construction of a genotype

for analytical programming. In case there are not enough arguments to complete the tree, the

last indices are determined in the GFS subset with terminals by counting cyclically accord-
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Figure 3.8: Conversion from genotype to phenotype using discrete set handling. Indices with no

arguments to take are picked by terminals in cycling order

ing to the given index.

The mutation and crossover operators remain unchanged as the genotype is now a list

of numbers which can be easily manipulated with any evolutionary heuristic. Together with

GEP, analytical programming provides an easier algorithm manipulation of the genotype

while iterating over generations, whereas maintaining the phenotype as a syntactic tree pro-

vides faster calculations on the formula itself.
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4. Implementation

The problem of symbolic regression for working with implicit functions is approached in

the thesis from 2 points of view, the direct method by calculating the standard deviation

and the method of partial derivatives. For this purpose, 5 different methods were developed,

the successes of which are described in the results chapter. The approaches themselves

concern the evaluation of an individual in order to provide the best possible heuristics for the

selection of the best individuals, i.e. potential solutions to problems. Since the problem of

trivial solutions appeared at the beginning of the paper, the method from the algorithm (1)

was used for each algorithm, and it was additionally included to check whether all variables

are contained in the formula. Otherwise, the individual is punished with a large penalty and

will almost always not contribute to the advancement of the algorithm. The approaches listed

below represent only the goal function, driven by the evolutionary computation algorithms

listed in the chapters on genetic programming and its variations.

Standard deviation method

For the standard deviation method, no data processing is needed, and the set of points alone

is sufficient to evaluate the individual. The approach (goal function) is specified in the algo-

rithm below.
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Evaluate
Input: X – data set of points, T – expression tree, PENALTY – arbitrarily big number

for punishment

if lowStdevOnRandomPonts(T) or notAllVariablesContainedInTree(T) then
(solution is trivial)

fitness = PENALTY

return fitness

end if
evaluations = []

for point = (xi1,...xin)inX do
evaluations[i] = T.evaluate(point)

end for
stdev = getStdev(evaluations)

return stdev
Algorithm 3: Evaluating the individual directly using standard deviation

The problem with such heuristic is the lack of information from the dispersion of evalu-

ations. The advantage is certainly speed because this function does not require any complex

calculations, and in addition does not require any preprocessing of points. The success of

the method is described in the results section.

Partial derivatives method

The method in which the most hope was placed in the thesis, branches into 2 subtypes.

In the case of an ordered environment, no preprocessing of the points is necessary, since its

derivative can be determined from each adjacent point. The method works for all dimensions

since it is only necessary to take their ratios from the change in the value of the coordinates

in the points. The method therefore directly agrees with the formula (3.2.2).

By calculating the derivative of an individual by coordinate as:

δJ

δxi
=
J(x + ∆hi)− J(x)

∆hi

where δhi is an arbitrarily infinitesimal offset in the direction of a certain coordinate, the

algorithm can be described in a 2 dimensional system as follows:
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Evaluate
Input: D – data set of points, J – expression tree, individual, PENALTY – arbitrarily

big number for punishment

if lowStdevOnRandomPonts(J) or notAllVariablesContainedInTree(J) then
return PENALTY

end if
fitness = 0

for currentPoint = (xi1,...xin)inX do
previousPoint = D[i-1]

DX = currentPoint.X - previousPoint.Y

DY = currentPoint.Y - previousPoint.Y

experimentalDerivative = DX / DY

individualDerivative = J.derive(currentPoint)

fitness += log(1 + |experimentalDerivative - individualDerivative|)

end for
return fitness

Algorithm 4: Evaluation of an individual with partial derivatives and ordered data
Since the evaluation of individuals takes place continuously, experimental derivatives can

be stored initially in appropriate structures, to avoid frequent division operation, while here

the algorithm is described unoptimized for better readability and understanding of the idea

itself. For the N-dimensional system, this is especially true since the number of required

ratios is N(N+1)
2

. A couple of things to consider in such calculations are NaN and infinite

values. For example, if the division of the form 0
0

occurs, the value of the ratio will be NaN.

If the division of the form R/{0}
0

occurs, the value can be ±∞. Since such values do not

contribute to progress in the solution space, they need to be sanitized. It was decided in the

thesis that experimental derivatives of such amounts should be avoided. In the event that an

individual produces such functional value of a derivation, both extremes should be punished

with the maximum penalty.

Despite a more systematic level of heuristics than the standard deviation method, implying

data ordering is not a satisfactory level of robustness for a symbolic regression system, and

additional point preprocessing is required for unordered data.

Preprocessing of points and determining the hyperplane

This method is the most robust model that does not look at the order of points and deter-

mines experimental derivatives with the help of hyperplanes. Although its heuristics have

superiority over the already mentioned methods, for experimental derivations it is necessary

to preprocess the data first and find the hyperplanes.
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The determination of the hyperplane itself is theoretically described in the previous part

of the thesis. It consists of searching for a local neighborhood for each point, and determining

a separate hyperplane for each point. The local neighborhood only marks N of the nearest

points from the chosen one.
Partial derivations unordered method
Input: D – data set of points, J – expression tree, individual, H – set of hyperplanes

PENALTY – arbitrarily big number for punishemnt

if lowStdevOnRandomPonts(J) or notAllVariablesContainedInTree(J) then
return PENALTY

end if
fitness = 0

for currentPoint = (xi1,...xin)inX do
currentHyperplane = H[i]

experimentalPartialDerivatives = []

individualPartialDerivatives = []

for i = 1, ...DIM do
experimentalPartialDerivatives[i] = H.derive(currentPoint, i)

individualPartialDerivatives[i] = J.derive(currentPoint, i)

end for
for i = 0, ..., DIM − 1 do

for j = i+ 1, ..., DIM do
experimentalRatio = experimentalPartialDerivatives[i]

experimentalPartialDerivatives[j]

individualRatio = individualPartialDerivatives[i]
individualPartialDerivatives[j]

fitness+ = log(1 + |experimentalRatio− individualRatio|
end for

end for
end for
return fitness

Algorithm 5: Evaluation of an individual with partial derivatives and unordered data
As in the previous example, all experimental derivatives can be determined in advance.

A great advantage of this model is improved heuristics, while the disadvantage is only the

execution time, since despite the caching of derivations they need to be compared between

each coordinate ratio.
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Using multiple trees for evaluation

In the case of the separability of the formula to be discovered, it is possible by using multiple

trees to allow each to learn a separate part of the formula. In this case the trees would be

joined by an arbitrary operator which would ideally correspond to the same operator sharing

2 separable parts of the final formula. Since this operator is unknown in advance, the paper

thesis a set of operators that can connect 2 trees, which are: addition (+), subtraction (−),

multiplication (∗) and division (/ ). Two trees were experimented, and the best evaluation

of the solution with respect to the given operators was taken as a representative tree of the

individual. The pseudocode evaluation of a 2-tree individual is described in the algorithm

below.
Evaluate
Input: D – data set of points, J1 – first expression tree, J2 – second expression tree,

PENALTY – arbitrarily big number for punishment

O = [+, -, *, /] (arbitrary set of operators)

for op in O do
if lowStdevOnRandomPonts(J1, J2, op) or notAllVariablesContainedInTree(J1, J2, op)

then
O = O/{op}

end if
end for
if O.empty then

return PENALTY

end if
fitnesses = {}

for currentPoint = (xi1,...xin)inX do
evaluation1 = J1.evaluate(currentPoint)

evaluation2 = J1.evaluate(currentPoint)

for op in O do
finalEvaluation = evaluation1 op evaluation2

fitnesses[op] += calculateFitness(finalEvaluation)

end for
end for
return best(fitnesses)

Algorithm 6: Evaluation of an individual with multiple trees
With this approach, it is necessary to follow trivial solutions for each selection of op-

erators, and those who pass such elimination process are evaluated in a standard way with

the forwarding of the solution with best fitness, depending on whether it is a minimization
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or maximization problem. This approach can be molded into both a direct approach and a

partial derivative approach. The only disadvantage of adding more trees is that it is slower,

and this is most felt for partial derivatives since it is necessary to evaluate the infinitesimal

shift in the direction of each coordinate.

Tools and technologies used

The programming languages used to implement the algorithms and run the experiments were

Python and C++. Python and its numpy library, which is suitable for matrix calculations,

were used to preprocess the data, determine the local field around the point, as well as the

hyperplanes. Numpy library optimizations were helpful since it was necessary to determine

the inverse of the matrix each time the hyperplane was calculated.

On the other hand, the implementation of the direct approach of standard deviation and

the approach using partial derivatives was made in the C++ language. The ECF library from

Department of Electronics, Microelectronics, Computer and Intelligent Systems (ZEMRIS)

at Faculty of Electrical Engineering and Computing (FER), University of Zagreb, was used

as a tool for working with evolutionary algorithms. The library provides support for setting

arbitrarily written individual evaluation functions, while the selection of the evolutionary al-

gorithm and its parameters is the functionality of the tool out of the box.

All graphs and plots presented in the results chapter were created using the programming

language R which provides support for processing the results and were used for analysis over

training and testing sets.
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5. Experiments and results

To test the algorithms presented in the chapter on implementation, it was necessary to find

a set of formulas over which each will be subjected to training. A prerequisite for this was

the preprocessing of points from selected sets for methods with partial derivation, i.e., the

determination of suitable hyperplanes for obtaining experimental derivative.

5.1. Verification of the least squares method

Handing the correct values to the models using partial derivatives had to be done with the

verification that the method is valid and accurate, mostly for the shape of the multidimen-

sional ellipse proposed in the paper (Schmidt i Lipson (2010)), for which the expectations

were the highest. In addition, experiments were performed for the hyperplane of the shape of

the third degree polynomial and the shape of the ordinary plane, in order to find similarities

and differences between the different shapes.

For the first set, formulas whose shape is circular or elliptical were taken, since the results

of previous works indicated a well-satisfactory behavior of the hyperplanes for points. The

table (5.1) shows all the formulas used for the first part of the test.

Equation No. Dimensions Abbreviation Description

x2 + y2 − 25 = 0 2 CIR Circle

x2 + y2 + z2 − 25 = 0 3 SPH Sphere

(x−1)2

9
+ (y−2)2

16
− 1 = 0 2 EL Ellipse

x3 + x− y2 − 1.5 = 0 2 HYP Hyperbola

x′′ − 0.1 · x′ + 3x = 0 2 HM Harmonic oscillator

x′′ − 0.1 · x′ + 9.8 · sin(x) = 0 2 NLHO Non-linear harmonic oscillator

Table 5.1: Equations used for the training set
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In determining the hyperplanes, the least squares calculation described in the theoretical

part was ran 10 times for randomly generated 1000 points belonging to the function domain.

Also, the size of the local neighborhood around the central point was taken into account,

experimenting from 0.5 % to 20 % points of the whole set. The measure of success was

the function (3.2.2) mentioned in the theoretical part, which would serve as a function of

determining fitness during the training of the genetic programming algorithm. The function

is minimizational, meaning that values closer to zero symbolized a more faithful picture of

the hyperplane at a point relative to the real function. The derivative determined from the

hyperplane was taken as the experimental part of the derivation, while the individual function

value was precisely the solution of the function, thus serving as a proof of concept itself.

The tables („) show the results of all forms of hyperplanes for the 6 mentioned formulas

from the figure (). For the elliptical form of the hyperplane, the best results were achieved

for 10% of the local neighborhood with very little scattering. Such a form of the hyperplane

was best able to approximate the derivation obtained from the set of points for the formu-

las presented, consistent with previous research results from other papers. The third-degree

polynomial and the ordinary plane were able to describe the harmonic oscillator well, while

in all formulas they achieved the best results for 20% of the local set of points. For other

local neighborhood configurations, they failed to provide a satisfactory level of performance

for all formulas.

F’s Size of local neighborhood

5 (0.5%) 10 (1%) 20 (2%) 50 (5%) 100 (10%) 200 (20%)

CIR 0.986±0.046 0.163±0.040 0.033±0.043 5.003±7.311 · 10−4 5.110±4.237 · 10−8 3.125±4.440 · 10−8

SPH 6.577±0.045 2.622±0.011 0.079±0.091 0.008±0.099 0.003±0.020 0.002±0.000

EL 0.794±0.028 0.195±0.056 0.062±0.053 1.678±2.023 · 10−3 1.804±2.649 · 10−5 2.387±4.773 · 10−4

HYP 0.118±0.017 0.066±0.021 0.014±0.003 0.003±0.005 0.013±0.008 0.044±0.030

HO 0.106±0.017 0.078±0.021 0.048±0.005 0.071±0.020 0.106±0.018 0.150±0.035

NLHO 2.03±0.513 0.3918±0.015 0.399±0.101 0.405±0.112 0.962±0.199 1.208±0.533

Table 5.2: Derivatives accuracy for the training set (multidimensional ellipse)

F’s Size of local neighborhood

5 (0.5%) 10 (1%) 20 (2%) 50 (5%) 100 (10%) 200 (20%)

CIR 1.352±0.027 1.294±0.068 1.209±0.067 1.105±0.176 1.216±0.171 0.559±0.030

SPH 5.944±0.089 6.037±0.105 6.064±0.192 5.355±0.153 5.015±0.021 4.921±0.082

EL 1.109±0.091 1.189±0.018 1.203±0.023 1.082±0.122 0.969±0.077 0.540±0.048

HYP 0.155±0.041 0.139±0.051 0.183±0.024 0.154±0.061 0.082±0.110 0.049±0.021

HO 3.512±3.418 · 10−8 7.548±2.538 · 10−10 1.692±6.454 · 10−10 192.7±7.827 · 10−12 178.0±6.476 · 10−12 164.7±5.669 · 10−12

NLHO 2.653±0.310 2.498±0.157 2.599±0.111 2.426±0.095 2.140±0.072 2.275±0.101

Table 5.3: Derivatives accuracy for the training set (ordinary plane)
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F’s Size of local neighborhood

5 (0.5%) 10 (1%) 20 (2%) 50 (5%) 100 (10%) 200 (20%)

CIR 1.294±0.133 1.266±0.084 1.281±0.143 1.129±0.022 1.044±0.026 0.976±0.025

SPH 6.954±0.123 7.338±0.076 5.552±0.236 5.437±0.198 5.276±0.178 5.193±0.165

EL 1.183±0.217 0.992±0.037 1.006±0.046 0.887±0.055 0.871±0.097 0.784±0.049

HYP 0.181±0.025 0.133±0.014 0.106±0.009 0.049±0.009 0.016±0.003 0.004±0.001

HO 0.233±0.114 0.028±0.013 2.522±0.921 · 10−3 4.189±1.632 · 10−3 3.388±1.348 · 10−3 2.914±0.370 · 10−3

NLHO 2.492±0.131 2.451±0.129 2.012±0.301 1.432±0.095 0.790±0.045 0.210±0.028

Table 5.4: Derivatives accuracy for the training set (third degree polynomial)

The next experiment was performed on equations that are at first glance not difficult

in form, but generally are not spherical in shape (root function, square function and linear

function). Expectations, however, differed from the results obtained. The hyperplane of the

second degree polynomial failed to find satisfactory results for any of the offered formulas,

while the quadratic function was a problem due to the singularity of the matrix (ATA)−1AT

(pseudoinverse). The third-degree polynomial had almost identical results, while the ordi-

nary plane was able to approximate the derivatives of the quadratic function with satisfactory

results. The tables are shown below.

F’s Size of local neighborhood

5 (0.5%) 10 (1%) 20 (2%) 50 (5%) 100 (10%) 200 (20%)

U −mgz = 0 1.552±0.037 1.159±0.071 1.108±0.020 1.091±0.025 1.183±0.068 1.161±0.063

y −
√
x = 0 1.118±0.093 0.954±0.024 0.941±0.051 0.896±0.029 0.879±0.036 0.838±0.056

y − x2 = 0 / / / / / /

Table 5.5: Derivatives accuracy for additional equations (multidimensional ellipse)

F’s Size of local neighborhood

5 (0.5%) 10 (1%) 20 (2%) 50 (5%) 100 (10%) 200 (20%)

U −mgz = 0 1.503±0.059 1.249±0.046 0.376±0.079 0.291±0.049 0.336±0.059 0.326±0.043

y −
√
x = 0 1.339±0.040 1.193±0.021 1.076±0.030 0.576±0.168 0.464±0.082 0.313±0.068

y − x2 = 0 / / / / / /

Table 5.6: Derivatives accuracy for additional equations (3rd degree polynomial)

F’s Size of local neighborhood

5 (0.5%) 10 (1%) 20 (2%) 50 (5%) 100 (10%) 200 (20%)

U −mgz = 0 0.444±0.166 0.256±0.037 0.376±0.079 0.237±0.027 0.255±0.030 0.287±0.039

y −
√
x = 0 0.379±0.015 0.445±0.044 0.440±0.059 0.597±0.071 0.370±0.040 0.381±0.123

y − x2 = 0 0.199±0.115 0.013±0.001 0.014±0.001 0.013±0.002 0.011±0.1003 0.010±0.002

Table 5.7: Derivatives accuracy for additional equations (ordinary plane)
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The obtained results could be used only for the first set of formulas over the hyperplane of

polynomials of the second degree, because there the consistency of performance was main-

tained. Trying out different forms for other groups of implicit functions gives room to find

other ways in which current results can be improved.

5.2. Model training

The six functions mentioned in the table (5.1) represented a set for training over the mod-

els described in the implementation. Preprocessed data and derivatives served only models

that used partial derivatives, while models that used scatter evaluations obtained ready-made

unprocessed data sets. Ordinary genetic programming was taken as the training algorithm.

Given the nature of all the functions in the set, the operators selected for training were addi-

tion (+), subtraction (−), multiplication (·), division (/), and sine (sin). The hyperparame-

ters that were subjected to training were:

• Population size (50, 100, 200, 500, 1000)

• Mutation probability (0.1, 0.2, 0.3, 0.5, 0.7, 0.9)

• Selection method (5-tournament selection, Roulette wheel selection)

For each hyperparameter change, the model would be run 20 times for each function.

Once the results for all values of one hyperparameter were obtained, it would be fixed and

the next would be subjected to the same evaluation. Of the other parameters, it is important

to mention:

• Evaluation count for terminating the algorithm (200 000)

• Satisfying fitness for terminating the algorithm (0)

• Maximum tree depth (10)

The following tables (Tables 5.8, 5.9, 5.10, 5.2) show the results for each model with

respect to the population size parameter. The best results for each function are colored

yellow, while the other best results are colored orange. The “winning” size of the population

is colored green. In most models, there was not enough time to test behavior for a population

size of 1,000 and therefore the results are shown only up to a population size of 500. In direct

methods, the standard deviation itself was chosen as a measure of success, while for methods

with partial derivatives logarithmic similarity of the difference between experimental and

functional derivatives. In the tables, the methods were abbreviated in the following way:

• SSE - standard deviation evaluator

• MTE - standard deviation evaluator with 2 trees
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• IEUND - partial derivation evaluator

• IEUNDMG - partial derivation evaluator with 2 trees

SSE Veličina populacije

50 100 200 500 1000

CIR 2.97± 1.26 ·10−20 1.445± 6.255 ·10−12 3.879± 5.192 ·10−13 1.967± 60.86 ·10−12 5.163± 4.945 ·10−12

SPH 5.051± 21.9 ·10−16 6.558± 27.78 ·10−19 6.279± 9.278 ·10−20 6.481± 1.423 ·10−18 1.453± 9.794 ·10−17

EL 4.28± 0.177 ·10−13 2.709± 13.22 ·10−11 9.044± 2.573 ·10−12 6.393± 6.281 ·10−12 4.159± 32.7 ·10−12

HYP 1.594± 6.950 ·10−22 1.697± 7.202 ·10−26 7.899± 5.896 ·10−24 6.331± 5.161 ·10−20 9.140 ± 2.312 ·10−18

HO 2.321± 10.11 ·10−8 5.467± 2.305 ·10−9 9.307± 7.643 ·10−9 3.573± 4.778 ·10−8 8.036 ± 3.284 ·10−6

NLHO 1.107± 4.82 ·10−7 3.409± 1.248 ·10−8 3.307± 1.349 ·10−9 2.167± 3.629 ·10−7 3.633 ± 42.6 ·10−6

Table 5.8: Training results for SSE method using GP with varying population size

MTE Veličina populacije

50 100 200 500

CIR 8.232 ± 35.7 ·10−36 5.582 ± 2.429 ·10−36 3.718 ± 3.484 ·10−36 5.224 ± 6.624 ·10−37

SPH 4.983 ± 2.054 ·10−13 9.917 ± 17.83 ·10−14 9.195 ± 3.659 ·10−15 4.434 ± 9.514 ·10−15

EL 2.226± 9.513 ·10−8 2.492 ± 1.851 ·10−9 6.069 ± 7.849 ·10−9 6.580 ± 2.617 ·10−9

HYP 1.442± 6.058 ·10−25 8.915 ± 33.30 ·10−26 9.932 ± 2.674 ·10−26 3.534 ± 35.7 ·10−26

HO 2.912± 8.897 ·10−16 4.991 ± 6.012 ·10−16 4.023 ± 35.7 ·10−17 2.179 ± 7.984 ·10−17

NLHO 2.102± 9.161 ·10−28 3.570 ± 5.751 ·10−28 9.124 ± 9.821 ·10−29 1.153 ± 5.699 ·10−28

Table 5.9: Training results for MTE method using GP with varying population size

IEUND Veličina populacije

50 100 200 500

CIR 0.192 ± 0.264$ 0.259 ± 0.272$ 0.292 ± 0.018$ 0.288 ± 0.163$

SPH 2.151 ± 1.172$ 1.730 ± 1.238$ 1.557 ± 0.189$ 1.603 ± 0.192$

EL 0.525 ± 0.128$ 0.499 ± 0.145$ 0.450 ± 0.137$ 0.467 ± 0.198$

HYP 0.006 ± 0.006$ 0.003 ± 0.001$ 0.004 ± 0.002$ 0.007 ± 0.002$

HO 0.379 ± 0.473$ 0.250 ± 0.174$ 0.281 ± 0.129$ 0.301 ± 0.101$

NLHO 0.565 ± 0.154$ 0.451 ± 0.109$ 0.478 ± 0.193$ 0.500 ± 0.154$

Table 5.10: Training results for IEUND method using GP with varying population size
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IEUNDMG Veličina populacije

50 100 200 500

CIR 0.202 ± 0.246$ 0.181 ± 0.521$ 0.166 ± 0.308$ 0.170 ± 0.298$

SPH 2.391 ± 0.430$ 1.954 ± 1.299$ 1.768 ± 0.129$ 1.652 ± 0.138$

EL 0.491 ± 0.204$ 0.395 ± 0.101$ 0.400 ± 0.121$ 0.405 ± 0.173$

HYP 0.006 ± 0.004$ 0.004 ± 0.001$ 0.005 ± 0.003$ 0.007 ± 0.001$

HO 0.256 ± 0.447$ 0.244 ± 0.115$ 0.270 ± 0.138$ 0.269 ± 0.111$

NLHO 0.487 ± 0.267$ 0.480 ± 0.101$ 0.475 ± 0.124$ 0.455 ± 0.167$

Table 5.11: Training results for IEUNDMG method using GP with varying population size

The following tables (Tables 5.12, 5.13, 5.14, 5.15) are shown for various mutation prob-

abilities, with fixed population size:

SSE Mutation probability (Population size = 200)

0.1 0.2 0.3 0.5 0.7 0.9

CIR 3.879 ± 5.192 ·10−13 2.451 ±1.068\cdot 10^{-25}$ 0 3.082 ± 13.43 ·10−25 8.942 ± 38.97 ·10−37 0

SPH 6.279 ± 9.278 ·10−20 3.127 ± 13.63 ·10−14 8.216 ± 35.68 ·10−20 3.399 ± 14.73 ·10−16 1.799 ± 7.241 ·10−21 1.569 ± 6.805 ·10−23

EL 9.044 ± 2.573 ·10−12 2.955 ± 10.12 ·10−12 2.144 ± 9.306 ·10−12 1.779 ± 6.707 ·10−20 5.279 ± 21.94 ·10−16 3.129 ± 10.17 ·10−14

HYP 7.899 ± 5.896 ·10−24 1.526 ± 6.651 ·10−23 7.236 ± 31.54 ·10−24 0 0 0

HO 9.307 ± 7.643 ·10−9 3.267 ± 14.23 ·10−20 9.891 ± 49.10 ·10−19 1.678 ± 7.295 ·10−15 3.157 ± 13.76 ·10−14 3.157 ± 13.76 ·10−14

NLHO 3.307 ± 1.349 ·10−9 1.943 ± 8.469 ·10−21 8.825 ± 38.47 ·10−30 2.293 ± 9.994 ·10−27 2.784 ± 12.14 ·10−36 9.358 ± 40.79 ·10−16

Table 5.12: Training results for SSE method using GP with fixed population size and varying muta-

tion probability

MTE Mutation probability (Population size = 500)

0.1 0.2 0.3 0.5 0.7 0.9

CIR 5.224 ± 6.624 ·10−37 2.392 ±7.178\cdot 10^{-35}$ 4.304 ±5.012\cdot 10^{-33}$ 1.021 ± 99.91 ·10−31 6.379 ± 9.519 ·10−31 4.054 ± 2.805 ·10−30

SPH 4.434 ± 9.514 ·10−15 1.900 ± 3.802 ·10−27 5.861 ± 9.736 ·10−30 8.634 ± 8.991 ·10−16 1.147 ± 4.189 ·10−17 8.940 ± 2.390 ·10−19

EL 6.580 ± 2.617 ·10−9 1.614 ± 2.165 ·10−17 2.318 ± 42.42 ·10−18 4.546 ± 5.513 ·10−20 8.696 ± 4.637 ·10−21 5.855 ± 84.89 ·10−20

HYP 3.534 ± 35.7 ·10−26 0 4.412 ± 6.811 ·10−30 0 2.126 ± 3.556 ·10−25 0

HO 2.179 ± 7.984 ·10−17 1.084 ± 3.250 ·10−19 5.033 ± 1.937 ·10−18 3.992 ± 56.10 ·10−15 3.580 ± 3.026 ·10−19 2.536 ± 6.899 ·10−18

NLHO 1.153 ± 5.699 ·10−28 7.956 ± 18.13 ·10−28 7.279 ± 2.969 ·10−29 9.225 ± 7.878 ·10−27 1.112 ± 8.784 ·10−27 2.073 ± 3.992 ·10−28

Table 5.13: Training results for MTE method using GP with fixed population size and varying muta-

tion probability

Final tables (Tables 5.16, 5.17, 5.18, 5.19) are shown for changing the selection of the

algorithm, with fixed population size and mutation probability picked from the previous

training iterations.

The Roulette wheel selection method was not so effective against tournament selection

in any of the shown models. With the hyperparameters determined on the training methods,

the models were to be tested against an unseen set of functions.
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IEUND Mutation probability (Population size = 100)

0.1 0.2 0.3 0.5 0.7 0.9

CIR 0.259 ± 0.272 0.189 ± 0.218 0.100 ± 0.151 0.066 ± 0.162 0.063 ± 0.120 0.032 ± 0.053

SPH 1.730 ± 1.238 2.323 ± 0.750 2.050 ± 0.928 1.523 ± 1.312 1.526 ± 1.219 1.349 ± 1.156

EL 0.499 ± 0.145 0.483 ± 0.132 0.487 ± 0.121 0.483 ± 0.117 0.388 ± 0.176 0.377 ± 0.142

HYP 0.003 ± 0.001 0.004 ± 0.003 0.005 ± 0.005 0.003 ± 0.002 0.004 ± 0.008 0.003 ± 0.004

HO 0.250 ± 0.174 0.445 ± 0.696 0.269 ± 0.413 0.108 ± 0.147 0.208 ± 0.297 0.284 ± 0.591

NLHO 0.451 ± 0.109 0.373 ± 0.104 0.421 ± 0.178 0.419 ± 0.219 0.346 ± 0.096 0.372 ± 0.139

Table 5.14: Training results for IEUND method using GP with fixed population size and varying

mutation probability

IEUNDMG Mutation probability (Population size = 100)

0.1 0.2 0.3 0.5 0.7 0.9

CIR 0.181 ± 0.521 0.116 ± 0.190 0.138 ± 0.219 0.171 ± 0.218 0.116 ± 0.216 0.987 ± 0.182

SPH 1.954 ± 1.299 1.828 ± 1.122 2.052 ± 1.011 1.639 ± 1.137 1.095 ± 1.080 1.109 ± 1.117

EL 0.395 ± 0.101 0.435 ± 0.196 0.391 ± 0.199 0.409 ± 0.201 0.407 ± 0.201 0.382 ± 0.163

HYP 0.004 ± 0.001 0.004 ± 0.004 0.004 ± 0.003 0.003 ± 0.003 0.004 ± 0.005 0.003 ± 0.004

HO 0.244 ± 0.115 0.180 ± 0.251 0.198 ± 0.247 0.176 ± 0.255 0.132 ± 0.210 0.231 ± 0.393

NLHO 0.480 ± 0.101 0.448 ± 0.268 0.315 ± 0.134 0.314 ± 0.139 0.341 ± 0.149 0.277 ± 0.058

Table 5.15: Training results for IEUNDMG method using GP with fixed population size and varying

mutation probability

SSE Mutation probability (Population size = 200, mutation probability = 0.9)

Tournament (size 5) Roulette wheel

CIR 0 7.868 ± 16.13 ·10−12

SPH 1.569 ± 6.805 ·10−23 4.391 ± 6.111 ·10−7

EL 3.129 ± 10.17 ·10−14 2.184 ± 4.271 ·10−12

HYP 0 5.504 ± 11.04 ·10−8

HO 3.157 ± 13.76 ·10−14 4.067 ± 10.18 ·10−6

NLHO 9.358 ± 40.79 ·10−16 2.086 ± 5.362 ·10−9

Table 5.16: Training results for SSE method using GP with fixed population size, fixed mutation

probability and varying selection method
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MTE Mutation probability (Population size = 500, mutation probability = 0.2)

Tournament (size 5) Roulette wheel

CIR 2.392 ± 7.178 ·10−35 2.077 ± 4.869 ·10−8

SPH 1.900 ± 3.802 ·10−27 5.390 ± 0.01 ·10−5

EL 1.614 ± 2.165 ·10−17 4.720 ± 8.730 ·10−5

HYP 0 2.340 ± 3.973 ·10−6

HO 1.084 ± 3.250 ·10−19 2.103 ± 5.167 ·10−5

NLHO 7.956 ± 18.13 ·10−28 2.049 ± 6.070 ·10−7

Table 5.17: Training results for MTE method using GP with fixed population size, fixed mutation

probability and varying selection method

IEUND Mutation probability (Population size = 100, mutation probability = 0.9)

Tournament (size 5) Roulette wheel

CIR 0.032 ± 0.053 0.001 ± 0.003

SPH 1.349 ± 1.156 2.309 ± 1.186

EL 0.377 ± 0.142 0.510 ± 0.135

HYP 0.003 ± 0.004 0.009 ± 0.005

HO 0.284 ± 0.591 0.143 ± 0.170

NLHO 0.372 ± 0.139 0.347 ± 0.075

Table 5.18: Training results for IEUND method using GP with fixed population size, fixed mutation

probability and varying selection method

IEUNDMG Mutation probability (Population size = 100, mutation probability = 0.9)

Tournament (size 5) Roulette wheel

CIR 0.987 ± 0.182 6.744 ± 3.305 ·10−7

SPH 1.109 ± 1.117 1.967 ± 1.313

EL 0.382 ± 0.163 0.553 ± 0.157

HYP 0.003 ± 0.004 0.009 ± 0.004

HO 0.231 ± 0.393 0.351 ± 0.600

NLHO 0.277 ± 0.058 0.312 ± 0.049

Table 5.19: Training results for IEUNDMG method using GP with fixed population size, fixed mu-

tation probability and varying selection method
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5.3. Model testing

For model testing, 3 functions were chosen based on the results of the multidimensional

ellipse as a hyperplane model, with the intention that all models be tested over the same

test functions and that in these functions the hyperplane gave satisfactory corresponding

derivatives. The table below (5.20) shows the selected test functions.

Equation No. Dimensions Abbreviation Description

(x−3)2

2.52
+ (y−4.5)2

32
− 1 = 0 2 CIR-T Circle with offset from centre

(x− 1)2 + (y − 2)2 − 36 = 0 2 EL-T Ellipse with offset from centre

y − e
−x

2

2√
2·π = 0 2 G-T Gauss function

Table 5.20: Equations used as a testing set

Standard deviation methods would always find a satisfactory solution given their opti-

mization function, however for a real insight into the results over the test data it is necessary

to manually check which solutions were obtained. The analysis of the solution is described

in the next chapter on Pareto fronts. The following table with boxplots shows the results of

methods with partial derivations over test data. Since the equation of a circle and an ellipse

are those functions that could be linearly separated from multiple trees, counterintuitively

the single-tree method showed better results. For a Gaussian function that is not trivially

separable, the single-tree method also outperformed the multi-tree method.

Figure 5.1: Boxplot of testing results for each formula on partial derivation methods using GP.

Multiple tree method is denoted with suffix "MT". The formulas are denoted with: C-circle,

EL-ellipse and G-Gauss
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5.4. Variation of the algorithm

Experiments on equations from the testing data set were also performed with gene expression

programming (Figure 5.2) and analytical programming (Figure 5.3). For GEP, a genotype

with 2 genes and head sizes of 10, 15 and 20 were conducted with hyperparameters staying

the same as the partial derivation model with a single genotype, and keeping the number of

evaluations and number of runs identical to the parameters in the testing phase. Results re-

mained stable for each of the head lengths throughout the equations. However, performance

against ordinary genetic programming algorithm did not improve.

Figure 5.2: Results on testing equations for GEP with head lengths of 10, 15 and 20

Analytical programming method was conducted as well with same parameters. The

method showed great improvement in every equation, with the lowest fitness obtained in

the Gauss equation which was constant throughout each iteration.

Figure 5.3: Results on testing equations for AP

For better insight, a table with hit rates depending on fitness values were recorded (Table

5.21). Best results once again came from AP, following up by GP and the lowest performance

for GEP.

38



Hit rate (20 runs)
GP GEP AP

C EL G C EL G C EL G

< 0.3 13 12 17 7 20 16 20 20 20

< 0.1 10 5 11 2 0 1 11 7 19

< 0.01 5 1 0 0 0 0 8 0 11

Table 5.21: Hit rates of testing equations for GP, GEP with head length of 20 and AP, counted final

solutions below the thresholds for each of the runs

5.5. Tracking of pareto fronts

As part of the implementation, tracking of best results for every equation throughout all of

the runs was recorded. For this purpose, pareto fronts with respect to tree sizes and fitness

were generated. The shape of pareto front is oftenly parabolic with biggest tree sizes obtain-

ing the lowest fitness and vice versa.

The idea of pareto fronts is getting insight into how the fitness of the solutions decreases

if one adds more capacity in the expression tree of the equation. Bigger trees commonly

yield a lot of noise to the equation although having best performances. In spite of that, the

algorithm can generate a more elegant tree with fewer nodes and a satisfactory performance

on the data set.

Pareto fronts on figures (Figure 5.4, 5.5) represent tracked results for ellipse test data

set for ordinary genetic programming algorithm and analytical programming algorithm with

varying maximum tree depths. Since adding depth increases the tree sizes proportionally,

range of depths were between 5 and 10 to analyze performance on each depth.

Figure 5.4: Graphs of pareto fronts for genetic programming algorithm for maximum tree depths of

5 through 10
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Figure 5.5: Graphs of pareto fronts for analytical programming algorithm for maximum tree depths

of 5 through 10

5.6. Visualizations

Although the fitnesses can be low, one can not assume w.h.p. that the final solutions from the

algorithm are actually correct on the testing data sets. For that purpose, visualizations were

provided on a few of best solutions produced by the algorithms throughout the whole testing

process.

Standard deviation model was tested on an additional equation which did not have an ap-

propriate hyperplane derivation estimation. The formula itself represents calculating center

of mass coordinates against 2 objects with certain masses:

R− m1 · r1 +m2 · r2

m1 +m2

= 0

Since the formula is 5-dimensional, visualization could not be provided, but some of the

best solutions for the problem were:

R = (m2 +m1) · (r2 + r1)

R = (m1 +R) · (m2 +R) · (r1 + r2)

R +
m1 ·m2

m1 · r1 +m2 · r2

= 0
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Visualizations on 2-dimensional models were provided for some of the partial derivative

methods. On figures (Figures 5.6, 5.7) one can see how both genetic and analytical program-

ming solutions maintained the consistency in the derivatives for their best solutions. The

final solutions are not exact as the ground truth, however the form and shape of the under-

lying equation was preserved. Since the heuristic itself was based on keeping the ratio of

derivatives as similar as possible, the results obtained were as expected.

Figure 5.6: Best solutions for circle testing equations with GP plotted against the ground truth

Figure 5.7: Best solutions for ellipse testing equations with AP plotted against the ground truth
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On the other figure (Figure 5.8), Gauss function results with genetic programming were

visualized. This time the results were not as great, with derivatives getting chaotic in the right

quadrants of the coordinate system. Possible explanation of this is having a lot of freedom

with sine and exponential functions in modeling of the solutions.

Figure 5.8: Best solutions for Gauss testing equations with GP plotted against the ground truth
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6. Conclusion

All things considered, the thesis managed to reproduce at least similar results as the papers

who addressed the problem with same principles. As for the implemented goal functions

for the genetic programming algorithm, they were all successfully implemented and showed

a degree of search for better solutions at a satisfactory level. It should be emphasized that

despite the advancement of the algorithm, the obtained solutions do not necessarily corre-

spond to the functions that describe the underlying system itself. It is a legitimate case that

by increasing the depth of the tree, unnecessary noise can be introduced, and by using the

Pareto fronts of the final solutions, this problem was somewhat addressed. Final equation

plots in the results chapter show that although majority of the functions do not correspond to

the actual solutions, the form and shape which was implied from the calculated derivatives

was preserved.

Since most of the research was focused on the determination of derivations in the method

of partial derivatives, expectations were partially met. For conical and spherical functions,

the determination of hyperplanes using multidimensional conical shapes worked with negli-

gible error, while for all other sets of functions, even the simplest ones, the method showed

weaknesses. In the hope that the error between the derivatives of the real functions and the

hyperplanes will be smaller, models for the 3rd degree polynomial and the ordinary plane

were made, but even these methods did not contribute to significant results. Given this, the

implementation of the research part is made in a modular way for free exploration of possible

shapes that could be favorable for other groups of functions of non-spherical shape.

In addition to the least squares method, for further work on the thesis, it is possible to

use some other mathematical method that could potentially obtain more accurate derivations

to run evolutionary algorithms over them. Since the algorithms themselves have shown that

they cope well with spherical functions that are faithfully described by their derivatives, there

is no reason to think why they would not behave in the same way with functions whose shape

is not spherical.
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Sažetak

Simbolička regresija je metoda kojom se iz skupa točaka u prostoru pokušava inferi-

rati jednadžba sustava koji ga opisuje. S obzirom da su eksplicitne formule uglavnom bile

predmet istraživanja tom metodom tokom godina, ova teza se odlučila baviti simboličkom

regresijom implicitnih funkcija. Implicitne funkcije su zbog svojih odred̄enih svojstava puno

ekspresivnije te su teže za inferirati te su napravljene različite heuristike za dolazak do zado-

voljavajućih rješenja. Jednostavnija metoda obuhvaćala je standardnu devijaciju kandidata

rješenja problema, te se minimiziranjem raspršenosti proizvoljni algoritam navodio na kon-

ačno rješenje regresije. Druga metoda iskoristila je usporedbu parcijalnih derivacija izmed̄u

kandidata rješenja te eksperimentalno dobivenih derivacija. U dvodimenzionalnim sustavima

računanje derivacije je jednostavno dok je za višedimenzionalne sustave potrebno odrediti

ravninu u lokalnoj blizini neke središnje točke za dobivanje ispravne derivacije. Za odred̄i-

vanje ravnina koristila se metoda najmanjih kvadrata, te je u konačnici za odred̄eni podskup

funkcija radio vrlo dobro, dok je nad drugima potrebno ipak više istraživanja i pokušaja za

dobivanje ispravnijih podataka. Heuristike su upogonjene algoritmima genetskog programi-

ranja, genskog ekspresijskog programiranja (GEP), analitičkog programiranja (AP) su za

izvjesni podskup funkcija pokazale iznimno dobre rezultate.

Ključne riječi: Simbolička regresija, implicitne funkcije, genetsko programiranje, gensko

ekspresijsko programiranje, metoda najmanjih kvadrata



Implicit function symbolic regression system

Abstract

Symbolic regression is a method by which an equation of the system describing it is in-

ferred from a set of points in space. Since explicit formulas have been the subject of research

by this method over the years, this thesis decided to deal with the symbolic regression of

implicit functions. Implicit functions are much more expressive due to their certain prop-

erties and are harder to infer than explicit ones. Therefore, different heuristics have been

made to arrive at satisfactory solutions. A simpler method involved minimizing the standard

deviation of evaluations for candidate solutions (equations) to the problem. By lowering the

scattering for all the points in the set, the arbitrary algorithm was guided to the final solution

of the regression. The second method used the comparison of partial derivations between

solution equations and experimentally obtained derivatives. In two-dimensional systems, the

derivation calculation is simple, while for multidimensional systems it is necessary to de-

termine the plane in the local vicinity of some central point to obtain the correct derivation.

The least squares method was used to determine the planes, and in the end it worked very

well for a certain subset of functions which were conic or spherical, while more research and

attempts are still needed on others to obtain more accurate data. Heuristics were driven by

genetic programming algorithms, gene expression programming (GEP) and analytical pro-

gramming (AP) which have shown extremely good results for a certain subset of functions.

Keywords: Symbolic regression, implicit functions, genetic programming, gene expression

programming, least squares method


