
Patterns of Web Site Structure in UriGraph

Hrvoje Simic
Department of Telecommunications,

Faculty of Electrical Engineering and Computing, University of Zagreb
Unska 3, 10 000 Zagreb, Croatia

hrvoje.simic@fer.hr

Abstract—This paper introduces a Web site structure model
called UriGraph and, using the model, describes several
important patterns of site structure. Web site structure is
defined as the collective information about the identity,
identifier, position and composition of every resource
constituting the Web site. UriGraph models the site's resource
identifiers and through them the resource identity and
composition, and indirectly the resource position. UriGraph is
designed specifically for the Web and it is compatible with the
current practice. It can be represented graphically and as an
XML document.

Keywords—UriGraph; URI; Web site structure; Web resource;
Web application; XML; patterns

I.

II.

A.

INTRODUCTION
The term "Web site structure" is often used, but seldom

defined. This paper gives a novel definition of Web site
structure embedded into a wider theory of Web sites and
applications. The paper discriminates between the structure of
Web site content and the navigation schema on one hand and
the Web site structure on the other, although all three concepts
are mutually dependent.

The main purpose of this paper is to present a new Web
site structure model. The model works by analyzing the Web
resource identifier (the URI) to provide clues about the
requested resource's identity. This identity is then used by the
components of each resource to determine what content they
should generate. Creating passages through the structure graph
during the identifier analysis allows for inheritability of
components, similar to propagating permissions in a file
system.

UriGraph can model the structure of any Web site, but it is
also a foundation for a specific software engineering approach
aimed at reducing inner redundancy, facilitating development
and maintenance of larger sites. Specific features of UriGraph
need a special Web server to deploy (like Wance [12]), but the
basic graphic representations may be used on any platform.

The paper is organized as follows: the next section defines
the Web site structure as one of the Web application
ingredients. The definition of UriGraph is covered in the third
section. The fourth section shows how the model can be used
to describe several important patterns of site structure. The
paper also includes a section on related work, conclusion and
notes on future work.

WEB SITE STRUCTURE
A Web application is a composition of two distinct

systems: the target system and the Web adaptation system
(Fig. 1). The target system contains business logic and data
specific to a particular need and independent of the technology
used to access it. Its abstract interface allows it to be used
through various systems, such as GUI applications, Web sites,
Web services, e-mail, or WAP. The Web adaptation system is
used to interface between the target system and the Web,
allowing the whole system to be perceived as a Web site.

A Web site is a logically coherent collection of Web
resources. A Web resource is a persistent source of useful
information, used for retrieving information or processing
data, and available through the network using the Hypertext
Transfer Protocol [11]. A resource that only processes data
(changes the server's state) is called an operational resource, as
opposed to the presenting resource that handles safe HTTP
methods and is used exclusively for information retrieval.
Term "Web page" is used for a resource that presents
information in the form of hypertext.

Web Application Ingredients
There are four "ingredients" of a Web application:

• content – the basic information supplied by the
application, created and maintained by site content
authors;

• look – means of presenting the content clearly and
attractively to the user, created by visual designers and
usability experts;

• functionality – means of processing the content,
created by programmers;

• structure – the central ingredient catalyzing others,
designed by Web information architects.

Content and functionality are defined in the target system,
while look and structure are defined in the Web adaptation
system.

This paper defines Web site structure as the collective
information about the four qualities of every resource
constituting the site: its identity, identifier, position, and
composition.

B. Web Resource's Structural Qualities
1)

2)

3)

4)

C.

Resource Identity
Every Web resource should represent (e.g. provide

information about) a concept. Identity of the resource
corresponds to the intension of the represented concept, the set
of all attributes necessary and sufficient for defining that
concept.

As an example of a Web resource we can take a message
posted on a Web discussion group called Dylan. Definition of
that concept, from the context of a Web site that hosts several
discussion groups is "message number 5543 on group Dylan".

Resource Identifier
The identifier should convey the information about

resource's identity, nothing more and nothing less. Today's
common identifier standard for the resources on the Internet is
the Uniform Resource Identifier (URI) [2]. There are two parts
of URIs relevant for differentiating between the resources on
the same site: the path and the query, so most of the examples
in this paper will use URIs reduced to these two parts. The
path consists of strings called path segments delimited by a
slash. Query also has segments: these are delimited by an
ampersand. Each query segment includes a name and
optionally a value, separated by the equals sign. For example,
the URI "/quote/delete?id=3&content-only" is composed of
path segments "quote" and "delete" and two query segments:
one with name "id" and value "3" and other with just the name
"content-only".

The URI is widely exposed to the user and therefore a vital
part of the Web user interface [7]. URIs are typed into the
address bar of the browser, read in documents and advertising,
spoken, remembered and manipulated. The assignment of
specific URIs to the resources on the site and thinking up rules
for mapping URI-subspaces to classes of resources has
become known as the URI design. Important requirements for
a well-designed URI are: meaningfulness, persistence, good
structure, shortness, readability, memorizability, and
pronounceability [12].

A good identifier for the above mentioned resource on the
Web site would be "/group/dylan/message/5543".

Resource Position
Resource's position in the Web site defines its relationships

with other resources on that site. The principle of relating
resources to concepts ties the resource position tightly to its
identity – relationship between resources is similar to
relationships between represented concepts.

Our example resource representing a message is
subordinate e.g. to the resource "/group/dylan" which
represents the discussion group, and also to the home page of
the site. The message 5543 resource is closely related to other
resources such as those representing replies to message 5543,
the author of the message, etc.

Resource Composition
It is useful to regard the Web resource as a composition of

one or more separate, self-sufficient, encapsulated logical
parts. Those parts are called resource components. The

information about which components are included in a specific
resource as well as the relationships between individual
components is called the composition of the resource. Also, a
component has its own identity, embedded in the identity
context of the resource in which the component is placed.

An example Web page representing a message may
contain several components such as: the message text, a list of
replies, and author's photo, all receiving the necessary context
information from the resource identity. If the page
representing a group contains a photo of a "featured" member,
that component should have extra clue on who to display,
since the group's home page identity doesn't point to any
member specifically.

Web Application Architecture
A broad architecture for Web applications used in

UriGraph is shown in Fig. 1.

Web
application

Web
adaptation

system

Web
1

8

Web
client

4

5

3
6

2
7

target
system site

structure

main
module

look
source

content

function-
ality

Figure 1. Web application architecture.

A typical request-response cycle proceeds as follows: (1) a
client sends an HTTP request; (2) resource identifier is
extracted, along with other relevant information from the
request; (3) resource identity, composition and position are
deduced from the identifier and the site structure; (4) the main
module requests content or a transaction for each component
of the resource; (5) content data (e.g. Web page content in
XML format) or transaction outcome is returned; (6) if
appropriate, the content is combined with the "look" of the
resource to increase its readability and attractiveness for the
user; (7) each component's content is combined with its
"component look" (e.g. using XSLT) and all pieces are
arranged into the resulting document (e.g. XHTML) using
resource layout definition; and (8) an HTTP response is
returned to the Web client.

URIGRAPH III.
The model described in this paper starts from the definition

of Web site structure. It is named "UriGraph" because it uses
URI analysis through a directed graph to construct information
about the resource identity, position and composition. For a

formal definition and a more detailed look at UriGraph, see
[12].

The model is composed of three layers. The bottom layer is
called the topology layer, defining the nodes and edges of the
graph. The middle layer defines the rules for analyzing the
resource identifier and is called the request analysis layer. The
top, response synthesis layer, is used to define how the
information is extracted from the request and incorporated in
the response.

Site structure in UriGraph can be clearly presented
graphically and also in special XML grammar.

A. Topology Layer
UriGraph's topology layer is defined as a directed graph

constituting of the set of nodes N and a set of edges E (a
binary relation over N). There are two types of nodes: places
(collected in a set P) and transitions (in set T). There is one
prominent place called the root node (r). Any two nodes may
be directly connected via at most one directed edge in each
direction, but:

• a node cannot be directly connected to itself (E is
irreflexive);

• two places cannot be directly connected;

• a transition can have at most one outgoing edge
connecting it to a place.

For each node n there is a set of destination nodes Dn,
consisting of all the nodes connected to the node n through its
outgoing edges.

Places are depicted as circles, general transitions as wide
rectangles, and edges as arrows. The root node is marked with
a symbol of a house (alluding to home page). An example of
the topology layer is shown in Fig. 2.

t1

t3

p1

p3

p2

p4 t2

t4

t5

Figure 2. An example of the topology layer in UriGraph.

In XML, the structure graph is represented via a
"structure" element containing node-type elements: "place"
element for places, and two for transitions ("path-transition"
and "query-transition" elements). Each node element has an ID
and zero or more "connect-to" elements containing IDs of
target nodes.

Places represent classes of resources containing a single
resource or several similar resources that differ in content, but
not in the way they are represented on the site. Root node is

the home page and transitions mark the analysis of pieces of
information.

1)

B.

1)

Basic Topology Terms
A walk is defined as a sequence of nodes (n1, n2, n3, … , nz)

in which any two consecutive nodes in the sequence are
connected by an edge in the same direction: (ni, ni+1) ∈ N. A
passage through the graph is a walk that begins with the root
node (n1 = r) and ends with a place (nz ∈ P). For example, in
Fig. 2 we can find a total of five unique passages: (p1), (p1, t1,
p2), (p1, t1, p2, t2, p3), (p1, t1, p2, t3, p3) and (p1, t4, t5, p4).

A circuit in the graph is a walk which begins and ends with
the same node (n1 = nz). A graph containing a circuit has an
unlimited number of passages.

Request Analysis Layer
The UriGraph request container holds two sequences, a

sequence of path segments and a sequence of query segments.
The analysis starts at the root node with container filled with
all the segments from the HTTP request and follows the edges
through the nodes, dropping one segment at each transition.
Analysis regularly finishes at some place with an empty
container, thus constructing a passage in the graph. If the
analysis finishes at a transition, the request is said to be
incomplete, and the analysis is considered unsuccessful.

Processing Nodes
Each node in the constructed passage gets processed,

starting at the root node. To process a node means to: (1) take
out one path or query segment from the request container, and
(2) find the next node, append it to the walk and continue the
analysis by further processing it.

Trimming (step 1) happens only in transitions. There are
two types of transitions: path transitions which trim path
segments and query transitions which trim query segments.
Path segments are always trimmed in order they appear in the
URI; query segments can be trimmed in any order.

Graphical representation of a path transition is a parallel-
ogram, side lines resembling the slashes delimiting the path
segment. Analogously, a query transition has curved side lines
resembling parentheses, as in the (name, value) pair. Both are
shown in Fig. 3.

a) path transition b) query transition
Figure 3. Graphical representations of transitions

2) Traversing Nodes
To find the next node in the passage (step 2) one has to

establish which of current node's destination nodes are
traversable. If there is only one traversable node, that node is
taken to be the next node. If there are no traversable nodes, the
request is said to be unprocessable. If there is more then one
traversable node, the request is said to be ambiguous at that
node. If the request is unprocessable or ambiguous, the
analysis is considered unsuccessful and is halted.

Every place is defined to be open (traversable). To
determine if a transition is traversable, a special logical
function called a pass is introduced. A pass evaluates to true
(open) or false (closed) depending on the part of the request
being tested (either the top path segment or any query
segment) and optionally on the state of the analysis (context
information).

Passes are located in transitions. Traversing a transition
includes activating the open passes in the transition. Each
transition directly contains exactly one pass. A pass can be
atomic or composite (composed of other passes). An example
of an atomic pass is the fixed pass, testing if the segment
equals a constant string value. An example of composite pass
is a conjunctive pass, returning true (open) only if all its
subpasses evaluate to true.

The pass of a transition is graphically represented by a text
or other symbols inside the shape representing the transition.
The specific representation depends on the definition of the
pass. By convention, bold text represents the fixed value of the
segment and italic text represents variable value of the
segment (a set of permissible values is hinted by the text, e.g.
"productID").

The XML grammar defines "pass" elements inside the
transition elements. Pass is defined as a Java class whose name
is listed under the "class" attribute. Other attributes and sub-
elements are transferred to the class as parameters. This
technique of defining the pass-specific parameters gives great
flexibility but specific syntax errors remain undiscovered by
the general UriGraph XML scheme. The same technique is
used for describing clues and components (see section C).

3)

C.

1)

2)

Edge priorities
In some cases it is necessary to establish priority relation

(denoted with ">") on the set of destination nodes for some
node n, defining the order of testing traversability and
selecting the next node in the analysis.

If the set of traversable nodes has multiple elements, the
node with the highest priority is chosen. The set of nodes with
the highest priority in Dn is defined as the set of all nodes for
which no other node in Dn has higher priority. However, there
still remains the possibility that no nodes are traversable
(unprocessable request) or that two or more traversable nodes
have the highest priority in the set (ambiguous request).

This paper uses the HNL model of priority markings when
assigning priorities to edges. Each marking is a string of letters
'H' (representing high value of priority), 'N' (normal) and 'L'
(low priority). We can define the set of priority letters S = {'H',
'N', 'L'} on which a priority relation ">" is defined so that 'H' >
'N' > 'L'.

A HNL priority marking is an n-tuple of priority letters p =
(a1, a2, a3 ... an) – a string. Any marking can be extended by
appending an arbitrary number of priority letters 'N' without
changing its priority level. For any two non-equivalent
markings the priority relation is determined by the difference
in the priority level of the first letter at which they differ.

Note the three characteristics of this model: (1) there is a
default priority, equivalent to "N"; (2) any priority marking
can be extended to create higher or lower priority; and (3)
there are always some priority markings whose priority is
between any two different markings.

In graphical representation, the priority marking is placed
near the arrow end of the edge it refers to in a visually
unambiguous way (like on Fig. 7). No marking indicates
default (normal) priority. In XML, the HNL priority marking
is placed in the node's "connect-to" element as the value of
"priority" attribute. The default value is "N" (normal priority).

Response Synthesis Layer
The top layer of the UriGraph model provides mechanisms

for including the information retrieved from the analysis in the
response – the response synthesis. The response contains the
identity and the composition of the resource identified by the
request.

The information in the response synthesis layer is usually
not presented graphically, to avoid cluttering the picture with
too much detail. If, for some reason, the clues and components
need to be shown, they should be put in a callout, outside the
node symbol.

Clues
To describe the identity of a resource, UriGraph defines

clues, elementary pieces of information corresponding to the
general attributes of the concept that the resource represents.
Clues can be located in passes: each pass has its set of clues.
Clues are collected while traversing transitions during the
analysis. A clue is only collected if the containing pass was
activated. This also applies to activated passes which were part
of a composite pass. The set of collected clues at the end of
synthesis represents the resource identity.

The XML grammar defines "clue" elements inside "pass"
and "component" elements. They too can have a variable list
of attributes, depending on the class definition.

Components
The composition of a resource is a set of components.

Components are also collected during the analysis, but they
reside in the places, rather than transitions. Each place in the
graph has a (possibly empty) set of components.

Each component can be associated with two properties
determining its inclusion into the composition: localness and
inheritability. A local component is included in the response if
the passage ends in the place it resides. An inheritable
component is included if the place where it resides is in the
passage, but not as the last node. Note that any component
may carry both properties.

Components have their identity which contains the
resource's identity. The difference may be in components'
extra clues, which are assigned to the components themselves.
So, each clue in the graph is located in clue set which is
assigned to either a pass or a component in the graph.

The XML element "component" located at "place"
elements is used for describing each component. Component
element can also contain "clue" elements.

STRUCTURE PATTERNS IN URIGRAPH IV.

A.

To illustrate the definition and use of UriGraph and also to
give some insight into Web structuring issues, this section
defines and discusses some Web site structure patterns.

Simple Topology Patterns
These patterns are all defined in the topology layer, i.e. in

terms of places, transitions and edges. Most of them are
schematically shown in Fig. 4.

CASCADE STRING OF
CASCADES MULTICASCADE SPLIT

CASCADEFORK

Figure 4. Some simple topology patterns.

1)

2)

Cascade
The simplest pattern of connecting nodes in UriGraph is

called a cascade and it involves two distinct places p1 and p2
connected via a transition t with two edges: (p1, t) and (t, p2).
Such cascade is marked C(p1, t, p2).

A simple XML description limited to the topology layer of
the graph containing a single cascade:

<structure root-id="p1">
 <place id="p1">
 <connect-to id="t" />
 </place>
 <path-transition id="t">
 <connect-to id="p2" />
 </path-transition>
 <place id="p2" />
</structure>

A string of cascades is a tuple of two or more cascades in
which the next cascade starts with the same place where the
previous ended. For example, C(p1, t1, p2) and C(p2, t2, p3)
make a string of two cascades.

A fork is a tuple of two or more cascades, each starting
with the same place and ending in different places, such as
C(p1, t1, p2) and C(p1, t2, p3). It is a straightforward way to
implement a hierarchy between resources.

Multicascade
A multicascade is a variation of a cascade containing a

chain of two or more transitions between the two places.

The main difference between a string of cascades and a
multicascade is that in multicascade each transition in turn
must be traversed in order to construct a passage. Failure to do
so results in labeling the request incomplete or unprocessable
and application may find it hard to recover from these
conditions.

Sometimes, the functionality of a multicascade should be
implemented with a single cascade containing the combined

information of all cascades, eliminating the problem of
creating broken URIs by hacking off segments of a good URI.
Example of such a transformation is shown in Fig. 5. A branch
containing images of the site has a simple structure, but no
general resource "/image". A better design is shown on the
right, replacing URIs in form "/image/345" to "/image-345".

image

ID

image-ID=>

Figure 5. Replacing image multicascade with a single cascade.

An XML description of multipart pass used to combine the
fixed and variable values into a single path transition on the
right of Fig. 5 is shown here:

<pass class="MultipartPass" delimiter="-">
 <pass class="FixedPass" value="image"/>
 <pass class="ImageIdPass">
 <clue class="ImageIdClue"/>
 </pass>
</pass>

3) Split Cascade
A split cascade is a set of cascades sharing both places, e.g.

C(p1, t1, p2) and C(p1, t2, p2).

A split cascade with several fixed value transitions can
replace a single transition with variable value. This is a simple
example of an expanded site structure being defined either in
the site structure definition or in the site content (see also
section B.3)). Example in Fig. 6 illustrates the alternatives: one
can either code each value as a separate transition in the split,
or make one pass examine the allowable values.

bluered color

Figure 6. Split cascade and cascade with variable value transition.

4) Loop
Since no node can be connected to itself, the smallest

circuit in the graph is a simple pattern involving a node double
connected to a transition, i.e. E contains both (n, t) and (t, n)
pairs. It is called a loop.

A loop is often used with the query transition. If a query
segment is optional, the analysis should proceed from the same
place with or without that segment. Query transition has
higher priority than the path transitions between the
destination nodes because it needs to be processed earlier. Fig.
7 shows an example of loop use – a clue modeled by a query
segment "help" added to the URI to include detailed
explanations of options on some Web page (on-screen help).

 </translation>

H

help

 <translation lang="EN">
 <pass class="FixedPass" value="city"/>
 </translation>
</pass>

2) Limiting the Number of Traversals
Figure 7. A simple loop example. Each circuit in the graph provides a way to model an

unlimited number of passages through the graph. The number
of passages may be limited using a pass called the traverse
limit pass. Each such pass has a limit (a positive integer) and
an assigned counter. Each time a transition is processed and
traversed, a counter is increased by one. When the counter
reaches the defined limit, it closes.

B.

1)

Simple Analysis Patterns
Analysis patterns in UriGraph focus on the

implementations of various useful types of passes and their
constructions.

Multilingualism Traversal limit pass is depicted with a formula Tc ≤ L,
where c is an integer identifying the counter used and L is the
limit. It is implemented as the "TraverseLimitPass" class with
XML attributes "counter" and "limit".

An important aspect of Web site design is multilingualism,
the property of the site to provide parallel content in multiple
languages, while keeping the structure and any other part of
site definition that does not depend on the chosen language
defined only once. Sites with multilingual content only rarely
have multilingual URIs. However, the language in which the
URI is written is crucial to its meaningfulness, readability,
memorizability, and pronounceability.

Notice that several traverse limit passes may share the
same counter. When the counter is increased in one pass,
another may close. This can be useful in cases when several
transitions are alternatives. Graph in Fig. 9 shows an example
of two alternative query segments that serve as switches for
the entire site. The "content" transition includes a clue that
signals the Web server not to transform the content using a
stylesheet, skipping steps 6 and 7 from the section II.C. The
other, "printable" transition signals the use of a special
stylesheet for creating "printer-friendly" page renderings.
These two switches are obviously incompatible and therefore
modeled as alternatives.

UriGraph's implementation of multilingual URIs consists
of a composite language pass and a built-in languages clue. A
languages clue containing the set of all the languages that the
site uses is added to the response container at the start of
analysis. Whenever traversing a transition depends on the
language of the segment, a language pass is used to filter
through only the language(s) that apply. If the current
languages clue does not contain any of the specified
languages, that pass evaluates to false (closed).

HH

11 ≤T content11 ≤T printable

Take for example graph on Fig. 8. It consists of a string of
cascades with multilingual passes in Croatian and English.
Path "/city/Vienna" is allowed, but "/city/Bec" is not. The
reason is that first transition is traversed with segment "city"
and the languages clue is reduced to contain only the English
language. The second transition is not traversable because
there is no city called "Bec" in English in the content of the
site, although there is one in Croatian.

Figure 9. An example of alternative query segments.

The XML definition of the "printable" query transition is
shown below. The "ControlClue" clue communicates to the
Web server not to transform the content using the resource
look (to skip steps 6 and 7 in Fig. 1).

grad
city

cityName

<query-transition id="printable">
 <connect-to id="root" />
 <pass class="TraverseLimitPass"
 counter="printable-and-content"
 limit="1" />
 <pass class="FixedPass" value="printable">
 <clue class="ControlClue" key="no-transform" />
 </pass>
</query-transition>

3) Semi-structured Site
Sometimes, a function of a pass depending on content data

can replace a part of a graph, as in section A.3). Therefore,
that part of the Web site structure is more defined by its
content than by the fixed structure definition in UriGraph. This
phenomenon could be called a semi-structured site, and the
content of such a site is often itself semi-structured data.

Figure 8. An example of multilingual passes.

As you can see from the Fig. 8, a multilingual clue is
depicted as text in multiple lines, in the globally defined
language order. Language pass is implemented in the class
called "LangPass". XML element defines subelements called
"translation". Each translation element contains a language-
specific pass. Description of the pass in the first transition is
shown here:

As an extreme form of structure located in the content, Fig.
10 shows a loop with a path transition and a loop with a query
transition. Transitions contain complex passes that determine
the URI interface from the content. Clues in the passes carry
over the string values of the segments. The place has a single

<pass class="LangPass">
 <translation lang="HR">
 <pass class="FixedPass" value="grad"/>

component that creates the whole composition for each
resource based on the values of the segments.

H

querySeg pathSeg

Figure 10. An extreme example

4) Parallel Walks
Parallel walks through the graph are the ones that have the

same starting and finishing nodes, but different nodes in-
between.

For example, the original site of a daily newspaper had a
single cascade denoting the date of the issue, with a pass
allowing dates formatted as "mm-dd-yyyy". Later was decided
to provide a string of cascades "year", "month", and "day" to
group the issues by year (like "/2002") and month
("/2002/11"). The expansion was simple: a string of three
cascades with special passes as shown on Fig. 11.

year

month

day

mm-dd-yyyy

Figure 11. Two parallel walks

Note that the old URI "/11-01-2002" still works, and also
its equivalent "/2002/11/1". There is no canonical URI and
there is no redirection.

5)

C. Web Transactions
Altering the data in Web site content is referred here as a

Web transaction. The site structure needed to facilitate a Web
transaction should in general conform to this pattern:

• a Web page with HTML form which can generate an
HTTP POST request;

• an operational resource which performs the transition
but doesn't return an HTTP entity, but a "303 See
Other" response code redirecting to a post-transaction
page;

• a post-transaction Web page displaying a short
description of session status on top of the page
followed by "normal" page contents.

A detailed structure for displaying and processing
messages from the discussion group is shown on Fig. 12.
Resource 1 is representing all messages, resource 4 a specific
message (e.g. "12"), and resource 5 a selection of messages,
either a range (e.g. "?from=1&to=9") or a enumeration (e.g.
"?id=2&id=5&id=3"). Resources 2 and 6 contain a form
component used to enter or alter the message data. Resources
3, 7, and 8 are operational.

1

IDnew create

32 4

updateedit

6 7

delete

8

from = fromID

to = toID

5

id = ID

H

Figure 12. Structure for displaying and processing messages.

Most operations (creating, updating and deleting a specific
message), as well as displaying the message data, are done by
a "message" component located at places 3 (local) and 4 (local
and inheritable). A "message selection" component is located
at place 5 (local and inheritable). It displays a list of messages,
and can also delete several messages at once, using the same
"delete" clue. The "message form" component is located at
places 2 and 6, and displays the empty (for new messages) or
pre-filled form (for editing the existing message).

Shortcuts
It is essential that URIs exposed through the "non-hyper"

media are kept short [11]. On the other hand, well-structured
URIs are sometimes relatively long, so a "shortcut URI" may
be useful.

A typical example is a shortcut to a popular product. Some
company's ice cream IceKing is located at "/iceking", which is
a mere shortcut to a more verbose
"/product/icecream/iceking". A shorter URI may be publicized
(e.g. on TV commercials) and then those URIs would be
redirected to their respective "full" identifiers.

Session info component indicating the status of the last
transaction is inheritable and located in the resource 1, so
every resource will have it. Often this component will display
the same information regardless of the resource it is a part of,
because it doesn't have to depend on any of the resource
identity. UriGraph implementation may consist of a single path

cascade attached to the root node, with a pass that reads a list
of shortcuts from the content. Alternatively, the cascade may
be replaced by a split containing the shortcut segment values
in the graph, as in section A.3). Each transition in the split
carries a clue with the "full" identifier, and the place contains a
component issuing a "301 Moved Permanently" response
status code.

An example of a Web transaction is the creation of a new
message on a discussion board. Data is entered using a form
on a Web page ("new"), an operational resource ("create")
receives the data and redirects back to the form if the data is
incorrect. The form will now display additional session
information instructing the user how to correct the input data.
If the data is correct, a new message is created and the browser
is redirected to the resource representing that message (e.g.

"33"). The page will display "You successfully created a new
message shown here" and the message itself.

V.

VI.

VII.

VIII.

RELATED WORK
The term "Web site structure" has often very different

meaning than the one used in this paper. Sometimes it is
synonymous to content data structure (such as entity-
relationship diagram) or the site navigation scheme. There are
numerous models and methodologies directly or indirectly
designed for the modeling Web site structure in a broad sense,
raging from the ones used in commercial applications to
experimental and purely academic. Some inspiring but rather
unrelated approaches to UriGraph include OOHDM [10] and
Strudel [4].

The classic model for structuring Web sites is used in all of
today's popular Web servers like Apache and Microsoft
Internet Information Server. It is mainly based on the file
system and partially on simple configuration data (e.g.
redirection URIs). Resources are implemented as files, either
passive (returning the content of the file) or active (returning
the output of the program stored in the file). A similar
approach may be found in Oracle's Internet Application Server
(iAS) [9], where the underlying system is the relational
database and the active resources are stored procedures. These
two models depend on the underlying system (file system or
database server) and project its identifiers (directory and file
names or procedure names).

There are some approaches that concentrate on resource
position modeling. The Structured Graph Format (SGF) [6]
integrates the strict hierarchical (tree) organization with the
free network model. A similar approach can be seen in the
SiteBrain model [13].

The resource composition is efficiently modeled with
WebML [3]. The specification of a site in WebML consists of
four orthogonal perspectives that include the structural model
(expressing the structure of the data content of the site) and the
hypertext model. The hypertext model is further divided into
the composition model that provides a number of built-in
components (called "units") and the navigation model that
expresses the links between pages and components. Especially
important are the "contextual links", transferring identity
information from one component to the other.

A different composition model is included in Oracle Portal
(a part of iAS) [8]. Its components are called portlets, and they
are modeled as programming components conforming to a
specified API.

Most models mentioned here are incomplete. They usually
limit themselves to Web pages and leave other types of
presenting and all operational resources to be handled by the
classic model. Many are also detached from the Web server
leading to discrepancies between the design and deployment.
Most models also fail to cover some important aspects of Web
site design such as Web transactions or multilingualism.
However, those and other issues [5] are currently being
identified and addressed.

CONCLUSION AND FUTURE WORK
It may be noted that the above models model only one or

two aspects of Web site structure, and cannot provide the
complete coverage. This is mainly because those models are
effectively forced on, and not natural to the Web. Most of
them do not appreciate the importance of URI design, nor
resource identity.

UriGraph can be used to describe the structure of any Web
site, but it is especially intended to be used as a blueprint for
larger, even enterprise-sized Web applications. It is a tool for
software engineers and some of its features can only be
exploited through programming.

Future work on UriGraph may include a better deployment
platform (a UriGraph-enabled Web server) for further testing
and experimenting. It would be useful to have a graphical tool
for designing and maintaining structure graphs, especially a
feature for securing the backwards-compatibility of structure
(identifier persistence [1]). An adequate position model needs
to be developed, since the current resource position may only
be deduced indirectly, via resource identity.

 ACKNOWLEDGMENTS
Thanks to my coworkers at the University of Zagreb which

worked with me on several projects leading to UriGraph,
especially Maja Matijasevic and Marko Topolnik for detailed
reviews and suggestions.

 REFERENCES
[1] Berners-Lee, T. Universal Resource Identifiers – Axioms of Web
Architecture. W3C Design Issues, December 1996,
http://www.w3.org/DesignIssues/Axioms.html
[2] Berners-Lee, T., Fielding, R., and Masinter, L. Uniform Resource
Identifiers (URI): Generic Syntax and Semantics. RFC 2396, August 1998,
http://www.ietf.org/rfc/rfc2396.txt
[3] Ceri, S., Fraternali, P., and Bongio, A. Web Modeling Language
(WebML): a modeling language for designing Web sites, 9th International
World Wide Web Conference, May 2000, Amsterdam, The Netherlands,
http://www9.org/w9cdrom/177/177.html
[4] Fernandez. M. F. et al. Overview of Strudel - A Web-Site Management
System. Networking and Information Systems 1(1), pp. 115-140, 1998.
[5] Gu, A., Henderson-Sellers, B., Lowe, D. Web Modelling Languages:
the gap between requirements and current exemplars. AusWeb02, July 2002,
http://ausweb.scu.edu.au/aw02/papers/refereed/lowe/paper.html
[6] Liechti, O., Sifer, M. J., and Ichikawaielsen, T. Structured graph format:
XML metadata for describing Web site structure. 7th International World
Wide Web Conference, August 1998, Brisbane, Australia,
http://www7.scu.edu.au/programme/fullpapers/1853/com1853.htm
[7] Nielsen, J. Designing Web Usability: The Practice of Simplicity. New
Riders Publishing, Indianapolis, 2000, http://useit.com/jakob/webusability/
[8] Oracle Portal Center, http://portalstudio.oracle.com
[9] Oracle9i Application Server, http://www.oracle.com/ip/deploy/ias
[10] Schwabe, D., Rossi, G. The Object-Oriented Hypermedia Design
Model. Communication of ACM, 38(8), 1995, pp. 45-46.
[11] Simic, H. Application of UriGraph to Uniform Resource Identifier
Design. CARNet User Conference 2002 Proceedings, Zagreb, Croatia,
September 2002, http://www.tel.fer.hr/users/hsimic/cuc2002
[12] Simic, H. Modelling of WWW site structure. Master's Thesis, Faculty
of Electrical Engineering and Computing, University of Zagreb, Croatia, May
2002 (In Croatian), http://www.tel.fer.hr/users/hsimic/magisterij.pdf
[13] The Brain, http://www.thebrain.com

	Introduction
	Web Site Structure
	Web Application Ingredients
	Web Resource's Structural Qualities
	Resource Identity
	Resource Identifier
	Resource Position
	Resource Composition

	Web Application Architecture

	UriGraph
	Topology Layer
	Basic Topology Terms

	Request Analysis Layer
	Processing Nodes
	Traversing Nodes
	Edge priorities

	Response Synthesis Layer
	Clues
	Components

	Structure Patterns in UriGraph
	Simple Topology Patterns
	Cascade
	Multicascade
	Split Cascade
	Loop

	Simple Analysis Patterns
	Multilingualism
	Limiting the Number of Traversals
	Semi-structured Site
	Parallel Walks
	Shortcuts

	Web Transactions

	Related Work
	Conclusion and Future Work
	Acknowledgments
	References

