
Prospects of encoding Java source code in XML
Hrvoje Simic and Marko Topolnik

Department of Telecommunications, FER
University of Zagreb

Zagreb, Croatia
{hrvoje.simic, marko.topolnik}@fer.hr

Abstract—Currently, the only standard format for representing
Java source code is plain text-based. This paper explores the
prospects of using Extensible Markup Language (XML) for this
purpose. XML enables the leverage of tools and standards more
powerful than those available for plain-text formats, while
retaining broad accessibility. The paper outlines the potential
benefits of future XML grammars that would allow for improved
code structure and querying possibilities; code extensions,
construction, and formatting; and referencing parts of code. It
also introduces the concept of grammar levels and argues for the
inclusion of several grammar levels into a common framework. It
discusses conversions between grammars and some practical
grammar design issues.

Keywords—XML, Java, source code, parsing, code formatting

I.

II.

A.

B.

INTRODUCTION
The goal of this paper is to explore the opportunities gained

by representing Java program in XML format instead of plain
text. We shall focus on an alternate format for Java source
code, although most of the issues brought up are relevant to a
wide spectrum of classical programming languages, such as C,
C++, Pascal, or Smalltalk.

This paper regards Java as a programming language
syntactically and semantically defined by the Java Language
Specification, 2nd edition [1]. However, there are additional
syntax and semantics specifications in wide use which are not
defined in this document. Some of them are only informal and
are referred to as code conventions—like rules for indentation
and identifiers. Others are quite formal and precise, like rules
for Javadoc comments and Java Beans method identifiers.
Though commonplace and fused with the language, they are in
fact extensions to it, defining semantics where it was left
undefined. These extensions will not be regarded as part of the
Java language in the context of this paper.

This paper continues with the overview of benefits of future
XML grammars that would allow for improved code structure
and querying possibilities; code extensions, construction, and
formatting; and referencing parts of code. The third section
discusses some issues encountered when designing such
grammars. A section on related work follows. The paper ends
with the conclusions and ideas for future work.

BENEFITS OF JAVA IN XML

Structure
The basic shortcoming of the plain text format is its

"flatness", the absence of almost any explicit structure. A free-
form plain text document represents a series of tokens, where

every token is a simple character string. Any structure required
by the programming language has to be coded into the
relationships between such tokens. This structure becomes
apparent only after a rather sophisticated process of parsing.
The XML document model has inherent hierarchical structure
easily designed to accommodate Java source code constructs.
XML Schema [2], [3] is a standard language for defining rules
that an XML document has to follow. Using a schema
definition, any general tool that understands XML Schema can
check the syntax of such a document, which may cover a
significant portion of the language definition.

XML's hierarchical data model may be used to build a tree-
like representation of code. The complexities of low-level
source code constructs can then be hidden under a general
header or description. Structured and appropriately marked-up
code may also be easily presented with certain aspects of code
hidden, e.g. code without comments, or comments without
code; only the public interface, or only method headings
without implementation.

XML grammar facilitates the design of a tree-formed GUI
editor of code, instead of blank-paper-like textual document.
These editors may improve developer's efficiency, reduce the
necessity for remembering syntax rules, and enhance code
quality. Still, such an approach is often associated with a rigid,
compact user interface that does not allow writing code in a
free-flow, syntactically unrestricted way the developers are
accustomed to. It is our belief that such programs can be as
unrestricting as any of today's popular code editors when used
for normal code editing. However, unusual and less meaningful
operations on code (e.g. deleting a single end-of-comment
mark with the result of reshuffling the entire code structure)
may be difficult to do in such an editor.

Code structure can be used to distinguish major from minor
steps in an algorithm. This information can be used to automate
logging and improve debugging. With traditional text files, this
kind of information is added as redundant comments and log
statements, making the code tedious to write and error-prone.

Queries
The quality of source code querying is essential to

developers. Good queries should reflect the structure, be
intuitive to construct and easy to read. They should also be able
to return entire Java structures, not just character strings or
primitive values.

Prospects of querying code in plain text format are quite
limited. Simple textual search is not very powerful and other
text-based technologies like regular expressions are too
unintuitive and complex. Popular IDEs include Java-specific

search tools that usually allow searching for classes, field
definitions, variable references, etc. Although useful, these
features present only a small portion of queries needed by
programmers or other programming tools.

XML provides a variety of useful standards and tools that
facilitate construction of quality queries on Java code in XML.
To illustrate, we present several typical examples on a
hypothetical grammar. The query "find all public fields of the
class C" could look like this in XPath [4]:

//class[@name='C']/field[@access='public']

The query "find all if statements in which the test contains a
reference to the variable x" could look like this:

//if[test//var-ref/@name='x']

The query "list names of all classes that contain calls to
method named m" could look like this:

//class[.//call-method/@name="m"]/@name

The XQuery technology [5] can be used to generate reports
from code in XML. The query "count all literal values in code
by type" could look like this:

for $type in distinct-values(//literal/@type)
return
 <literal-count>
 {
 $type,
 count(//literal[@type = $type])
 }
 </literal-count>

C.

1)

2)

3)

4)

5)

Extensions
In plain-text source, structure is deduced from the

sequential relationship between tokens. Inserting a token
anywhere in the sequence disrupts this structure. This makes it
impossible to simply embed additional data about the code that
the parser can process normally, but the compiler can ignore. In
most cases, the only way is to specifically mark such data as a
comment, ignored by the parser. In XML, since all structure is
explicitly marked up, inserting additional elements into the tree
does not disrupt it. XML facilitates this approach further
through the technology of XML Namespaces. Every element
and attribute can be marked as belonging to a certain
namespace. On the other hand, every tool defines its unique
namespace and processes only the nodes belonging to it. This
makes it easy to introduce orthogonal extensions to any XML
document type—extensions invisible to the primary tool using
the document.

The idea of orthogonal extensions is very important in the
context of software development and has been applied to the
traditional source file format even though it had to cope with its
severe limitations. This section will give an overview of useful
orthogonal extensions.

There are many orthogonal extensions which are not
application-specific. For example, information about the
document: time of creation and last modification, original
author, authors of modifications, copyright information etc. In
XML, a vocabulary for this kind of information has already
been defined and is called Dublin Core. It can be applied with
no further work to any XML document and it will be processed
by general tools handling Dublin Core data.

Annotations, clarifications and other comments

As their name indicates, the original intention behind the
support for comments in plain-text source was to allow the
embedding of annotations, clarifications and other types of
comments about the code. Any new coding format should
retain such a general facility, but can add more semantics. For
example, the part of code to which a comment pertains can be
explicitly specified. Also, a comment could be typed, indicating
what kind of role it plays—is it a programmer's clarification, a
to-do item, an annotation from a reviewer etc.

Versioning and revision tracking

Version information pertains to the whole document,
whereas revision tracking can be made more fine-grained and
changes can be tracked for each node separately. Such an
approach could enable a single file to contain any number of
code versions. This would reduce file clutter, simplify code
maintenance and enable more powerful analysis of the
evolution of a code module.

Access control

When a module is being edited by several developers, they
usually have different roles in the development. For example,
one developer could design object interfaces and another could
develop interface implementations. The development process
would benefit if information about such roles and their
associated access rights is embedded into source code.

A special role in code development is played by a reviewer.
The support for such a role involves the support for access
control, annotations, and tracking of changes. A reviewer is not
allowed to edit any part of code, but can add annotations and
propose changes to the code. The primary developer can later
analyze the annotations and accept or reject the proposed
changes.

Documentation

The placement of the documentation about a code module's
functionality and internal details together with its code has
many advantages. The documentation always accompanies the
code and is therefore always accessible. Some aspects of
consistency between code and documentation are automatically
maintained because there is always a unique location where the
documentation has to be placed. The code element that the
documentation refers to is guaranteed to exist and if the
element is relocated, the documentation follows it.

Temporarily inactive code

Sometimes a part of code becomes redundant, obsolete, or
broken so it becomes necessary to exclude it from compilation
without erasing it completely, but rather marking it as inactive.
This has been traditionally done by surrounding that section of
code with block comment delimiters or prefixing each line with
a line comment marker. This technique is known as
"commenting-out", and it is a source of many complications,
such as distinguishing it from other types of comments and
treating nested comments. Commented-out code is not checked
for syntax, which may be occasionally desirable.

Another technique using the idea of inactive code is called
conditional compiling. Typically, parts of code are provided for

testing and debugging purposes and have to be deactivated in
the release version, but are kept for reuse in the next
development cycle. The conditionally-compiled blocks are
usually scattered throughout the code and they are all activated
or deactivated at once. This calls for a richer model in which
the code section's active/inactive status is computed before
compilation.

D.

E.

F.
III.

A.

Format
Majority of program languages, including Java, ignore the

semantic value of whitespace, identifiers, and several other
human-oriented features of code, leaving the programmer to
invent or adopt various code formatting conventions.
Whitespace conventions are vital to visualize the inherent
structure of the code. Semantically, this formatting is
completely decoupled from the true structure of the code. Thus,
an error in source code formatting can result in bugs that are
very hard to locate because of the suggestive nature of
formatting, which is irrelevant to the parser.

It is difficult to enforce and maintain a consistent coding
style across the organization and over longer periods of time.
Using an XML grammar which abstracts at least some aspects
of coding style effectively eliminates that problem. When
reconstructing plain text source code from XML, any
formatting style preferred by the reader can be applied.

XSLT [6] may be used to transform source code in XML
into popular XML display formats such as XHTML [8] (for on-
screen presentation) or XSL/FO [7] (for printing on paper).
These rich formats may improve readability by introducing
various layouts, fonts, colours, linking, etc.

Referencing parts of code
In plain text, a part of code is usually referenced by its

position inside the file. For example, the Java compiler reports
a compile-time error with a reference to the line and column
number. The referenced position in the source file indicates a
token relevant to the error. The problem of this approach is that
the programmer has to deduce from the single token which
code construct is in error.

Since a Java program is a hierarchical structure of code
constructs, they may be referenced through the XML nodes
representing them. This works equally well for low-level (such
as literals and method parameters) and high-level constructs
(like methods and classes).

Construction
Advanced code editors have tools for quick code

construction in the form of templates. Templates are usually
just fragments of code with context-specific parts left out. The
user inserts the predefined fragment in its code and fills in the
blanks. Once inserted, the constructed code is detached from
the template definition. The template itself cannot be checked
for syntax because it is usually incomplete code. Also, template
code format does not usually match the format of the
destination code.

XML code may be formed using templates in XSLT,
providing greater power and flexibility. XSLT template
transforms data specific to that template into Java code in some

XML grammar. The constructed code may be linked to the
template definition, so that the destination code may be
reconstructed every time the template definition is updated.
Template could be checked for validity, since every
placeholder has declared type, as could the input data. And,
with separation of code formatting, transformation may be
generally invariant to code styles.

To illustrate, we present an example with a typical template
for the equals method. Template's input data consists of one
Boolean expression and the name of the variable used in the
expression containing the other object. Target class name is
extracted from the context (the class where the method is
inserted). Variable parts of the template—the placeholders—
are shown in italic:

public boolean equals(Object o)
{
 if (!(o instanceof TargetClass))
 return false;
 TargetClass targetVar = (TargetClass) o;
 return booleanExpression;
}

Input data is also formatted in XML. In our example, the
class Complex represents complex numbers, in which equality
is calculated as equality between the real and imaginary parts.
The data is contained in an appropriately named element placed
in the class definition.

<equals-method varname="z">
 <and>
 <equals>
 <field-ref name="re" />
 <field-ref name="re">
 <var-ref value="z" />
 </field-ref>
 </equals>
 <equals>
 <field-ref name="im" />
 <field-ref name="im">
 <var-ref value="z" />
 </field-ref>
 </equals>
 </and>
</equals-method>

The transformation produces the XML code equivalent to:
public boolean equals(Object o)
{
 if (!(o instanceof Complex))
 return false;
 Complex z = (Complex) o;
 return (re == z.re) && (im == z.im);
}

More complicated templates may be used to enforce Java
design patterns (e.g. a typesafe enum pattern [7]).

DESIGN ISSUES
This section tries to give some insight into the process of

designing a successful XML grammar for Java. We introduce
important concepts of grammar levels and grammar and format
conversions. Issues of describing type and code inactivity are
given to illustrate more detailed design.

Grammar levels
XML had sprung from the essential need in complex

information systems for separating content from presentation.
The principal problem of designing a useful grammar is this:
where to draw the line between content and presentation in

Java source code? Certain aspects of source code can be
considered as content in some applications and as presentation
in others. In this paper, we call XML grammars following the
latter approach higher level grammars.

The typical approach present in related projects (JavaML,
cppML, srcML being the clearest examples) is to propose a
single XML grammar for source code and argue its benefits. In
our view, it makes sense to specify several grammar levels and
include them all in a common development framework. This is
especially true in the context of transition from traditional plain
text to XML.

1)

2)

3)

B.
1)

2)

Preserving original code

In one extreme, we can postulate that source code is all
content and that the exact sequence of characters making up the
source code is to be preserved in the XML document. This
approach does not force the author of code to change their
routine and still brings important improvements over the plain-
text source (like in srcML [15]). The most straightforward
grammar design following this approach uses XML tags to
markup existing code. For example, the Java statement:

public static String s;

may be marked-up like this:
<field-declaration><access>public</access>
<static>static</static> <type>String</type>
<name>s</name>;</field-declaration>

Each relevant syntax element is marked-up with appropriate
element. Transforming the XML to original source code
involves just the simple matter of removing markup. The
disadvantage of this approach is that all whitespace in such an
XML document is part of content, which leads to problems
with presenting and editing it. To remedy the situation, a
special element (e.g. "text") may be introduced to cover all
otherwise unmarked-up characters forming the original source
code, but with the cost of code clutter:

<field-declaration>
 <access>public</access>
 <text> </text>
 <static>static</static>
 <text> </text>
 <type>String</type>
 <text> </text>
 <name>s</name>
 <text>;</text>
</field-declaration>

Taking a different approach, some grammar designs may
allow losing some information about whitespace, such as line-
trailing whitespace and tab/space differences, which are
frequently discarded in code editing software. Further
relaxation of criteria leads to preserving only the line and
column at which the statement or other Java structure starts in
the source code, possibly losing some whitespace between
words, like in CppML [11].

Enforcing coding conventions

The second, higher-level Java XML grammars are those
that abstract the original Java source syntax, leaving out the
aspects usually regulated by coding conventions. They may
therefore lack the information about code presentation, i.e.
formatting styles such as whitespace or identifier construction
(as described in section II.D). They may also exclude some bad

or unnecessary coding options, thus improving the overall code
quality.

Semantic enhancements

Further abstracting the Java code details and approaching
the developer's view of program leads to adding information to
the XML formatted code rather than removing it. This
information enhances the code semantic, allowing it to be
better understood and manipulated on a higher level, especially
on the level of human reasoning.

One simple enhancement may be grouping statements in
logical clusters usually indicated with vertical spacing. The
comment at the beginning of such a cluster usually refers to the
whole cluster and not just the following statement. A complex
enhancement may be marking a class as immutable.

Format conversions
Converting existing plain text code to XML

Low-level XML grammars for Java source code are closer
to Java plain text format, and the conversion is quite
straightforward. However, conversion to higher-level
grammars poses a lot of questions concerning the author's
intent [10], [15]. If the code is not carefully formatted, the
answers to these questions may not be apparent even to a
human reader. Therefore, direct conversion from plain text
format to higher-grammar XML format is challenging and in
most cases not worthwhile. The target use for higher-level
grammar Java code is to acquire it directly from the code
author and not via lower-level formats.

Converting source code in XML to plain text

While low-level grammar XML code (which preserves
original formatting) is easy to convert to plain text format by
definition, transforming higher grammar XML code requires a
code-style template. Definitions of such templates should not
include the rules for constructing Java syntax because they are
style-invariant. However, such decoupling the style rules from
syntax rules may be challenging.

Standard code formatting features like indenting, identifier
case formatting and line spacing that are common to all code-
style templates and yet challenging to implement in XSLT
should also be omitted from the individual code-style
templates. A possible solution is to design a special language-
independent, code formatting XML grammar to use as a
mediator when transforming code from XML formats to plain
text. This is an example of a piece of code marked-up with
such grammar:

<section before="1" after="1">
 <line>private Suit(</line>
 <section indent="1">
 <line>String name</line>
 </section>
 <line>)</line>
 <line>{</line>
 <section indent="1">
 <line>this.name = name;</line>
 </section>
 <line>}</line>
</section>

The resulting plain text source should be:
private Suit(

TABLE I. FIVE DESIGN SOLUTIONS FOR DESCRIBING JAVA TYPES "INT"
AND "INT[][]" IN XML.

 String name
)
{
 this.name = name; a) attribute with Java

type name
type="int"
type="int[][]"

b) subelement with name
and optional dimensions
attributes

<type name="int" />

<type name="int"
dimensions="2" />

c) recursive subelements
containing component
types for arrays

<type name="int" />

<type name="[]">
 <type name="[]">
 <type name="int"/>
</type></type>

d) attribute "is-array"
(default false)
distinguishes arrays

type="int"

is-array="true" element-
type="int" dimensions="2"

e) special value "[]" of
attribute "type" is used to
denote arrays

type="int"

type="[]" element-type="int"
dimensions="2"

}

3)

Figure 1.

C.

Conversion between XML grammars

An overview of conversions between various formats and
grammars mentioned in this paper is given in Fig. 1. Natural
course of conversions is from higher-level to lower-level
grammars.

semantically
enhanced

grammar(s)

hi
gh

er
 le

ve
ls

custom
coding style

presentation-
free

grammar

intermediate
formatting
grammar

D.

universal syntax
construction rules

lo
w

er
 le

ve
ls

Denoting inactive code original-
preserving
grammar

plain-text
formatted

source code
To denote (in)activity (as described in section II.C.5),

relevant elements constituting code could simply be assigned
an active/inactive status. Each element has an optional active
attribute defaulting to true. Marking an element as inactive
automatically inactivates all containing elements, so an element
representing an active piece of code must have all super-
elements marked active. The value of this attribute would not
prevent checking element structure against the schema.

Conversions between XML grammars and plain text format.

Describing type
A typical schema design problem is the construction of Java

type. Type is referenced in situations such as declaring local
variables, methods or class fields. Type in Java may be a
simple type (like "int" for integers), a class or an interface. A
special case of class types are array types, denoted with the
type identifier suffixed with square brackets "[]" (e.g. "int[][]"
references an array type with two dimensions of "int" element
type).

For example, a typical auxiliary statement in Java
user.notify("Pass 1");

can be rendered inactive in XML format with a single
attribute value (attribute active is defined in a separate,
language-independent namespace, denoted here with prefix x):

<method-call x:active="false" name="notify"> Table I. shows some possible solutions to the problem. The
easiest solution (a) is to describe the type as a string value of a
standard attribute, e.g. type="int[][]". Determining the structure
of that array type implies string parsing, avoidance of which is
the very reason the XML grammar was introduced, so this
solution is undesirable. A better solution (b) [JavaML] is to
describe the type as a subelement. However, enforcing the use
of subelement in each use case complicates the schema and the
handling of the document. Our favourite solution (e) is to
describe the array type with a special identifier as the value of
attribute "type" not used by other types, namely "[]", and
additional two attributes to define the array element type and
dimensions.

 <var-ref name="user" />
 <arguments>
 <literal type="String" value="Pass 1" />
 </arguments>
</method-call>

Note that the content of the inactive element is still required
to be well-formed and valid, and that subelements of the
inactive element are also considered inactive.

Conditional activation may be implemented by extending
the active attribute to values such as "always" for "true" and
"never" for "false". Standard words for logical operators might
be included, and non-reserved words may be used as global
Boolean variables. Examples of attributes:

x:active="not release"
x:active="release and demo"

If inactive code is not to be checked for grammar, it should
be enclosed in the special element defined in the schema not to
further check its content. This element should not have
conditional activation feature.

IV. V. RELATED WORK
There is much research activity involving XML grammars

for source code. There is also much related activity, involving
XML grammars for describing various analytical aspects of
code. Such related technologies would benefit if the original
source was already in XML. Below we mention several
projects from both fields of research.

The Software Development Foundation (SDS) is an open
architecture designed for developing tools for software
development. The core of SDS is the XML-based Code
Structure Format (CSF) [12]. The purpose of this format is to
build a database of high-level analytical information about a
software project's code base. The information is thus made
available to various analytical tools. It does not contain full
program details—for example, it does not describe method
implementations.

Source Markup Language, srcML [15], is an XML format
for source code markup. The markup forms a separate layer
superimposed over source code. The source code remains
untouched and retains all plain-text formatting (whitespace).
The markup layer explicitly describes the inherent structure of
the source code. This approach enables XML-oriented tools to
gain access to semi-parsed code structure, while still leaving
the source code intact. The code is only semi-parsed because,
for example, data type specifications are left unparsed.

JavaML [10] is an XML format prototype proposed by
Greg J. Badros. It is intended as a canonical representation of
Java source code—replacing the Java source code as the
baseline format for tools. It considers as content only those
aspects of source code needed by the compiler to produce
bytecode.

cppML [11] is an XML grammar for C++ code, taking an
approach similar to JavaML, but adding more information
about original plain-text source, such as line/column numbers.
In type descriptions, it includes both parsed (XML attributes)
and unparsed (simple string) description.

GXL [14] is an XML-based format for describing typed
attributed graphs. It supports hierarchical graphs where nodes
can be decomposed into subgraphs. It also supports
hypergraphs where edges can connect more than two vertices.
It is intended to serve as a standard exchange format for graph-
based tools and has already taken roots in the software-
engineering community. This format is not intended to
represent the exact program code, but its higher-level analytical
aspects. General technologies like XSLT and XQuery could be
used to reverse-engineer program code (written in an XML
grammar) into GXL and also to produce code based on GXL
graphs.

The Software Concordance [13] is a hypermedia software
development environment exploring how document technology
and versioned hypermedia can improve software document
management. A component of the IDE is a uniform document
model for storing source code as well as all other project-
related documents. The documents can contain hyperlinks and
embedded multimedia content. XML is used to accomplish a
flexible and multilayered document model which supports
hypermedia and fine-grained versioning.

CONCLUSIONS AND FUTURE WORK
In this paper, the benefits of encoding Java source code in

XML were presented. The benefits include improved code
structure and querying possibilities; code extensions,
construction, and formatting; and referencing parts of code.

The important concept of grammar levels is introduced. We
argue that the correct approach is to specify grammars at
several levels of abstraction instead of only one and include
them in a common development framework. Each level has its
own uses because it possesses characteristics beneficial to some
but not all aspects of development.

Future work should provide a blueprint for a complete
architecture, with a detailed set of requirements for Java code
grammars at various levels and their exact definitions in XML
Schema. Java-specific features and standards need to be placed
in an appropriate context of language-independent base
standards and conventions. These base standards would include
specifications for different types of extensions to programming
languages' source code. Also, a wide range of tools need to be
developed, such as Java-in-XML source code editors and rich
format templates.

REFERENCES
[1] Gosling, James, Joy, Bill, Steele, Guy, Bracha, Gilad, The Java

Language Specification, Second Edition, Sun Microsystems, 2000.
[2] World Wide Web Consortium, XML Schema Part 1: Structures, May

2001, http://www.w3.org/TR/2001/REC-xmlschema-1-20010502
[3] World Wide Web Consortium, XML Schema Part 2: Datatypes, May

2001, http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
[4] World Wide Web Consortium, XML Path Language (XPath) Version

1.0, November 1999, http://www.w3.org/TR/1999/REC-xpath-19991116
[5] World Wide Web Consortium, XQuery 1.0 and XPath 2.0 Data Model,

November 2002, http://www.w3.org/TR/2002/WD-query-datamodel-
20021115

[6] World Wide Web Consortium, XSL Transformations (XSLT) Version
1.0. November 1999, http://www.w3.org/TR/xslt

[7] World Wide Web Consortium, Extensible Stylesheet Language (XSL)
Version 1.0, October 2001, http://www.w3.org/TR/2001/REC-xsl-
20011015

[8] World Wide Web Consortium, XHTML™ 1.0, The Extensible HyperText
Markup Language (Second Edition), August 2002,
http://www.w3.org/TR/2002/REC-xhtml1-20020801

[9] Bloch, Joshua, Effective Java Programming Language Guide, Addison-
Wesley, 2001.

[10] Badros, Greg J., JavaML: A Markup Language for Java Source Code.
Proceedings of 9th International World Wide Web Conference
(WWW9), Amsterdam, The Netherlands, May 13-15 2000.

[11] Mamas, Evan, Kontogiannis, Kostas, Towards Portable Source Code
Representations Using XML, Proceedings of WCRE'00, Brisbane
Australia, November 2000, pp.172-182.

[12] Sandø, Stig E., CSF specification, February 2000,
http://sds.sourceforge.net/doc/csf.html

[13] Gupta, Satish C., Nguyen, Tien N., Munson, Ethan V., The Software
Concordance: A User Interface for Advanced Software Documents,
Proceedings of 6th IASTED International Conference on Software
Engineering and Applications, November 2002.

[14] Winter, A., Kullbach, B., Riediger, V., An Overview of the GXL Graph
Exchange Language, Software Visualization International Seminar
(revised lectures), Germany, Springer Verlag, May 2001.

[15] Collard, Michael L., Maletic, Jonathan I., Marcus, Andrian, Supporting
Document and Data Views of Source Code, DocEng’02, November
2002, McLean, Virginia USA.

	INTRODUCTION
	Benefits of Java in XML
	Structure
	Queries
	Extensions
	Annotations, clarifications and other comments
	Versioning and revision tracking
	Access control
	Documentation
	Temporarily inactive code

	Format
	Referencing parts of code
	Construction

	Design Issues
	Grammar levels
	Preserving original code
	Enforcing coding conventions
	Semantic enhancements

	Format conversions
	Converting existing plain text code to XML
	Converting source code in XML to plain text
	Conversion between XML grammars

	Describing type
	Denoting inactive code

	Related Work
	Conclusions and Future Work
	
	
	
	References

