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ABSTRACT 
The design procedure of 2nd- and 3rd-order low-sensitivity low-
power allpole active resistance-capacitance (RC) filters, using 
the impedance tapering design method has already been 
published. Beside sensitivity minimization the impedance 
tapering was used for output noise minimization and output 
dynamic range maximization. In this paper it is shown that 
active resistance-capacitance (RC) filters can also be designed 
for low input thermal noise. The design procedure of filters with 
minimum input noise is very similar to the design of minimum 
sensitivity filters in its most important steps. Thus, the judicious 
selection of component values account for the considerable 
decrease in sensitivity and in input thermal noise. The minimum 
noise at the filters input is obtained by minimizing the total 
resistance of the filter circuit. The noise analysis was performed 
on the 2nd- and 3rd-order (class 4) Sallen and Key low-pass filter 
sections using MATLAB.  

1. INTRODUCTION 

The quality of low signal-level and low-power signal processing, 
depends, among other factors, on the noise level produced in the 
circuits. It has already been published in [1] and in [2] (see [2] 
pp. 337) that the allpole active-RC filters of second-order which 
are designed for minimum sensitivity to component tolerances 
(see [3]) are also superior in terms of low output thermal noise, 
when compared with standard designs. In [1] the method of 
Zurada and Bialko [4] was used to determine output noise 
spectral density and total RMS output noise of filters. Passive 
elements and operational amplifiers are represented by substitute 
noise models. The noise contribution of each device to the output 
node is calculated using noise transfer functions. The methods 
used for analysis of the output noise in [1] were used in the 
analysis of the input noise in this paper, where we reduced the 
output noise to the input. Considered are Sallen and Key low-
pass filters 2nd- and 3rd-order (class 4) as in [5], [6] and [7]. Note 
that most circuit analyzing programs, such as PSPICE can 
analyze both the output and the input noise spectral density.  
Using the numerical programming tool MATLAB, mathematical 
calculations of the output noise were performed. An ideal 
operational amplifier was replaced by a simple positive voltage 
gain β, combined with voltage and current noise sources. 
The transfer function of every noise source to the output voltage, 
is given by 
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where Vl is the voltage and Ik is the current noise source of 
element denoted by l and k, respectively. For the Sallen and Key 
2nd-order LP filter (as presented in Figure 1) the transfer 

functions in (1) are calculated with help of the symbolic 
calculation tool MATHEMATICA Wolfram Research and are 
presented in [1]. Once the total output noise is determined, we 
can refer the noise back to the input to obtain equivalent input 
noise. This is done by dividing every transfer function from noise 
source to the output, which is defined by (1) by the filter’s 
transfer function T(s)=VOUT/VIN=N(s)/D(s). For example, we 
calculate the transfer functions from the noise voltage source to 
the input voltage by 
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2. DEFINITION OF NOISE FIGURE 

Active-RC filters consist of resistors, capacitors and operational 
amplifiers. Thermal noise in resistors is caused by random 
motion of free charges and is also called Johnson’s noise. Noise 
in real capacitors is also of thermal origin. It is produced within 
the resistive non-ideal part of a capacitor, and can be neglected. 
Because thermal noise is stochastic in nature, we describe its 
influence using the mean-square noise voltage and current within 
a frequency band ∆f as follows: 
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where k=1.38⋅10-23 J/K is Boltzman’s constant. Note that thermal 
noise is proportional to the absolute temperature T. 
Let us now define measures by which we can examine the noise 
performance of the filters under consideration. The most 
important is the mean square (MS) noise voltage within a 
specified frequency range ∆ω=ω2-ω1, defined as: 
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where the square of the noise spectral density, derived from all 
the noise sources and their corresponding transfer functions, is 
given by: 
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where Ti,k(jω) is the transfer impedance, i.e. the ratio of the 
output voltage and input current of the kth current noise source 
(in)k, and Tν,l(jω) is the voltage transfer function, i.e. ratio of 
output voltage and input voltage of lth voltage source (vn)l. Those 
output voltages are then referred to the input node as described 
above. 
For the purpose of noise analysis, appropriate noise models for 
resistors and operational amplifiers (OAs) must be used. 
Resistors are represented by the well-known Nyquist current 
noise model consisting of a noiseless resistor and a noise source 



as presented in [1] whose value is given by eq. (3). The OA is 
represented by the noiseless OA combined with voltage and 
current noise sources [1]. For the TL081/TI (Texas instruments) 
operational amplifier in the noise analysis we use approximate 
values: En=17nV/ Hz  and In=0.01pA/ Hz . 
The single equivalent voltage-noise source Vnin, as shown in 
Figure 1, can completely characterize the noise performance of 
the filter driven by voltage signal source Vg. Observation of the 
value of equivalent input noise Vnin is a powerful tool for analysis 
of the filter’s noise performance, and will therefore be used. It 
allows a direct comparison between the signal and the noise and 
can be used to directly compare the performance of various filter 
circuits regardless of each filter’s pass-band gain, input 
impedance, or transfer function shape. Using an equivalent input 
voltage-noise (as opposed to the equivalent input current noise) is 
particularly advantageous for analog active-RC filters. 
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Figure 1. Equivalent input noise source representation on 
the example of 2nd-order LP Sallen & Key filter section.  

The equivalent input noise Vnin refers all noise sources to the 
signal source location and the filter circuit can be regarded as 
noiseless. Since both the signal and the noise equivalents are then 
present at that point in the system, the signal-to-noise ratio (S/N) 
can be easily evaluated. In other words, the single noise source 
independent of the filter transfer function Vnin inserted in series 
will produce the same total output noise. The noise factor is a 
figure-of-merit for a circuit with respect to noise, defined by: 
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where Si and Ni are signal and noise powers at input, 
respectively, while So and No are the same quantities at output. Aa 
is system power gain. By definition the noise figure is1: 
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where ( )2efniE  represents the power of the noise at input, which 

can be obtained by integrating )(2 ωniV  over the frequency range 

∆ω, and ( )2
efngE  represents the power2 of the generator noise, 

which can be obtained by integrating )(2 ωngV  over the same 
range ∆ω. Vni(ω) is the noise spectral density of the equivalent 
input noise source, i.e. the noise of the filter circuit reduced to the 

                                                           
1 Note that for calculating noise factor (F) and/or noise figure 
(NF), we must include the noise of the input resistor Rg. Because 
we assumed ideal signal source Vg with Rg=0 the eqs. (6) and (7) 
are only approximately correct.  
2 More precisely, it is mean square noise voltage, and if used 
with unity resistive load, it represents the power. 

filter’s input, and Vng(ω) is the noise spectral density of the input 
resistor Rg of the real voltage signal generator Vg, or the output 
noise of the previous stage, if the filter is realized in a cascade.  

Consequently, if we consider a multistage filter, where each stage 
has the corresponding noise factor F1, F2, etc., then the overall 
noise factor F of the cascade is given by the Friis formula [4] 
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where A1, A2, etc., are the maximal power gains of each block. 
From (8) and Ai>1; (i=1,2,…,N) it follows that to minimize the 
noise factor F of the whole cascade structure, it is most important 
to have the first block with minimum noise factor F1. In what 
follows we present the design method which will minimize the 
noise factor of the 2nd- and 3rd-order LP filters.  

3. DESIGN OF MINIMUM NOISE FILTERS 
The same 2nd- and 3rd-order low-pass filter examples in [3], used 
for the sensitivity analysis, are used in what follows for the noise 
analysis. Using the numerical programming tool MATLAB, 
mathematical calculations of the input noise were performed. The 
noise factor (F) [defined by (6)] is a figure-of-merit for a device 
or a circuit with respect to noise, but it will not be calculated; 
instead the curves which represent the input equivalent noise 
sources’ spectral densities will be observed and compared. 

In the 2nd- and 3rd-order LP filter examples given in [3], 
sensitivity performances are dependent only on the values ω0, ri, 
ρi; (i=2,…,n) and β. On the other hand, noise is dependent on the 
resistor values in the circuit and on the operational amplifier 
noise. With lower resistor values and a “low-noise” amplifier, we 
obtain lower noise. In what follows, we shall concentrate only on 
the resistor’s noise. To reduce noise of the filter circuit, one can 
always take as low value resistors as possible, and very high 
capacitor values. This is always possible for the discrete 
realization of the filters, where we are not upper-limited with a 
total capacitance value. But, when we realize filters with 
integrated circuit techniques, we must calculate resistors and 
capacitors in a different way, with an important constraint: 
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From ω0, ri, ρi; (i=2,…,n) and β as given in [3] using constraint 
(9) we calculate the value of R1 by: 
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3.1 2nd-order LP Filter Example 
The 2nd-order LP filter practical examples with f0=86kHz and 
qp=5 as in [3] are repeated here. For the example of total 
capacitance value CTOT=100pF, we obtain the component values 
of the filter in Table 1. To concentrate only on the noise 
contribution of the ladder-network in the filter's positive 
feedback loop, we choose very small RG and RF resistors in the 
negative feedback loop, which realize the gain β, i.e. they are in 
[Ω]. The corresponding input noise spectral densities are shown 
in Figure 2. Observing the input noise spectral density curves in 
Figure 2, we conclude that the filter with the lowest noise is non-
tapered filter no. 1 (r=ρ=1). The second best results are obtained 



with filters no. 3, which we obtain by tapering only the 
capacitors, while keeping the resistor values equal (r=1), and no. 
4, i.e. the resistively tapered filter with equal capacitors (ρ=1). 

Table 1 Component values of 2nd-order LP filters (RG, RF 
in [Ω], other resistors in [kΩ], capacitors in [pF]). 

No. Filter r ρ R1 C1 RTOT CTOT β RG RF 
1. Non Tapered 1 1 37 50 74 100 2.8 1 1.8
2. Impedance Tapered 4 4 23.1 80 116 100 2.05 1 1.05
3. Part. Tapered (r=1) 1 4 46.3 80 92.5 100 5.6 1 0.4
4. Part. Tapered (ρ=1) 4 1 18.5 50 92.5 100 1.4 1 4.6
5. r=1 and min. GSP 1 5.53 51.484.7 103 100 1.28 1 0.28
6. R-Taper, min. GSP 4 13.5 36.593.1 183 100 1.26 1 0.26

 
Figure 2. Input noise of 2nd- LP filter circuits in Table 1.  

The worst results are obtained with ideally impedance tapered 
filter no. 2 and filters no. 5, 6, i.e. partially tapered filters with 
min. GSP [8]. Those results can be concluded from the RTOT 
column in Table 1. It is obvious that best noise performances is 
given by filters with minimum total resistance RTOT. In summary, 
for the general second-order allpole low-pass filter, minimum 
noise is obtained with non-tapered circuits, and total resistance 
minimization. 

3.2 3rd-order LP Filter Example 
Using the filter examples in [3] having specifications in Table 2 

Table 2 Specifications and coefficients for 3rd-LP filter. 
No. Approx. Spec. [dB; kHz] a0⋅1018 a1⋅1012 a2⋅106 qp 
1. Butterworth 0.5/25; 80/300 0.364 1.02 1.49 1.0 
2. Chebyshev 0.04/25; 80/300 0.33 0.91 1.2 1.236
3. Chebyshev 0.5/38; 75/300 0.0749 0.341 0.59 1.706

and total capacitance value CTOT=100pF, we obtain the 
component values of the filters in Table 3, and Table 4. The 
corresponding input noise characteristics are shown in Figure 3. 
Observing those diagrams we conclude that the best noise 
performance is given by circuits with equal resistors. This is 
logical, since “R-equal” circuits have minimum total resistance 
RTOT, as can be seen from Table 3. 

Table 3 Component values of capacitively- and 
resistively-tapered 3rd-order LP filters (resistors in [kΩ], 
capacitors in [pF], note: RG, RF  in [Ω]). 

No. Spec. Filter ω0105 R1 RTOT C1 CTOT β 
1.  C-equal 2.51 119 314 33.3 100 2.0
2. Chebyshev C-taper: 5 2.179 56.9 745 80.6 100 2.0
3. no. 3, Table 2 R-equal 1.817 87.4 262 63 100 4.0
4.  R-taper: 5 2.468 43.8 1359 92.4 100 4.0

Table 4 Dependence of Ri, Ci (i=1,2,3) and β on selection 
of ω0, for capacitively-tapered 3rd-order LP filter.  

No. Spec; Filter ω0105 R1 R2 R3 RTOT C1 CTOT β 
1.  2.25 64.2 93.4 181 339 69.2 100 1.69
2. Chebyshev 2.5 57.8 124 151 333 69.2 100 1.48
3. no. 3, Table 2 2.6 55.6 145 135 335 69.2 100 1.41
4. C-taper: 3 2.75 52.3 200 103 356 69.2 100 1.31
5.  2.9 49.8 425 51.3 526 69.2 100 1.27
Note that C2=23.1 and C3=7.69 in Table 4. Observing the curves 
in Figure 3(a) and (b) we conclude that both resistive and 
capacitive tapering deteriorate the noise performance 
transformed to the input. The proper choice of the design 
frequency ω0, while capacitive-tapering, improves noise 
characteristics. Observing Figure 3(c) the filter with the lowest 
input-noise is filter no. 3, which we obtain by tapering the 
capacitors, while keeping the R2 and R3 resistor values 
approximately equal (R2≈R3). Note that according to [3] this 
coincides with the minimum sensitivity circuit. 
In what follows, we shall try to optimize “C-equal” and “R-
equal” circuits to minimize the noise performances, by an 
appropriate choice of design frequency ω0. Using the Chebyshev 
third-order transfer function satisfying the filter specifications as 
in the previous example, for 5 different values of ω0, we obtain 5 
different third-order circuits with equal resistors, with the design 
values listed in Table 5. Corresponding curves for total resistance 
RTOT, vs. design frequency ω0, are shown in Figure 4(b) for three 
values of total capacitance CTOT, i.e. CTOT=100, 200 and 300pF. 
(In our examples we calculate only with CTOT=100pF). In Figure 
4(a) are the noise characteristics of the “C-equal” case.  
Observing Figure 4(a), i.e. for the “equal-C” case, we note that 
there is a minimum of noise for filter with approximately 
RTOT=277kΩ. Furthermore, in Figure 4(b) for the “equal-R” case, 
the minimum of noise is found in circuit no. 2 with RTOT=249kΩ. 
The optimal “equal-R” case has slightly better noise 
performances than the optimal “equal-C” case. This is because it 
has a lower total resistance value. 
We can conclude that the noise of the circuit is directly 
proportional to the total resistance of the circuit RTOT.

    
Figure 3. Input noise spectral density of 3rd-order low-pass filters, with component values given in (a) Table 3 filters no. 1,2. 

(b) Table 3 filters no. 3,4. (c) Table 4, and (d) Table 5. 

(a) (b) (c) (d) 



Table 5 Component values of equal-resistor 3rd-order 
low-pass filter. Dependence on selection of ω0.  

No. Spec; Filter ω0105 R1 RTOT C1 C2 C3 CTOT β 
1. 1.8 88.0 264 63.1 12.9 23.9 100 4.21
2. 2.0 82.9 249 60.3 22.0 17.6 100 2.32
3. 2.1 83.4 250 57.1 28.9 13.9 100 1.77
4. 2.2 87.8 263 51.8 38.3 9.95 100 1.39
5. 

Chebyshev 
no. 3, Table 2 

R-equal 
2.3 101 303 43.0 51.2 5.87 100 1.15

   
Figure 4. Total resistance RTOT of 3rd-order low-pass 
filters, versus design frequency ω0. For (a) “equal-C” 
case. (b) For “equal-R” case and components in Table 5. 

If we choose higher value of total capacitance CTOT, for example 
CTOT=200 or 300pF, we obtain a lower minimum of total 
resistance RTOT, which improves noise performance. 

Furthermore, it can be shown that comparing optimized “equal-
C” case with “C-tapered” case, we note that, although 
appropriate choice of ω0 minimizes the noise in both cases, 
impedance tapering worsens the input noise performances, thus 
the “equal-C” case is better. The same could be concluded if we 
compared “equal-R” and “R-tapered” cases. It is fortunate that, in 
optimizing the noise performances by appropriate choice of ω0, 
we minimize the sensitivity to the component tolerances, as well. 
The sensitivity can be minimized further by applying impedance 
tapering, but it will worsen the noise characteristics. The choice 
therefore results in a compromise, which filter best suits our 
needs, i.e. “C-taper” for minimum sensitivity or “R-equal” for 
minimum noise and still very low sensitivity. 

3.3 Dependence of noise on pole Q-factor 
For three approximations of 3rd-order LP filters shown in Table 
2, (note three pole-Q factor values) we calculate filter examples 
with “R-equal” and choose design frequency ω0 for minimum 
total resistance RTOT and minimum noise. The input noise 
spectral densities and RTOT vs. ω0 curves are shown in Figure 5. 

   
Figure 5. Equal-R 3rd-order LP filter optimized for min. 
noise (min. RTOT), with different filter approximations. 
(a) Input noise. (b) Dependence of RTOT on selection of 
ω0 for different filter approximations.  

Observing the curves in Figure 5, we note that, for higher values 
of pole Q-factors, qp, we obtain higher noise contributions of the 

resistors in the filter’s RC-ladder network, and, as would 
therefore be expected, a higher value of total resistance RTOT. 
Thus, the higher the pole Q is, and the filter order n, the higher 
the noise of the filter circuit. In [3] it was also shown that, the 
higher the pole Q and the filter order n are, the higher the 
sensitivity of the filter circuit is. 
In summary, for the third-order low-pass filters, minimum noise 
of the circuit is obtained with an equal-resistor circuit and 
appropriate choice of design frequency ω0, which will minimize 
the total resistance RTOT, for given total capacitance CTOT. This 
rule can be extended to higher-order filters, as well. 

4. CONCLUSIONS 
Unlike sensitivity, which only depends on the ratios of 
component values, thermal noise performance was shown to 
depend on the values of filter components themselves, 
particularly the resistors in the filter’s ladder network. 
Realization of the filters, using integrated circuits, caused a 
constraint that the total capacitance on the chip is limited by an 
upper value CTOT, thus the design procedure can influence the 
filter’s noise performance. It was shown that the most important 
design parameter is the design frequency ω0=(R1C1)-1. 
Optimization of the filter’s noise performance concentrates on a 
search for the optimum value of ω0, for which we obtain the 
minimum total resistance in the circuit RTOT. It was shown that, 
by application of impedance tapering, we worsen the noise 
performance, (while improving the sensitivity performance) thus 
the best choice is an equal-R circuit, with optimum ω0 for min. 
RTOT. Furthermore, the noise generated by the circuit is 
proportional to the filter’s order n and to the poles Q-factors. 
Thus, beside the proposed design technique we should obey 
some other rules, such as: build filters with i) pole Q-factors as 
low as possible, and ii) filter order n as low as possible, to reduce 
the input thermal noise power of the circuit. Consequently, the 
extension to high- and band-pass filters would follow the same 
principles, concerning the minimization of total resistance RTOT. 
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