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Abstract

Scheduling problems constitute an important part in many everyday sys-
tems, where a variety of constraints have to be met to ensure the feasibility
of schedules. These problems are often dynamic, meaning that changes occur
during the execution of the system. In such cases, the methods of choice are
dispatching rules (DRs), simple methods that construct the schedule by deter-
mining the next decision which needs to be performed. Designing DRs for every
possible problem variant is unfeasible. Therefore, the attention has shifted
towards automatic generation of DRs using different methods, most notably
genetic programming (GP), which demonstrated its superiority over manually
designed rules. Since many real world applications of scheduling problems in-
clude various constraints, it is required to create high quality DRs even when
different constraints are considered. However, most studies focused on problems
without additional constraints or only considered them briefly. The goal of this
study is to examine the potential of GP to construct DRs for problems with con-
straints. This is achieved primarily by adapting the schedule generation scheme
used in automatically designed DRs. Also, to provide GP with a better overview
of the problem, a set of supplementary terminal nodes are proposed. The re-
sults show that automatically generated DRs obtain better performance than
several manually designed DRs adapted for problems with constraints. Using
additional terminals resulted in the construction of better DRs for some con-
straints, which shows that their usefulness depends on the considered constraint
type. Therefore, automatically generating DRs for problems with constraints
presents a better alternative than adapting existing manual DRs. This finding
is important as it shows the capability of GP to construct high quality DRs for
more complicated problems, which is useful for real world situations where a
number of constraints can be present.
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1. Introduction

Scheduling is a decision process which is concerned with the allocation of
certain activities or jobs onto a limited set of available resources or machines
(Pinedo, 2012). Because of their complexity and presence in many real world sit-
uations, scheduling problems have been extensively researched in the literature.
Some real world examples of scheduling problems include various manufacturing
systems (Kofler et al., 2009; Ouelhadj and Petrovic, 2009), scheduling airplanes
on runways (Cheng et al., 1999; Hansen, 2004), scheduling in railway traffic
(Corman and Quaglietta, 2015), nurse rostering (Burke et al., 2004), schedul-
ing patients for treatments (Petrovic and Castro, 2011), university timetabling
(Lewis et al., 2007), and many other. Most scheduling problems of interest are
NP hard, meaning that the optimal solution cannot be obtained in a reasonable
amount of time. Therefore, the most prevalent way of solving such problems is
by using various heuristic methods. Depending on how these heuristic methods
solve the scheduling problem they are divided into improvement and construc-
tive heuristics.

The idea of improvement heuristics is that they work with one or more, usu-
ally randomly generated, solutions (schedules) which are iteratively improved.
This is done by using different operators which introduce changes in the solu-
tions. This group of heuristics contains a wide range of metaheuristic methods
(Hart et al., 2005), like genetic algorithms (GAs) (Vlašić et al., 2019, 2020), sim-
ulated annealing (Kim et al., 2002), tabu search (Lee et al., 2013), ant colony
optimisation (Behnamian et al., 2009), and many others. Although metaheuris-
tics can obtain high quality results for various scheduling problems, they usually
come with a serious restriction. Namely, such methods can only be used when
all the information about the problem is available, which means that scheduling
is performed under static conditions. However, in many situations the infor-
mation about the problem is not available from the start, but rather the jobs
that need to be executed become available during the execution of the system,
which means that the problem must be solved under dynamic conditions. Con-
sequently, the method applied for solving problems under dynamic conditions
needs to work for problems where all information is not available from the start,
or can change during the execution of the system.

Constructive heuristics are the more appropriate choice for solving schedul-
ing problems under dynamic conditions. Instead of searching through the en-
tire search space of solutions, these heuristics iteratively construct the solution.
Most commonly, constructive heuristics appear in the form of dispatching rules
(DRs) (Maheswaran et al., 1999; Braun et al., 2001; Ðurasević and Jakobović,
2018). The idea behind DRs is to decide which job to schedule on which ma-
chine only at those moments when it is absolutely required. For example, such
a situation would arise when a machine becomes free and the next job needs
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to be scheduled on it. The way in which the job is selected is by calculating
a certain priority for each job and selecting the one with the highest priority
value. Because of that, DRs are adaptable to changes that can happen during
the execution of the system, like the arrival of new jobs over time. Therefore,
they are the most obvious choice for solving scheduling problems under dynamic
conditions.

DRs, however, have certain drawbacks. Most importantly, they are difficult
to design manually and that process requires expert knowledge. Since there is
a plethora of different scheduling problems, one would have to design DRs for
each variant, which is not feasible. For that reason a large number of studies
focused on the problem of automatic design of new DRs (Branke et al., 2016;
Nguyen et al., 2017). Most commonly, genetic programming (GP) (Koza, 1990;
Poli et al., 2008) has been used to design new DRs automatically. The research
in this area demonstrated a great potential of using GP to automatically design
new DRs for scheduling problems with different criteria or conditions.

In most studies the considered scheduling problems did not include addi-
tional constraints that can be present in reality. For example, some jobs may
not be executed before other jobs are completed, or certain machines might
be under maintenance during fixed periods of time. As a result, DRs need to
take such additional constraints into account. However, as previously denoted,
such problems were rarely considered, and if they were, usually only a single
constraint was included. Therefore, until now most manually and automatically
designed DRs did not take into account additional constraints. Although the
research on unconstrained problems is important and leads to new findings, it is
also necessary to validate the methods on more difficult problems which include
various constraints. Therefore, the goal of this paper is to study the potential
of automatically designing new DRs for the unrelated scheduling problem with
additional constraints and evaluating their effectiveness compared to several
selected manually designed DRs adapted for the same constraints. The con-
straints that are considered in this paper are sequence dependent setup times,
machine unavailability periods, machine eligibility constraints, and precedence
constraints. As it is quite unlikely that in real world situations only a single
constraint is present, the performance of automatically designed DRs is also
tested on all the combinations of the aforementioned constraints. In that way it
is possible to determine how the performance of automatically designed DRs is
affected by the number and existence of constraints. The contributions of this
paper can be summarised as:

1. Adaptation of automatically designed DRs for different scheduling con-
straints

2. Proposition and evaluation of additional terminal nodes for the considered
constraints

3. Performance evaluation of automatically designed DRs in comparison to
manually designed DRs for problems with single and multiple constraints.

The paper is organised as follows. Section 2 provides an overview of the liter-
ature dealing with automatic design of DRs. The unrelated machines scheduling
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problem is described in Section 3. Section 4 describes the methods for solving
the unrelated machines environment problem with additional constraints, as
well as how GP can be applied to design new DRs automatically. Section 5
describes the benchmarks and experimental design. The results obtained by the
tested methods are presented in Section 6. Section 7 provides a short discussion
about the obtained results, while Section 8 concludes the paper and outlines
directions for possible future research.

2. Literature overview

Over the years GP became one of the most popular hyper-heuristic methods.
Hyper-heuristics are methods that can be used to design novel heuristics for
different kinds of problems (Burke et al., 2007, 2009, 2013). GP has been used
for designing new heuristics for a variety of different optimisation problems like
the knapsack and bin packing problem (Burke et al., 2012), nurse rostering
(Pillay and Qu, 2018), and capacitated arc routing problem (Mei and Zhang,
2018; Liu et al., 2019).

GP was first used to evolve new DRs for the single machine (Dimopoulos
and Zalzala, 1999, 2001) and job shop environments (Miyashita, 2000). These
studies laid out the foundations for automatic design of DRs which would be en-
hanced in future works. Subsequent research extended the application of GP to
other machine environments like the flexible job shop environment (Tay and Ho,
2007), parallel machines environment (Jakobović et al., 2007), and the unrelated
machines environment (Ðurasević et al., 2016; Ðurasević and Jakobović, 2020).
Aside from these standard scheduling problems, GP was successfully applied on
other scheduling problem types like the order acceptance and scheduling (OAS)
problem (Nguyen et al., 2013, 2014) or the resource constrained project schedul-
ing problem (RCPSP) (Chand et al., 2018; Ðumić et al., 2018). These studies
demonstrated that GP can create DRs for a wide range of different scheduling
problem types, outlining its versatility. Another line of research was directed
towards evolving DRs that construct schedules which optimise several criteria
simultaneously (Nguyen et al., 2013, 2015; Karunakaran et al., 2016; Durase-
vić and Jakobović, 2018). It was also demonstrated that no manually designed
DRs could compete with such heuristics when considering several criteria si-
multaneously. Since in real world problems usually a number of criteria are
optimised simultaneously, this line of research proved that the performance of
automatically designed DRs does not degrade in cases when multiple criteria
are considered.

Different studies focused on improving the performance of DRs by evolving
DRs that are used simultaneously. One such approach is the GP-3 method pro-
posed in (Jakobović and Budin, 2006), which evolves two DRs and an additional
expression. The evolved expression determines, based on the current system
characteristics, which out of the two evolved DR should be used. Although
this approach obtained good results, it could not compete with approaches that
were subsequently designed. In other studies different ensemble learning meth-
ods were used to evolve several DRs, which jointly performed the decisions on
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which job to schedule next (Park et al., 2015; Hart and Sim, 2016; Park et al.,
2018; Durasević and Jakobović, 2017; Ðurasević and Jakobović, 2019). Such
ensemble learning methods have demonstrated the ability to significantly im-
prove the performance of DRs in comparison to the case when only a single rule
is applied. Since these methods can be used to create ensembles of arbitrary
DRs, they represent one of the most flexible and efficient methods of improving
the performance of DRs. Several studies have also researched how different so-
lution representations affect the results. A multi-tree representation was used
in (Zhang et al., 2018), where the rules to perform the sequencing and routing
decisions were evolved simultaneously. This paper demonstrated that by split-
ting these decisions into two independent rules it was possible to improve the
performance of DRs. In (Branke et al., 2015) three representations of DRs were
tested, out of which GP and artificial neural networks evolved the best DRs.
The main benefit of GP is that it evolves DRs that are interpretable, whereas
the artificial neural networks are difficult to interpret. This further supports the
choice of GP as the dominant method for creating new DRs. In (Nguyen et al.,
2013) three solution representations for DRs were tested, one which is used to
select existing DRs, one which evolved new DRs, and a combination of the two
aforementioned methods. The solution which used only existing DRs achieved
the poorest performance, which demonstrated that it is essential that GP can
construct completely new DRs, or at least extend existing ones. In (Ðurasević
and Jakobović, 2020) it was demonstrated that DRs can be adapted for static
scheduling and compete with other metaheuristic methods. This result is sig-
nificant as it shows that, given the same conditions as metaheuristic methods,
the evolved DRs obtain only slightly worse results, showing that these methods
are equally expressive as search based metaheuristics.

The previous paragraphs outline that the research in automatically gener-
ating DRs covered a wide range of topics, both in extending the methods to
different problems, but also in proposing methods for improving the perfor-
mance of automatically generated DRs. Initial studies laid out the foundations
in a sense that they outlined which representations should be used, which ter-
minal or function nodes to apply and similar. Recent studies focused more
on improving the performance of automatically generated DRs by proposing
new methods, or applying the approach to new problem types. The advan-
tage of most methods proposed in these studies is their flexibility, meaning that
they can be applied for different problems variants. However, evolving DRs for
scheduling problems with additional constrains has been researched sparsely.
Most studies focused on the setup times constraint. In (Jakobović et al., 2007)
setup times were considered for the parallel uniform machines environment. In
this study the authors shortly considered the setup times, for which they pro-
pose two new terminal nodes. The results demonstrate that the obtained DRs
performed better than existing manually designed DRs. In (Pitzer et al., 2011)
the setup times were also considered, but only a single terminal that included
information about setup times was used. As such, the constructed DRs had a
poor overview of this constraint, but still managed to outperform existing DRs.
In (Pickardt et al., 2013) the setup times were considered when creating DRs for

5



work scheduling in semiconductor manufacturing. Again, only a single terminal
that provided information about setup times was used, and no deeper analyses
were performed on the influence of setup times on the performance of automat-
ically designed rules. DRs were also evolved for the single machine environment
with setup times in (Jakobović and Marasović, 2012), but unfortunately this
study already used existing terminal nodes and did not bring new insights into
this topic. Several papers dealing with the OAS problem considered setup times
as well (Nguyen et al., 2013; Park et al., 2013), but here the main topic was
the adaptation of GP for the OAS problem. In neither of the aforementioned
papers a thorough analysis on the evolution of DRs for setup times was per-
formed, since the focus was set on other topics. As a result it is not clear how
different terminal nodes influence the results and if they are needed at all.

Several papers have also dealt with machine eligibility constraints (Beham
et al., 2008; Tay and Ho, 2008; Nie et al., 2013) in the flexible job shop envi-
ronment. However, neither of these studies did provide a detailed overview on
that constraint and how it can affect the scheduling process. Additionally, no
new terminal nodes were proposed that would include information about the
eligibility of jobs. Thus, no new insights about the influence of this constraint
can be gained from the previous studies. Regarding machine unavailability,
it was considered in (Wen-Jun Yin et al., 2003), where the authors designed
DRs with GP for the single machine environment. The authors introduced new
terminal nodes and demonstrated that automatically generated DRs outper-
formed manually designed DRs since they could better adapt to the appearance
of breakdowns in the system. However, no research was performed in more
complex environments with several available machines. This study neverthe-
less represents a good initial study for that constraint. Finally, the precedence
constraints were considered only in (Jakobović and Marasović, 2012) for the
single machine environment. For that constraint two new terminal nodes were
proposed. The obtained results were encouraging as they demonstrated that
the generated DRs could handle these constraints. However, no deeper analysis
or application to more complex environments was done after this initial study.
The previous paper is also the only one which considered solving a problem con-
sisting of a combination of two constraints, namely setup times and precedence
constraints. Although good results were obtained even in this case, there was
no follow up on this topic. Other constraint combinations were not even consid-
ered in the literature. Although some studies did take into account additional
constraints, no study put its focus solely on them to determine how to best
solve such problems. Additionally, most research was performed on the single
machine environment, which is relatively simple. A small number of terminal
nodes were proposed and their influence on the performance of automatically
generated DRs was not analysed. Therefore, the main goal of this study is to fill
this gap by considering the constraints in a more complex scheduling environ-
ment, testing different constraint combinations, proposing new terminal nodes
and evaluating their effectiveness.
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3. Unrelated machines scheduling environment

Scheduling problems are usually defined by a number of jobs which need to
be scheduled on a given set of machines. The number of jobs and machines
is usually limited and is denoted with n and m, respectively. Furthermore, a
certain job in the system is usually denoted as j, whereas a machine is denoted
as i. The unrelated machines environment represents the class of scheduling
problems in which each job needs to be executed on only one machine, however,
the time needed to execute the job depends both on the job and machine.
Therefore, it is impossible to specify that some machines are faster than others,
since one job can execute faster on one machine than the other, whereas for
another job the opposite can be true.

The job properties that are defined for a scheduling problem vary depending
on the problem under consideration. However, in all variants it is required to
define the processing time of each job for each of the machines. This property
is denoted as pij . When dynamic scheduling problems are under consideration,
each job also has a release time rj that denotes the moment in time when job
j is released and can be scheduled. Each job can also have a weight wj that
specifies the importance of the job in a way that scheduling a more important
job later on will induce a larger penalty value. Finally, in some problems it is
important to complete the jobs until a certain time moment, which is called the
due date dj . If a job is not finished until its due date it will continue executing,
but the longer it executes the greater the penalty which it incurs will be.

In addition to the aforementioned properties, depending on the additional
constraints that are considered in the scheduling problem, further job and ma-
chine properties can be defined. In this paper the following constraints are
considered:
• Sequence dependent setup times - define a certain amount of time that
needs to be invested to prepare a machine for executing the next job. This
constraint can be, for example, found in a printing press where it is re-
quired to setup the machine before something else can be printed (Pinedo,
2012). In this constraint a setup time sjk is defined for all job pairs, which
denotes the time that has to be invested to prepare the machine for exe-
cuting job k, if prior to it job j was executing on the considered machine.
If the job under consideration is the first which has to be scheduled on the
machine, then the setup time is considered to be 0.

• Machine eligibility restrictions - specify that each job can be executed on
a subset of available machines. Therefore, for each job j a set of eligible
machines Mj , which can execute that job, is defined. This constraint can
appear when scheduling programs on a cluster of computers, where it is
possible to schedule the program only on those computers that have the
required prerequisites, be it hardware or software.

• machine unavailability periods - specify that machines can be unavailable
at certain periods of time. For example, a maintenance can be sched-
uled for each machine after it executed for a certain amount of time, or
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some machines can be unavailable in certain periods of time due to vari-
ous reasons like maintenances. Therefore, for each machine a set of time
intervals, which determine time periods when the machine is unavailable,
is specified.

• Precedence constraints - define that one or more jobs have to be executed
before another job can start its execution. For example, if several processes
are executed on computers, one process might require the output of several
others and cannot start executing until all processes upon which it depends
have been completed. In this constraint, each job has an additional set
which contains all jobs that have to be completed before the considered
job can start executing.

The criterion which will be optimised is the total weighted tardiness (TWT),
which is defined as TWT =

∑n
j=0 wj max(Cj−dj , 0), where Cj defines the time

when job j finishes with its execution. The goal of this criterion is to minimise
the time that jobs spent executing after their due date, with the while giving
more importance to jobs with a higher weight.

Aside from the previously outlined properties of the scheduling problem, it
is required to specify the conditions under which scheduling is performed. For
most part in this paper the dynamic variant will be considered. In dynamic
scheduling problems the information about jobs (like their processing or arrival
times) are not known in advance, and becomes available only when the job is
released. As a result, the schedule cannot be constructed before the start of the
system, but rather has to be constructed in parallel with the system execution.
On the other hand, in static scheduling all the information about the problem is
known beforehand, and thus it is possible to construct the entire schedule even
before the system starts with its execution. Additionally, the problems which
will be considered in this paper are deterministic, meaning that the values of
all properties are precisely known when they become available.

4. Solving scheduling problems with constraints

Although this paper deals with the automatic generation of DRs for the
unrelated machines environment with additional constraints, two other ways of
solving these problems will be applied. This is done to validate the results ob-
tained by GP, since there are no relevant methods that could be used for solving
problems with all the aforementioned constraints. Therefore, in addition to GP
a GA will also be used to solve the static scheduling problem variant, which can
be considered as a certain lower bound for the problems. This result is used
to get a notion on where the results obtained by automatically designed DRs
stand in comparison to improvement heuristics that search the entire solution
space. In addition to that, five existing manually designed DRs were selected
and adapted to support all the considered constraints. The reason why these
rules were selected is due to the fact that they achieve the best results when
considering the TWT criterion for the unrelated machines environment without
constraints (Ðurasević and Jakobović, 2018).
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4.1. Genetic algorithm
The applied GA uses the machine list encoding (MLE), which which is one

of the most popular encoding schemes for the unrelated machines scheduling
problem. This encoding contains m lists, each of which represents one of the
machines. Each list contains those jobs which should be executed on the cor-
responding machine in the order in which they appear in the list. As for the
genetic operators, the point crossover and insertion mutation were used. The
point crossover selects a random crossover point for each list and creates the
child by combining the jobs of one parent which appear before the crossover
point and the jobs which come after the crossover point from the other parent.
The insertion mutation selects a job randomly and inserts it into a random
list on a random position. More details about the encoding and the applied
operators can be found in (Vlašić et al., 2019).

When additional constraints are used, different parts of the algorithm need
to be adapted to ensure that feasible schedules are produced. Most notably, the
generation of the initial population, the crossover, and mutation operator need
to be adapted. For the setup times no modifications have to be made, since
all schedules that can be constructed will be feasible. The situation is similar
for the machine unavailability constraint. This constraint is satisfied during the
evaluation of the solution. Namely, if a job execution would overlap with an
period of machine unavailability, the execution of the job is postponed to a later
time when the job can execute completely without any interruption. Machine
eligibility constraints need to be incorporated in the initialisation process and
genetic operators in a way that a job can be allocated only to an eligible machine.
On the other hand, for precedence constraints it is more difficult to ensure the
feasibility of solutions. In case of this constraint, each time a job is scheduled on
a machine it needs to be ensured that all predecessors of this job are scheduled
prior to it. Furthermore, it is required that no deadlock appears in the schedule,
i.e. that a situation in which some scheduled jobs cannot start executing because
their predecessors were not previously executed. It is quite complicated to
ensure this, and it also causes the operators to be less time efficient since they
have to determine which changes can be made to keep the schedule feasible.

4.2. Adaptation of manual DRs
To deal with the considered constraints, the original manually designed DRs

need to be adapted. The simplest way to adapt existing rules for various con-
straints is by modifying their schedule generation scheme (SGS) to ensure that
the constructed schedules satisfy all given constraints. Since the considered
DRs use the same SGS, with the only difference being the priority function
Iij(t) that is used to calculate the priorities for jobs, only a single adapted SGS
has to be defined. Algorithm 1 denotes the extended SGS for manual DRs. The
only difference over the original SGS that these rules use is in the addition of
the instruction in line 10, which checks whether all the conditions for a feasi-
ble schedule are met. Only then the priority value is calculated, otherwise the
machine and job under consideration are skipped since they would lead to the
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construction of an unfeasible schedule. The conditions that have to be checked
are that the machine is eligible for job j, that no unavailability will occur dur-
ing the execution of job j, and that all predecessors of job j have finished with
execution. As can be seen from the description, the only constraint that is not
considered are setup times, which is because they have no influence on schedule
feasibility and as such it is not required to consider them explicitly in the SGS.

Algorithm 1 SGS for manually designed DRs adapted for additional con-
straints

1: n← number of jobs
2: m← number of machines
3: schedule[m][n] = []
4: while all jobs are not scheduled do
5: t← current system time
6: unscheduledJobs← available unscheduled jobs in the system
7: while unscheduledJobs not empty do
8: // find the job with the best priority
9: for all j ∈ uscheduledJobs, i ∈ m do

10: if job j is eligible for machine i and machine i will not become
11: unavailable during its execution and all predecessors of job j have
12: finished executing then
13: priority ← Iij(t)
14: end if
15: end for
16: job← job with the highest priority
17: machine← machine on which job will execute the soonest
18: schedule[machine] if machine is available←−−−−−−−−−−−−−− job
19: end while
20: end while
21: fitness← evaluate schedule

The priority function that is used depends then on the concrete DR. For the
five selected DRs they are equal to:

• EDD - Iij(t) = 1
dj

• MS - Iij(t) = −max (dj − pij − time, 0)

• MON - Iij(t) = wj

pij

(
1− dj

ps

)
• COV - Iij(t) = wj

pij
max

[(
1− max (dj−pij−time,0)

kp̄

)
, 0
]

• ATC - Iij(t) = wj

pij
exp

[
− max(dj−pij−t,0)

k1p

]
exp

[
slj

k2s

]
,
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where t represents the current time of the system, p̂ represents the average
processing time of all unscheduled released jobs, ps represents the sum of pro-
cessing times of all available jobs for machine i, ŝ represents the average setup
times of all released and unscheduled jobs, while k, k1, and k2 represent control
parameters that are defined by the user. The priority function used for ATC
is the adapted one which also considers setup times if they are present (Lee
et al., 1997). For the other three criteria it would also be possible to extend
the priority functions with additional terms. However, extending the priority
function in a meaningful way is not easy. Some initial attempts were made in
this direction as well, but the additions did not result in any improved results.
Therefore, it was decided to keep the changes only in the SGS.

4.3. Designing DRs with GP
Aside from manually designing new DRs, or extending existing ones, it is

also possible to use GP to evolve new DRs automatically. More specifically,
GP is used to generate the priority function (PF) that determines the priorities
of jobs and machines, whereas the SGS that creates the complete schedule is
defined manually. The reason for this is that a meaningful SGS can be more
easily defined manually than it can be evolved automatically. On the other
hand, it is much harder to design the PF manually, whereas GP and similar
methods can easily obtain PFs which perform well.

Algorithm 2 represents the SGS which is used with automatically designed
PFs. This SGS works in a way that each time a scheduling decision has to
be performed (scheduling a job on a machine), the SGS calculates the priority
of each available job on all machines. For each of the available jobs the SGS
determines the machine for which the job obtained the best priority value. Then,
the jobs are scheduled on the selected machines in the order of their priorities,
but only if the machine is available. Otherwise, the job is skipped and will be
scheduled later. Naturally, the SGS is also enhanced to take into consideration
all the constraints. First, the precedence constraints are taken into account
in line 4, where the priorities only for those jobs with all finished predecessors
are calculated. If all predecessors of a job are not executed, then the job will
have to wait until all predecessors have been executed. The machine eligibility
constraint is enforced in line 6, by calculating the priorities of jobs only for
those machines which are eligible for the considered job. In that way, a job
can be scheduled only on eligible machines. Finally, the machine unavailability
constraint is considered in line 17, where it is checked whether the selected
machine would be unavailable during the execution of the selected job. If it
would, the job will not be scheduled on this machine at the current time. One
might wonder why this constraint is not checked at the beginning of the SGS,
together with the other two constraints, since in the way the SGS is defined it
is possible that a job will have the highest priority, but will not be scheduled
due to machine unavailability. However, in this way the SGS and GP have more
flexibility, since GP can design a PF which takes into account the availabilities
and can decide whether it makes more sense to schedule a job on a machine
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which will be available, or to wait until the unavailability of a certain machine
ends and then schedule the job on that machine.

Algorithm 2 SGS for automatically designed DRs adapted for additional con-
straints

1: while unscheduled jobs exist do
2: Wait until a job or machine becomes available
3: for all available jobs j do
4: if all predecessors of job j have finished executing then
5: for all each machine i do
6: if machine i is eligible for job j then
7: Calculate the priority πij of scheduling job j on machine i
8: end if
9: end for

10: end if
11: end for
12: for all available jobs j do
13: Determine the machinemj for which job j obtained the best πij value
14: end for
15: while there are jobs whose selected machine i is available and do
16: Determine the job j with the best priority
17: if machine mj will be available for the entire execution of job j then
18: Schedule job j on the machine mj

19: end if
20: end while
21: end while

GP is used to evolve a PF that is in turn used by the aforementioned SGS. In
order to apply GP, a set of primitive nodes needs to be defined, which serve as
building blocks for the creation of PFs. For function nodes the following five are
used: addition, subtraction, multiplication, secure division (1 is returned in case
of division with 0), and the positive operator defined as pos(x) = max(x, 0).
Although other function nodes can be used, previous research did not show that
better results can be obtained by using additional function nodes (Ðurasević
et al., 2016).

Aside from the function nodes, a set of terminal nodes also has to be defined.
These nodes represent certain job, machine, and system properties, which are
combined into meaningful expressions in GP. Table 1 lists the basic set of termi-
nal nodes, which represent only general system information (like job processing
times, weights, and similar), but does not include any information about the
additional constraints that are considered. This set represents the base termi-
nals which are used in all experiments and extended with additional terminal
nodes, depending on the constraint.

In addition to the previously outlined general terminal nodes, Table 2 ad-
ditional nodes which take different constraints into account. They are divided
into four groups depending on the constraint they were designed for. In case
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Table 1: Terminal set

Terminal Description

pt processing time of job j on machine i (pij)
pmin minimal processing time of job j
pavg average processing time of job j on all the machines
PAT time until machine with the minimum processing time for job j becomes available
MR time until machine i becomes available
age time which job j spent in the system
dd time until which job j has to finish with its execution (dj)
w weight of job j (wj)
SL slack of job j, −max(dj − pij − t, 0)

of the setup times, the additional terminal nodes provide the basic information
about the setup times of jobs, like the minimal setup time, average setup time,
and the setup time for the chosen machine. By using these nodes the PF can
determine on which machine the setup time would be the lowest and would be
most suitable for scheduling the selected job. For the machine eligibility con-
straint the nodes provide the information about the number of eligible machines
for each job, the number of available machines that can execute a job, and the
number of released jobs that are eligible for a certain machine. In that way
the PF can take into account how many machines are eligible for a job, e.g. to
be able to schedule sooner those jobs for which only a few machines are eligi-
ble. For machine unavailability four terminal nodes are defined. These nodes
provide information about the remaining unavailability periods, the time until
the current unavailability ends, the time until a machine becomes unavailable
again, and whether the machine will become unavailable during the execution
of a job. With these terminals the PF can determine whether the machine will
become unavailable during the execution of a job and give a smaller priority
to such jobs. Additionally, the PF can also determine that, if an unavailability
period will end soon, it could be more profitable to wait for it to end and sched-
ule the considered job on that machine rather than to schedule it immediately
on a different machine. Finally, since the precedence constraints are the most
complicated, six terminal nodes were defined for them. These nodes provide
the number of successors of a job, but also more complex information like the
slack values of the released successors. The goal of these more complex terminal
nodes is to give the PF a notion on how selecting one or the other job could
possibly influence the criterion value by approximating the possible slack and
tardiness of all the successors of a job.

13



Table 2: Additional terminals for the considered constraints

Terminal Description

Terminals for setup times

smin minimal setup time of job j
sAvg average setup time of job j
setMac setup time of job j on job i

Terminals for eligibility constraints

emfj number of machines which are eligible for job j
rjfm number of released jobs that can be executed on machine i
amfj number of available machines that can execute job j

Terminals for machine unavailability periods

bwhde

{
1, if machine will be unavailable during the execution of job j
0, if machine will be available during the execution of job j

norb number of remaining unavailability periods
tube time until the unavailability ends
tunb time until the next unavailability

Terminals for precedence constraints

nous number of released successors of job j
avss average slack of all released successors of job j
mss minimum slack of all released successors of job j
mxss maximum slack of all released successors of job j
wsl weighted tardiness of all released successors of job j
scl number of all released successors (direct and indirect) of job j
mscl the number of released successor jobs in the longest chain of job j

14



5. Benchmark setup

5.1. Problem instance design
To validate the proposed methods, a set of problem instances was designed

in a similar way as in several other studies (Dimopoulos and Zalzala, 1999,
2001; Lee et al., 1997; Pfund et al., 2008). The instances were generated with a
different number of jobs and machines in various combinations. The number of
jobs was set to 12, 25, 50, or 100, whereas the number of machines was set to
3, 6, or 10.

The processing times of jobs are generated from the interval

pij ∈ [0, 100].

The distributions used to generate the processing time from this interval are
the uniform, Gaussian, and quasi-bimodal. Each processing time is generated
from the specified interval by randomly using one of the three aforementioned
distributions. In that way it is simulated that jobs of different sources, which
behave differently, are released into the system. Job weights are generated
uniformly from the interval

w ∈ (0,1].

Job release times are generated by a uniform distribution from the interval

rj ∈
[
0, p̂2

]
,

where p̂ is defined as

p̂ =
∑n

j=1
∑m

i=1 pij

m2 ,

and pij denotes the processing time of job j on machine i, while m denotes the
total number of machines. The job due dates are generated using a uniform
distribution from the interval

dj ∈
[
rj + (p̂− rj) ∗

(
1− T − R

2

)
, rj + (p̂− rj) ∗

(
1− T + R

2

)]
,

where T represents the due date tightness parameter, while R denotes the due
date range parameter. The values of those parameters were set to 0.2, 0.4, 0.6,
0.8, and 1 in various combinations.

The setup times, sij were generated uniformly from the following interval:

sij ∈ [0, smax]

, where smax represents the maximum allowed setup time. For the experiments,
the smax parameter was set to 5.

For the generation of machine unavailability periods several parameters have
to be specified. First, for each machine a number of unavailability periods
has to be defined. The number of unavailability periods per machine ranged
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from 0 to 12, in a way that smaller problem instances had a smaller number
of unavailability periods, whereas the larger instances had more unavailability
periods. The start of each unavailability period is generated from the interval
[0, p̂]. The duration of the unavailability period is uniformly generated from
the interval [umin, umax], where umin represents the minimum unavailability
duration, whereas umax represents the maximum unavailability duration. The
values for umin and umax were set to 1 and 10, respectively.

The machine eligibility constraints are generated in a way that for each
machine a percentage of jobs that are eligible for it can be specified. This
percentage ranged from 0.5 to 1 depending on the number of machines. The
jobs that are eligible for each machine are randomly selected until the specified
percentage of jobs is reached for each machine. In addition, it is also ensured
that each job has at least one machine which is eligible for it, so that it is
possible to create a feasible schedule.

Finally, for the precedence constraints three parameters were defined. First,
the parameter which defines the percentage of jobs that will have a predecessor.
This parameter was set to 0.2 and 0.3 depending on the problem instances. In
addition to those two parameters, the maximum number of predecessors and
successors a job can have is also defined. These were set between 2 and 10,
depending on the number of jobs in the problem instance.

Because some problem instances have significantly different characteristics,
they also have objective values of different scales. This leads to a problem
in which smaller instances have little or no influence in the total fitness value
and thus the GP procedure would focus less on optimising these instances. To
avoid this problem all the objective values were normalised in order for the
problem instances with different characteristics to have similar objective values.
Therefore, the normalised objective functions for the problem instance with the
index i is defined as

fi =
∑n

j=1 wjTj

nw̄p̄

where n denotes the number of jobs in the problem instance, w̄ the average
weight of the jobs and p̄ the average job processing duration. The total objective
function is then calculated as the sum of the objective functions of the individual
problem instances.

5.2. Experimental setup
To test the proposed methods for optimising the unrelated machines schedul-

ing problem with constraints, two problem instance sets were generated as de-
scribed in the previous subsection. The first problem instance set, called the
training set, is used by GP to evolve new PFs. The second problem instance set,
denoted as the test set, is used after the training period to evaluate the evolved
PFs on unseen problem instances and to determine how well they perform. Both
sets contain 60 individual problem instances.

To obtain statistically significant results, each experiment was executed 30
times, and the best individual in each execution was saved. For these 30 execu-
tions the minimum, median, and maximum values are calculated. Furthermore,
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Table 3: ATC parameter values

setup • • • • • • • •
eligibility • • • • • • • •
unavailability • • • • • • • •
precedence • • • • • • • •
k1 0.95 0.45 1.5 1.3 0.6 1.9 0.8 0.2 0.4 0.6 0.6 0.4 1.9 0.7 0.5
k2 0.1 - - - 1.9 1.9 1.2 - - - 1.9 0.5 1.4 - 1.1

the Kruskal-Wallis statistical test is used to determine whether a statistically
significant difference exists between a group of experiments. If a significant
difference was obtained, the Canover p-values adjusted with the Benjamini-
Hochberg FDR method are further calculated to determine between which pairs
of experiments a significant difference exists. Additionally, the Mann-Whitney
statistical test was also used to perform pairwise comparisons between the al-
gorithms in several situations of interest. For both tests the difference between
results is denoted statistically significant if the test obtained a p-value lower
than 0.05.

Finally, the parameters of all the methods were optimised in preliminary
experiments and the best obtained parameters were used. For the GP and GA
the parameters were optimised only once since the parameter optimisation is
quite expensive. Both GA and GP use a steady state tournament selection. The
GA uses a population size of 30 individuals, a mutation probability of 0.9, the
tournament size of 3 individuals, and a termination criterion of 1000000 function
evaluations. The point crossover and insert mutation were used by the GA.
On the other hand, GP uses a population size of 1000 individuals, a mutation
probability of 0.3, the tournament size of 3 individuals, the ramped half-and-half
initialisation method, a maximal tree depth of 5, and a termination criterion
of 80000 function evaluations. For crossover the subtree, uniform, context-
preserving, and size fair operators were used (Poli et al., 2008). For mutation
the subtree, Gauss, hoist, node complement, node replacement, permutation
and shrink operators were used (Poli et al., 2008). Out of the selected manually
designed DRs only the COV and ATC rules have adjustable parameters. For
the ATC rule, the two control parameters, k1 and k2, were optimised. Since
the performance of the ATC rule depends heavily on these two parameters,
they were optimised for each combination of constraints that was tested. The
values of these two parameters for each of the experiments are denoted in Table
3. The COV rule uses only a single parameter and preliminary experiments
demonstrated that the rule performed best when this parameter is set to 0.05.

6. Results

In this section the results of all the methods for the various combinations of
constraints will be outlined. First, each constraint will be optimised individually

17



to determine the effect of the terminal nodes on the performance of automati-
cally designed DRs. After that, the best combinations of terminal nodes will be
used when several constraints are optimised simultaneously.

6.1. Optimisation of individual constraints
6.1.1. Setup times

The results obtained for the scheduling problem with setup times are denoted
in Table 4. The results demonstrate that the GA performs better than any of
the tested DRs. Such a behaviour is expected in static scheduling since the
GA has access to all the information of the problem while the other methods
operate under dynamic conditions. Out of the tested manually designed DRs,
the best results were obtained by the EDD and COV rules. It is surprising that
the ATC rule which was adapted for problems with setup times obtained the
worst results. The main reason for this is that poor values for parameters k1
and k2 were selected. This shows that the ATC rule is sensitive to the choice of
parameter values, even though the training set on which they were optimised is
similar to the test set. The DRs evolved by GP easily outperform the selected
manually designed DRs. Even in the case when no additional terminal nodes
are used, the GP evolved DRs perform significantly better than any of the
tested rules. This can best be seen from Figure 1, which shows that most
of the automatically designed DRs performed better than manually designed
DRs. It is interesting that even without any additional nodes the evolved DRs
achieve a better performance. The reason for this is that GP can create PFs
that are better adapted for the concrete set of problems. Based on the previous
observations, it is possible to conclude that for this constraint the evolved DRs
are less sensitive to the problems that are solved, unlike the ATC rule whose
performance largely depends on the selected parameter values.

When the GP variants with different terminal nodes are compared with
each other, it is evident that all the variants achieve quite similar results. All
the experiments in which GP used additional terminal nodes achieve a better
median value than the experiment in which no additional nodes were used.
This shows that the proposed nodes do provide useful information which the
automatically generated DRs can use. However, the statistical tests show that
the difference is not significant in all cases. The Kruskal-Wallis test obtained a
p-value of 0.046, which means that a statistically significant difference between
the experiments exists. Further tests have a shown that a significant difference
exists only between the results obtained when no additional terminals are used
and when the combination of the savg and setmac terminals is used. In this case,
the experiments obtained when using no additional terminals were significantly
worse than those obtained when using the two additional terminal nodes, with
a p-value of 0.034. Therefore, only one combination of nodes really lead to
the improvement of the results. One reason why the new terminals did lead to
improvements, but which were not significant, could be due to the reason that
setup times did not have a large enough influence in the problem instances. This
combination leads to the best results probably because of the good synergy these
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Table 4: Results obtained when considering the setup times

min med max

GA 10.73 11.04 11.36

EDD 19.92
MS 21.05
MON 21.42
COV 19.89
ATC 21.83

GP

no additional terminals 17.52 18.84 20.32
smin 17.06 18.47 23.37
sAvg 17.10 18.42 20.01
setMac 17.08 18.40 21.66

smin, sAvg 16.83 18.36 20.21
smin, setMac 16.66 18.36 20.16
sAvg, setMac 16.97 18.40 19.45

smin, sAvg, setMac 16.88 18.32 20.25

two nodes provide. The setmac node gives the information about the length of
the current setup time, and the savg allows the rule to compare how the current
setup time compares to the average of all setup times for the job.

The results demonstrate that for this constraint it makes sense to use addi-
tional terminal nodes. Although the results might not be significantly better for
all the cases when they are used, the evolved DRs perform better. The reason
why for this constraint additional terminal nodes are useful is because the setup
times affect the results obtained for the optimised criterion, and therefore if the
processing times of all jobs are similar it becomes important to take the setup
times into account when determining which job to select and on which machine
to schedule it. Without these nodes the PF does not have access to this informa-
tion and cannot take setup times into consideration when scheduling jobs. Since
all the combinations obtained quite similar results, it is difficult to outline which
terminal nodes are the most informative to the PFs. Based on the statistical
tests it seems that those would be the sAvg and setMac nodes. The reason why
the sMin node does not seem to be informative is because by itself it gives little
information about the setup times. It is also interesting to observe that better
results were always obtained when more nodes were used simultaneously. This
is expected as in this cases the DRs have access to more information and can
perform decisions based on a combination of these individual terminal nodes.
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Figure 1: Box plot representation of results obtained when considering setup times

6.1.2. Machine eligibility
The results obtained when considering the machine eligibility constraint are

denoted in Table 5. The GA again achieves the best results. However, the
difference between the results obtained by the GA and automatically designed
DRs is smaller in comparison with experiments where setup times were consid-
ered. The reason behind such a behaviour is because for setup times the solution
space does not decrease. Thus, the problem becomes more complicated since in
addition to processing times the setup times are also considered. For eligibility
constraints the situation is different, since they reduce the number of machines
on which a job can be executed. This means that the evolved DRs will have
fewer choices to choose from when scheduling a job. Therefore, there is a higher
chance that DRs will perform better. The table also shows that the manually
designed DRs obtain inferior results compared to the automatically designed
rules. The best result from those rules is obtained by ATC, whereas the others
achieve inferior results. Even when no additional terminal nodes are used the
evolved DRs obtain better results than the manually designed rules. Figure
2 shows that the ATC rule performs better than a few manually evolved DRs
(which usually represent outliers), whereas all other manually designed DRs do
not outperform even one automatically designed rule. This demonstrates that
GP can easily evolve DRs that perform better than several manually designed
DRs for this constraint.

When comparing the results obtained by the automatically designed DRs,
one can observe that the median performance is similar for almost all combina-
tions of additional terminal nodes and the case when no additional nodes were
used. This is backed up by the Kruskal-Wallis test which obtained a p-value
of 0.066, which means that the results are not significantly different. However,
figure 2 shows that some node combinations influence the performance. For
example, using either the node amfj or emfj leads to less distributed results.
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Table 5: Results obtained when considering the machine eligibility

min med max

GA 14.58 15.15 15.94

EDD 27.07
MS 30.56
MON 22.87
COV 22.63
ATC 20.30

GP

no additional terminals 17.49 18.33 20.93
amfj 17.61 18.27 21.89
emfj 17.43 18.26 20.20
rjfm 17.63 18.47 21.03

amfj, emfj 17.44 18.54 21.27
amfj, rjfm 17.54 19.21 20.86
emfj, rjfm 17.37 18.38 20.86

amfj, emfj, rjfm 17.64 18.77 21.41
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Figure 2: Box plot representation of results obtained when considering machine eligibility

Therefore, these nodes seem to contain useful information that GP evolved rules
can exploit. However, this information was still not enough to obtain signifi-
cantly better results. On the other hand, some other combinations lead to
heavily dispersed results. Interestingly, using the amfj and emfj nodes at the
same time leads to worse results then when using them individually. This shows
that combining terminals which perform well by themselves does not necessar-
ily lead to improved results. Even though the proposed terminal nodes did not
result in significantly better results, their use can still prove to be viable since
they reduce the dispersion of results and improve the chances of obtaining a
better DR.

As already outlined, the results show that no significant improvement was
achieved by using additional terminal nodes, which for this constraint makes
sense. This is due to the fact that this constraint is mostly handled by the SGS.
Namely, the SGS ensures that the PF is evaluated only for eligible machines.
Thus, the SGS actively restricts the number of possible decisions and prevents
the construction of unfeasible schedules. In this situation, the DRs do not even
need any additional terminal nodes, because this constraint does not need to be
considered in the PF. The only situations in which additional terminals could
prove useful would be when a job can be scheduled only on a single machine. In
that case those nodes could help the PF to detect such jobs to schedule them
immediately when their eligible machine becomes free. This is backed up by
the results which show that out of the terminal nodes that were defined for this
constraint, the emfj and amfj were the ones which slightly improved the results.
This is because they allow the DRs to determine jobs which can be scheduled
only on few machines to prioritise them. However, such situations are rare, and
as such these nodes will only slightly improve the performance of DRs.
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6.1.3. Machine availability
The results obtained when considering the machine availability constraint

are denoted in Table 6. The GA again obtained much better results than it was
possible to obtain with any of the tested DRs. The adapted manually designed
rules obtain the worst results amongst all the tested methods. The ATC rule
again obtained the best results among the manually designed DRs. Figure 3
shows that most automatically designed rules outperform the manually designed
rules. DRs which were generated without using additional terminals largely
outperform the manually designed DRs. The margin between their performance
becomes larger when additional terminal nodes are used. It should be noted that
for the combination of the bwhde and tunb nodes, every DRs that was evolved
performs better than any manually designed rule. This demonstrates that by
manually adapting existing rules it is difficult to match the performance that
can be provided by the DRs that are automatically evolved by GP, even when
not using any additional information about the constraint.

The results show that most node combinations obtain quite similar results.
All the experiments in which additional terminal nodes were used achieved a
smaller median value than the experiment in which no additional terminal nodes
were used. Therefore, for this constraint it is important to include additional
information about it in the form of terminal nodes. The Kruskal-Wallis test
reported a p-value of 0.059, which would mean that there is no statistically
significant difference between the various combinations. However, the pairwise
Mann-Whitney test was also used, and showed that there exists a significant
difference between the results obtained for the experiment which does not use
additional terminal nodes, and the experiments which use the bwhde and tube,
as well as the hwhde and tunb nodes. Therefore, it seems that some node com-
binations still lead to significantly better results when comparing them directly
to the results with no additional terminal nodes.

For this constraint it was demonstrated that including additional information
about the constraint into the PF leads to better results. This happens because
the constraint does not introduce any additional restriction on which jobs can be
scheduled or which machines can be selected. The reason for this is that if the
selected job would execute during a period when the machine is unavailable, then
the SGS would simply postpone that job to a latter moment in time, similarly
as if the machine was busy. Therefore, the number of decisions that the DR
can make are not reduced. Rather, more emphasis is set on the selection of the
appropriate job or machine. One such choice would be if a job should wait for
the unavailability to finish, or if it would be better to schedule it immediately
on another machine if it is free. Without additional terminal nodes such a
decision cannot be performed. Therefore, including these nodes into the PF
gives it a much better overview of the problem. The most informative node
seems to be the bwhde node, since in a combination with any other node it
resulted in GP obtaining the best results. This node provides the information
if an unavailability period appears during the execution of a job, which makes
it pivotal in deciding whether to select a job or not. The results demonstrate
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Table 6: Results obtained when considering the machine availability

min med max

GA 11.35 11.69 11.89

EDD 26.70
MS 25.75
MON 23.11
COV 22.91
ATC 22.53

GP

no additional terminals 18.54 20.95 25.50
bwhde 18.27 20.53 22.87
norb 18.56 20.37 23.80
tube 17.99 20.19 25.62
tunb 18.55 21.34 25.90

bwhde, norb 17.71 19.97 25.11
bwhde, tube 18.02 19.78 22.31
bwhde, tunb 18.40 19.78 24.31
norb, tube 18.89 20.06 23.15
norb, tunb 18.38 20.10 23.42
tube, tunb 18.13 20.28 24.06

norb, tube, tunb 18.02 20.09 23.50
bwhde, tube, tunb 18.00 20.04 24.01
bwhde, norb, tunb 18.47 20.24 26.93
bwhde, norb, tube 18.40 19.96 24.82

bwhde, norb, tube, tunb 18.26 20.06 25.17
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Figure 3: Box plot representation of results obtained when considering machine availability

that the performance of the DRs increases when at least two nodes are used
simultaneously. This means that any single node by itself cannot provide enough
information about the constraint. In combination with the bwhde node the best
results were obtained when either the tube or tunb nodes were used. This is
due to the reason that these two provide information about the time intervals
of the current unavailability, which can have a more direct effect on the decision
in comparison to the norb node, which just provides the information about the
number of remaining unavailability periods.

6.1.4. Precedence constraints
Table 7 denotes the results obtained for problems with precedence con-

straints. Out of the manually designed DRs the ATC rule obtained the best
results. When compared to the results obtained by the GP evolved DRs, all
manually designed rules except ATC performed worse than most automatically
designed ones. The result obtained by the ATC rule were better than the median
value of all the experiments performed for designing new DRs, with or without
using additional terminal nodes. This shows that most of the automatically
designed DRs were unable to outperform the ATC rule. However, for all the
tested node combinations it was still possible to obtain rules that outperform
the ATC rule, but less frequently then for any of the previous three constraints.
It is interesting that even when no additional nodes were used the automatically
generated DRs usually performed worse than the ATC rule. As such it seems
that even without additional terminal nodes GP struggles to obtain a good DR
for this constraint. Based on these it is safe to conclude that this constraint
represents a challenge when automatically designing DRs.
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Table 7: Results obtained when considering job precedences

min med max

GA 14.29 15.74 16.81

EDD 22.14
MS 24.57
MON 22.92
COV 21.57
ATC 20.20

GP

no additional terminals 19.30 20.69 26.71
nous 18.78 20.74 22.91
ass 19.37 20.71 27.61
mss 18.76 20.64 24.92
mxss 18.74 21.03 23.25
wsl 18.99 20.78 23.12
scl 19.28 20.74 25.42
mscl 18.74 20.96 23.17

ass,mss 18.83 20.50 24.37
ass, nous 19.03 20.64 24.86
ass, wsl 18.53 20.70 24.60
mss, nous 18.81 20.33 22.45
mss,wsl 19.30 21.09 28.27
nous, wsl 19.08 21.25 23.75

ass,mss, nous 19.54 20.73 24.78
ass,mss, wsl 18.64 20.64 22.76
ass, nous, wsl 19.00 20.45 23.78
mss, nous, wsl 19.66 20.98 23.62

ass,mss, nous, wsl 19.69 20.82 22.68

26



E
D

D

M
S

M
O

N

C
O
V

A
T
C -

n
o
u
s

a
s
s

m
s
s

m
x
s
s

w
s
l

s
c
l

m
s
c
l

a
s
s
+

m
s
s

a
s
s
+

n
o
u
s

a
s
s
+

w
s
l

m
s
s
+

n
o
u
s

m
s
s
+

w
s
l

n
o
u
s
+

w
s
l

a
s
s
+

m
s
s
+

n
o
u
s

a
s
s
+

m
s
s
+

w
s
l

a
s
s
+

n
o
u
s
+

w
s
l

m
s
s
+

n
o
u
s
+

w
s
l

a
s
s
+

m
s
s
+

n
o
u
s
+

w
s
l

20

22

24

26

28

Figure 4: Box plot representation of results obtained when considering precedences

Figure 4 shows that there is little difference between the different exper-
iments. For this constraint, the experiments that were performed by using
additional terminal nodes quite often obtained a worse median value from the
experiment in which no additional nodes were used. The p-value that was ob-
tained by the Kruskal-Wallis test was equal to 0.26, which denotes that there
is no significant difference between the obtained results. Although the median
values obtained by the experiments with additional terminal nodes are usually
worse than that of the experiment with no additional nodes, the same does not
hold for the obtained minimum values. The minimum values show that for many
combinations it was possible to obtain results that are better than the minimum
value obtained when not using any additional terminal nodes. Thus, it seems
that the additional terminal nodes do provide information that can be useful.
However, for GP it seems to be quite difficult to find such rules. This could
quite possibly be due to the fact that this constraint is more complicated than
the previous one, and thus it is harder to incorporate meaningful knowledge
about it into the designed DRs.

Regarding the terminal nodes that were used, it is difficult to outline which
node seems to provide the most information to the DRs. Since the combination
of themss and the nous nodes obtained the best results, it is safe to assume that
the information that these nodes provide is useful to the DRs. The nous node
provides the information about the released successors, which allows the DR to
prioritise those jobs that have many successors, since they would be blocking
them from executing. On the other hand the mss provides the information
about the slack of the successors of a job, and can also be used to determine
which job should be prioritised. However, since the results are quite similar, it
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is not possible to make conclusive deduction.

6.2. Optimisation of combinations of constraints
Aside from considering each scheduling constraint individually, all possible

constraint combinations are also examined to obtain a more thorough notion on
how the automatically designed DRs perform in comparison with the manually
designed rule. The results obtained for these combinations are denoted in Tables
8 and 9.

First of all, for all combinations the GA easily outperforms both the manually
and automatically designed DRs. The differences are usually smaller when
the constraints which reduce the number of decision in DRs are considered
(for example, when the precedence times and machine eligibility constraints
are considered together). On the other hand, the difference becomes larger
for the constraints which introduce no restrictions in the decisions that cab
be performed by DRs (like the combination of the setup times and machine
unavailability periods). This means that it is more difficult to design DRs for
constraints which do not limit the number of decisions that can be performed
at each decision point.

When comparing the manually designed rules with the automatically de-
signed DRs, in almost all the situations manually designed rules cannot achieve
the same performance as the automatically designed DRs. The only rule which
performed better than automatically designed DRs is the ATC rule, but only
in two situations. The first was for the combination of setup times and prece-
dence constraints. In this case the ATC rule achieved a slightly better result
(by around 2.5%) than the median values that were obtained by automatically
designed DRs. However, GP still found rules that were better than ATC (which
can be seen by the minimum values). This is probably due to the precedence
constraints for which it was already demonstrated that automatically designed
rules had difficulties to obtain good results. The second situation in which ATC
performed better was the combination of setup times, machine unavailability
and eligibility constraints. In this case the difference is larger and more sig-
nificant, around 11%. But even in this case GP obtained some rules which
outperform ATC. This means that GP can deal with this constraint as well, but
the problem might be in the selected terminal nodes and the algorithm strug-
gled to obtain good DRs. However, one still has to take into consideration that
the parameters of the ATC rule were optimised for each constraint combination,
whereas the nodes in the GP were not. Therefore, by a more thorough selection
of the nodes it could be possible to obtain even better results.

In all other cases automatically designed DRs outperformed the ATC and
all the other manually designed DRs. In one occasion (when setup times and
machine eligibility were considered together) the improvement was quite small,
around 3%. However, in all other cases the improvements were more signif-
icant, ranging from 5% to 34%. The difference between the results obtained
by manually and automatically designed DRs becomes larger as the number of
constraints increases. Therefore, it is safe to conclude that as the number of
considered constraints increases, it becomes increasingly difficult for manually
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Table 8: Results obtained for combinations of two scheduling constraints

min med max

machine unavailiability
machine eligibility

GA 19.71 20.03 20.55

EDD 49.29
MS 50.22
MON 43.17
COVERT 42.76
ATC 40.90

GP - standard terminals 30.50 34.09 85.97
GP - additional terminals 28.80 33.05 39.04

setup times
machine unavailability

GA 12.83 13.11 13.58

EDD 34.98
MS 36.60
MON 31.12
COVERT 32.13
ATC 30.05

GP - standard terminals 23.76 26.07 30.62
GP - additional terminals 23.26 25.27 29.59

setup times
machine eligibility

GA 16.77 17.45 18.34

EDD 38.23
MS 41.56
MON 31.51
COVERT 34.15
ATC 27.61

GP - standard terminals 23.82 26.75 30.97
GP - additional terminals 24.26 27.58 46.53

machine unavailability
precedence constraints

GA 15.84 19.10 20.50

EDD 45.30
MS 49.65
MON 40.02
COVERT 63.90
ATC 39.75

GP - standard terminals 29.88 33.56 42.76
GP - additional terminals 26.92 31.23 36.90

machine eligibility
precedence constraints

GA 27.61 28.93 30.86

EDD 44.00
MS 47.42
MON 41.67
COVERT 44.23
ATC 42.58

GP - standard terminals 35.77 39.51 56.31
GP - additional terminals 34.81 39.93 54.32

setup times
precedence constraints

GA 18.19 19.83 22.70

EDD 31.08
MS 33.61
MON 30.29
COVERT 30.35
ATC 27.66

GP - standard terminals 25.06 28.37 30.19
GP - additional terminals 25.88 29.54 32.05
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Table 9: Results obtained for combinations of three and four additional scheduling constraints

min med max

setup times
machine eligibility
machine unavailability

GA 22.31 22.71 23.72

EDD 65.07
MS 68.49
MON 57.42
COVERT 60.24
ATC 37.86

GP - standard terminals 37.98 42.33 47.89
GP - additional terminals 35.98 41.97 52.49

setup times
machine unavailability
precedence constraints

GA 22.59 23.66 26.45

EDD 58.63
MS 68.68
MON 56.21
COVERT 58.04
ATC 55.95

GP - standard terminals 39.80 43.81 52.12
GP - additional terminals 34.40 42.84 47.77

setup times
machine eligibility
precedence constraints

GA 32.67 34.59 36.86

EDD 59.92
MS 63.67
MON 54.52
COVERT 62.01
ATC 56.99

GP - standard terminals 46.38 51.47 58.59
GP - additional terminals 46.73 51.59 58.60

machine eligibility
machine unavailability
precedence constraints

GA 36.30 37.90 39.75

EDD 102.0
MS 95.33
MON 89.19
COVERT 86.90
ATC 83.09

GP - standard terminals 59.47 67.50 73.25
GP - additional terminals 58.29 63.79 68.35

setup times
machine eligibility
machine unavailability
precedence constraints

GA 42.33 44.06 46.63

EDD 123.1
MS 118.32
MON 111.8
COVERT 108.7
ATC 108.3

GP - standard terminals 76.61 80.72 106.6
GP - additional terminals 70.42 81.99 91.19
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designed rules to perform good decisions. The difference is especially evident for
the case when all four constraints are used simultaneously. In this case the auto-
matically designed DRs perform around 34% better than the ATC rule, which
achieves the best performance among the manually designed rules. Such re-
sults demonstrate the superiority of automatically designed DRs over manually
designed ones.

The results also demonstrate that for most constraint combinations there is
no significant difference between DRs generated with and without using addi-
tional terminal nodes. The median values in both scenarios are usually quite
similar, but neither approach di consistently outperform the other. However,
one thing which is evident from the results is that by using the additional termi-
nal nodes GP does obtain better minimum values in more situations. Therefore
the terminal nodes do provide useful information to the DRs, however, it seems
that the problem lies more in the evolution process that has difficulties to lo-
cate such rules. Once again one has to take into account that these results could
have probably been further improved, since the node combinations were not op-
timised in this case, but were just selected based on the results obtained when
considering the individual constraints. Also, as more constraints were consid-
ered the number of terminals that were at the disposal to GP grew. Therefore,
the search space grow and it becomes more difficult for GP to generate good
DRs.

7. Discussion

Based on the results that were outlined in the last section, several interesting
conclusions can be drawn. First of all, it is evident that not all constraints are
equally difficult for DRs to handle. This can be seen when comparing the results
of the DRs with the results obtained by the GA. In some cases the differences
between those methods are less prominent. This usually happens when wither
the machine eligibility or precedence constraints are considered. The reason why
the performance difference is smaller is due to the fact that these two constraints
actively restrict the decisions that DRs can make at each moment. This means
that at each decision point DRs will have a smaller set of jobs to choose from, or
less machines on which a job can execute. Therefore, it is easier for DRs to reach
a better decision. On the other hand, the remaining constraints do not impose
a restriction on the decisions that can be performed in each moment. However,
because of the additional constraints the DRs need to take into account more
information. Therefore, the number of decisions from which the rules need to
select the best one remains the same; however, the decision depends on more
parameters, which makes selecting the right job and machine more difficult than
in the case when no constraints are used.

The real benefit of the automatically designed DRs becomes evident when
these rules are compared to manually designed ones. Out of the 15 different
constraint combinations that were tested, automatically designed DRs obtained
a better median value than the best manually designed rule in 12 experiments.
This shows that the average performance of the generated rules is better in
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most cases, and that GP can construct DRs which are generally better than
their manually designed counterparts. For every single constraint combination
GP obtained a DR that performs better than any of the automatically designed
rules. Such good results are almost equally obtained regardless whether the DRs
are designed with additional terminal nodes or not. This shows that manually
designed rules are limited and not suitable for the different scheduling problem
variants, regardless of the adaptations in the SGS. GP demonstrated that it
can obtain DRs suitable for solving problems with specific constraints. This
is due to the fact that it can construct the PF which is well adapted to the
problem at hand. Thus, this method offers unparalleled flexibility. Although
manually designed rules could have further been manually adapted for additional
constraints, such adaptations are difficult, time consuming, and require a lot of
expert knowledge. In most cases they are not trivial, and are usually performed
in a trial and error manner. Additionally, in the case of the ATC rule, the results
show that the adapted version of this rule for setup time constraints actually
performed worse than other manually designed DRs which did not take setup
times into account. This means that the performance of the ATC rule is quite
sensitive on the choice of the control parameters. Even though the test and train
sets were similar, the rule performed quite poorly for the optimal value for the
control parameter that was obtained on the training set. Although this control
parameter should serve to provide a greater flexibility for this rule, it proves to
be difficult to select the right value for it. Automatically designing DRs with
GP provides much more flexibility. First of all, they have demonstrated to be
more versatile and less sensitive of the problems they it solve in comparison
to manually designed DRs. Secondly, GP can quite easily obtain DRs which
perform better than manually designed ones for almost all the tested constraint
combinations. Not only that, for several experiment these improvements were
quite large.

The benefit of using additional terminal nodes designed for the different
constraints is more difficult to asses. In most cases, the differences with and
without them are relatively small. However, using those nodes can lead to
significantly better results in some cases, and in most cases it can result in GP
obtaining better minimum values. When a single constraint is considered, the
terminal nodes have shown to be more useful when used for constraints that do
not restrict the number of decisions that the DR can make in each step, like the
setup times and machine availability constraints. The reason why in these cases
such terminal nodes are important is due to the fact that the DR has to consider
more information based on which it needs to perform the decision. Therefore,
including different information about such constraints into the PF gives the
DR a better overview of the problem and helps it to perform better decisions
during scheduling. For the other two constraints the SGS restricts the decisions
that can be made by the DR at certain moments. Therefore, the DR already
has a smaller set of candidates to choose from, and additional terminal nodes
might not be then useful in such scenarios. Regarding the individual constraints,
automatically generated DRs performed quite well for three of them. For the
precedence constraint GP did exhibit some difficulties in constructing good DRs.
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The reason why this criteria is difficult for GP is due to the fact that it can be
hard for it capture all the peculiarities of this constraint, so that the DR can
perform good decisions. Unfortunately, even testing a large number of nodes
for this constraint was not enough to improve its performance. Therefore, this
constraint needs to be either handled in a different way, or more informative
terminals would need to be designed.

When several constraints are considered simultaneously, there are no exact
rules by which it could be determined for which constraints it makes sense to
use additional terminals. In most cases the variant which uses and the one
which does not use additional terminals performed quite similarly, without any
significant difference in their results. It must be taken into account that the
set of terminal nodes that was used for these constraint combinations used
was not optimised for each combination individually. Rather, all the nodes for
which the best results were obtained for the individual constraints were used,
which can lead to large sets of terminal nodes when several constraints are
considered simultaneously. Including more nodes increases the search space of
GP drastically and makes it difficult for GP to locate good DRs. Therefore, by
a better selection of nodes, or the design of novel terminal nodes for constraint
combinations, the performance of the automatically designed DRs could be
further improved. However, even in this case when the set of nodes was not
optimised, for most constraints the performance of automatically designed DRs
was better than that of their manually designed counterparts.

All the results demonstrate that for scheduling problems with several con-
straints GP can generate DRs which perform better than existing manually de-
signed DRs. Even for such more complicated problems GP is expressive enough
to design high quality DRs. As these automatically designed DRs performed
better than several manually designed ones, designing DRs with GP represents
a better alternative than adapting existing DRs. Since real world problems
usually contain many different constraints, the results demonstrate that even
for these cases GP could generate good quality DRs. Naturally, to adapt this
approach for such situations one would first have to ensure that a correspond-
ing training set exists which can be used by GP to learn the characteristics of
the problems. Additionally, the SGS of the DRs needs to be adapted to ensure
that only feasible solutions are constructed. These two conditions are enough
to generate DRs for practically any new constraint that could appear in real
world problems. Additionally, creating terminal nodes which provide informa-
tion about the considered constraints is also suggested, as it should allow GP
to obtain even better DRs for certain constraint types.

8. Conclusion

This study deals with the problem of adapting automatically designed DRs
for solving scheduling problems which include different constraints. To tackle
this problem the SGS that is used by automatically designed DRs was adapted
to take into consideration all the constraints and to ensure that only feasible
schedules will be created. Additionally, to give the DRs a better overview on
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the problem and further improve their performance, a set of additional terminal
nodes that include information about each of the constraints was defined. The
approach was used to generate DRs for four scheduling constraints individually
and in different combinations. The performance was validated in comparison
with five selected manually designed DRs, which were also adapted for problems
with constraints.

The obtained results proved that automatically designed DRs are more ver-
satile and have a better performance than their manually designed counterparts.
Automatically designed DRs achieved better results for 12 out of the 15 consid-
ered cases, with improvements of even 30% for certain constraint combinations.
Although manually designed DRs can also be adapted to consider different con-
straints, their limited performance soon becomes evident. GP offers the flexi-
bility of designing rules which encompass the peculiarities of the problem they
need to solve. As such, GP can easily find rules with good performance, which
are also general enough that they can be applied to new problems and still retain
their good performance. This approach also requires less expert knowledge, as it
takes over the role of creating a meaningful PF from of the user. When all things
are considered, GP demonstrated that it is expressive enough to generate DRs
for complicated scheduling problems which include several constraints. As real
world scheduling problems usually include many constraints, this observation
is important as it demonstrates that high quality DRs could be automatically
generated even for such situations as well.

Since the topic considered in this paper is quite extensive, there are many
parts in which it could be extended in the future. One possible research direction
would be to improve manually designed rules for the considered constraints
to obtain a better baseline to which automatically generated DRs could be
compared. Another part in which improvements could be made are in the
design of terminal nodes. For each criteria it would be interesting to improve
or add new terminal nodes. This is especially true for combinations of several
criteria, for which it could make sense to design new terminal nodes which
combine information regarding two or more constraints. For this part, the DRs
which were obtained in this research could be used to analyse which terminals
were most used and how the different terminals interacted. Finally, another
constraint which was not included in this research, namely batch processing, is
also planned to be considered in the future.
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