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Abstract
Densification events in time-evolving networks refer to instants in which the network 
density, that is, the number of edges, is substantially larger than in the remaining. These 
events can occur at a global level, involving the majority of the nodes in the network, or 
at a local level involving only a subset of nodes.While global densification events affect 
the overall structure of the network, the same does not hold in local densification events, 
which may remain undetectable by the existing detection methods. In order to address this 
issue, we propose WINdowed TENsor decomposition for Densification Event Detection 
(WINTENDED) for the detection and characterization of both global and local densifica-
tion events. Our method combines a sliding window decomposition with statistical tools to 
capture the local dynamics of the network and automatically find the irregular behaviours. 
According to our experimental evaluation, WINTENDED is able to spot global densifica-
tion events at least as accurately as its competitors, while also being able to find local den-
sification events, on the contrary to its competitors.
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1 Introduction

In the process of mining dynamic networks, the task of finding irregular isolated com-
munication patterns is referred to as event detection. Not only it is important to know 
at what time an event occurred but also, which nodes were involved in it. For example, 
if we consider the Facebook wall-posts of a small group of students, then a substantial 
increase in the overall number of wall-posts at day t is usually unexpected. However, 
knowing that a substantially larger number of wall-posts was observed at day t is not 
enough to characterize this potential anomaly. If, additionally, we know that the posts 
at day t were mainly made at subject’s “a” wall then, it is probable that day t corre-
sponded to an event in subject’s “a” life such as birthday or graduation (and this peak 
on the wall-posts is originated by the congratulations messages).

On the other hand, we should also take into account that events may occur at dif-
ferent scales, not necessarily involving all the nodes. As an illustrative example, let us 
consider a time-evolving network modelling the monthly exchange of emails between 
employees of a company. Then, the announcement that the company is going to close 
is expected to generate a lot of discussion between all the employees thus originating 
an abrupt interaction peak involving the whole network. On the other hand, the sched-
uling of a meeting between the employees of a specific department is expected to lead 
to the increasing of the emails exchanged between the employees of such department 
only. Both of these scenarios are illustrated in Fig. 1: the company shutdown scenario 
may be regarded as a global event since it involves the majority of the employees and 
the department meeting corresponds to a local event because it only involves a small 
group of employees. Since these events correspond to an abnormal increase in the 
number of edges, they are referred to as densification events.

Currently, the existing densification event detectors fail at incorporating both the 
previous features (that is, event characterization and local event detection). Thus, in 
order to tackle such gap, we propose WINdowed TENsor decomposition for Densifica-
tion Event Detection (WINTENDED), an event detector that combines tensor decom-
position with statistical tools to automatically spot and characterize densification 
events in time-evolving networks. In this context, we revise and extend our previous 
work (Fernandes et al., 2019) by providing: (i) a more detailed description of the prob-
lem addressed and proposed solution, (ii) a more complete literature review and (iii) a 
more extensive empirical evaluation (including more baselines and networks) as well 
as a more detailed and complete analysis of the results. Additionally, we provide some 
insights on how to adapt our method to detect events associated with an abrupt change 
in the edges weights, not necessarily associated with densification events.

This work is organized as follows. In Sect.  2, we discuss the literature on event 
detection. In Sect. 3 we provide the background needed to understand this work. The 
problem addressed is formally formulated in Sect. 4, the proposed method is described 
in Sect. 5 and the corresponding experiments are presented in Sect. 6. We conclude in 
Sect. 7.
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2  Related work

Event detection in time-evolving networks has been traditionally approached via similarity-
based approaches. Generally, the idea exploited consists of accounting for the similarity (or 
dissimilarity) between successive network states. In other words, network state at time t is 
compared with the previous network state(s), and if a high dissimilarity is observed, then 
instant t is likely to model an unexpected behaviour. The dissimilarity is interpreted as an 
anomaly score so that the higher the dissimilarity, the higher the abnormality of the instant. 
These methods differ mainly on the network representation and similarity metric. In Shou-
bridge et al. (2002), Kapsabelis et al. (2007), the authors used the graph edit distance and 
its variations to measure the level of “change” between two network states. In other works, 
the network state is first summarized and the similarity is measured in the new represen-
tation space. The new representation is usually based on node features over time, such 
as degree or number of triangles in the egonet (Akoglu and Faloutsos, 2010; Berlingerio 
et al., 2013). It is noteworthy that most of these methods focus on global events detection.

Additionally, this problem has also been approached from matrix and tensor decomposi-
tion perspectives. In particular, assuming that the network is modelled by a sequence of (adja-
cency) matrices, the standard approach consists of measuring the network approximation error 
in each timestamp. In more detail, if tensor decomposition is being considered, all the network 

(a)

(b)

Fig. 1  Illustration of event scale types using the email network of employees in a company: a global densi-
fication event - there is a substantial increase of comunication between all the employees in the company b 
local densification event - there is a substantial increase in the communications between a subset of employ-
ees (in red) (Color figure online)
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instants available are (jointly) decomposed and the reconstruction error at time t is obtained 
(Kolda and Sun, 2008; Koutra et al., 2012). Instants of time for which the reconstruction error 
is high indicate that the network behaviour at that instants is different from the general behav-
iour and, consequently, are associated with a high abnormality. In this tensor decomposition-
based approach, all the network instants must be available, thus making the method unsuitable 
for real-time analysis.

Other tensor decomposition-based approaches include the exploratory analysis of the 
decomposition factors (Papalexakis et al., 2014) and the combination with multivariate statis-
tics (Fanaee-T and Gama, 2016). The main limitation of the exploratory analysis approach is 
its supervised and non-automatic nature. On the other hand, the method proposed in Fanaee-T 
and Gama (2016) is automatic but was not designed for neither local event detection nor char-
acterization of events.

Another related problem is the dense block detection in sparse tensors. In this context Shin 
et al. (2016, 2017) developed methods for finding periods of time in which a subnetwork den-
sification occurs. The main difference between this problem and the one addressed in this 
work is that in our setting the densification occurs at a single time instant, while in dense block 
detection, the densification may occur in a period of multiple instants.

Recently, an ensemble approach, SELECT, has been proposed by Rayana and Akoglu 
(2016), which combines some of the previous approaches (including similarity Akoglu and 
Faloutsos 2010 and matrix decomposition approaches Papadimitriou et al. 2005), thus being 
able to improve accuracy.

Our method stands out from the standard tensor decomposition-based approaches in the 
sense that (i) it processes the network in sliding window mode, thus being able to capture 
local dynamics as it is demonstrated in this work, and (ii) it is automatic. Besides, it is able 
to overcome (non-tensor-based) state-of-the-art predictors limitations, such as the inability to 
spot local events and to identify the source of the anomalous instant. Nonetheless, it should be 
noted that our method was designed to spot densification events only.

For a complete overview of the methods in event detection and their limitations, the reader 
may refer to Akoglu et al. (2015), Ranshous et al. (2015).

3  Background

3.1  Tensors

Multi-dimensional numerical arrays are referred to as tensors. In this context, a M-dimen-
sional tensor is an array: X ∈ ℝ

N1×N2×…×NM , in which the value of the entry (i1, i2,… , iM) is 
represented as X(i1, i2,… , iM) . Moreover X(∶, ∶,… , Id,… , ∶) represents the restriction of X  
to dimension Id in mode d. In other words, it represents the tensor obtained by fixing the dth 
dimension to Id . The tensor size is given by N1 × N2 ×… × NM.

Similarly to matrices, there are decomposition methods for tensors. In this work, we con-
sider the well-known CANDECOMP/PARAFAC (CP) (Kolda and Bader, 2009). Given a 
3-order tensor, X ∈ ℝ

N1×N2×N3 , the goal of CP is to find R (factor) vectors �r ∈ ℝ
N1 , �r ∈ ℝ

N2 , 
�r ∈ ℝ

N3 , where 1 ≤ r ≤ R , such that:

(1)X ≈

R∑

r=1

�r◦�r◦�r
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The vectors associated with each mode may be column-wise arranged into the so 
called factor matrices �,� and � : � = [�1|�2|… |�R] ∈ ℝ

N1×R,� = [�1|�2|… 
|�R] ∈ ℝ

N2×R and � = [�1|�2|… |�R] ∈ ℝ
N3×R.

The approximation error of the resulting tensor is computed as:

so that the error in slice K is given by

which, in the case of time-evolving networks, gives the reconstruction error at instant K.
Since in this work we are dealing with networks (modelled as non-negative count 

data), we exploit Alternating Poisson Regression CP (CP-APR) (Chi and Kolda 2012), 
which takes into account these constraints.

4  Problem addressed

By adapting the event definition formulated by Ranshous et al. (2015), to refer to den-
sification events only and to also include local events, the problem addressed in this 
work is as follows:

Given a time-evolving network G, characterized by the sequence of adjacency 
matrices over time instants 1 to L, {At

G
}L
1
 , find the instants of time � , with 1 ≤ � ≤ L , 

for which there is a substantial density increase of a subnetwork G′.
In this context, the density of subgraph G′ , which corresponds to the ratio of exist-

ing edges among all possible edges, may be regarded as a scoring function sG′ . There-
fore, we are interested in finding subgraphs G′ such that there exists an instant of time 
� satisfying:

for 𝛿 > 0 and st
G′ denoting the density of subgraph G′ at time t. The event is dubbed as 

global if it involves the majority of the nodes (Fig. 1a) or as local otherwise (Fig. 1b).
It is worth mentioning that, in some contexts, an abrupt and substantial decrease in 

the interaction level can also be regarded as an anomaly (Ranshous et al., 2015). For 
example, in a daily proximity network between students in a school, an abrupt lack of 
communication between one of the students and the others may indicate that the stu-
dent missed school at the given day. We leave this type of event to be considered in a 
future extension of the proposed framework.

For the sake of simplicity and since in this work we target only densification events, 
throughout the rest of the manuscript, whenever we refer to an event we are referring 
to a densification event (unless explicitly stated differently).

‖‖‖‖‖‖
X −

R∑

r=1

�r◦�r◦�r

‖‖‖‖‖‖F
≡

√√√√√
N1∑

i=1

N2∑

j=1

N3∑

k=1

([
X −

R∑

r=1

�r◦�r◦�r

]
(i, j, k)

)2

(2)
‖‖‖‖‖‖

[
X −

R∑

r=1

�r◦�r◦�r

]
(∶, ∶,K)

‖‖‖‖‖‖F
≡

√√√√√
N1∑

i=1

N2∑

j=1

([
X −

R∑

r=1

�r◦�r◦�r

]
(i, j,K)

)2

(3)s𝜏
G� − st

G� > 𝛿,∀t ≠ 𝜏.
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5  Proposed method

Idea Tensor decomposition has been successfully applied to detect communication pat-
terns in evolving networks (Papalexakis et  al., 2012; Jeon et  al., 2016). The concepts 
unveiled allow us to discover which entities interact and when. Therefore, the idea 
exploited in our approach is to search for (anomalous) communication peaks in the pat-
terns discovered by tensor decomposition.

Data A network is modelled as a tensor of type entities × entities × time correspond-
ing to the sequence of adjacency matrices over time. The network is processed using a 
sliding window W of length L, which corresponds to the number of timestamps in the 
window.

Method Given a tensor modelling the network time window W , WINTENDED 
encompasses the following stages, summarized in algorithm 1 and illustrated in Fig. 5. 

1. Decomposing the tensor window:
  We decompose W by applying CP-APR with R components: W ≈

∑R

r=1
�r◦�r◦�r , 

with �r, �r, �r ≥ 0 . �r and �r are associated with entities dimensions and �r is associated 
with the time dimension. Each concept r, defined by {�r, �r, �r} , induces a subgraph G′

r
 

formed by the nodes so that 

 (we refer to these nodes as the active nodes in concept r). Their time activity is 
described by �r.

  This process is illustrated in Fig. 2.
2. Identifying the anomaly candidates: Since each �r may be interpreted as a communi-

cation/activity vector, then an isolated abrupt peak corresponds to an isolated outlier in 
this vector.

(4)
{

nodesar = {i ∶ �r(i) > 0}

nodesbr = {i ∶ �r(i) > 0}
;

Fig. 2  Illustration of the pattern 
extraction via tensor decomposi-
tion within the time window
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  Based on this, for each concept r, we search for the instant of time � , such that 
� = argmaxitr(i) , which is an anomalous instant candidate. Moreover, we verify if the 
following condition holds 

 where Q1 and Q3 are the first and third quartile, respectively, and IQR = Q3 − Q1 
(Dawson 2011), as illustrated in Fig. 3.

  Intuitively, the time points satisfying (5) are far from the expected level of interaction, 
modelled by tr . Therefore, if condition (5) does not hold for � , the maximum activity in 
the time window falls within the expected range of values and the instant is not an event. 
Otherwise, since the temporal activity vector approximates a Poisson distribution, it is 
necessary to check the level of abnormality of � . In other words, we need to check if � 
is associated with an isolated high value.

  To meet this end, we must verify if 

 for 𝜏 = argmaxi≠𝜏 tr(i) and 𝛾 > 0 . In particular, if tr(𝜏) <= Q3 + 3IQR , then (6) holds 
for some � and � is flagged as an anomaly instant. Otherwise, since 

∑R

i=1
tr(i) = 1 , it 

is likely that Q3 + 3IQR ≈ 0 (as in Fig. 4), in which case either (i) � and 𝜏 fall within 
a similar range of values (consequently, tr(𝜏) − tr(𝜏) <= 𝛾 and � is not an anomalous 
instant) or (ii) tr(�) is an isolated high value and corresponds to an event.

  Therefore, � is flagged as anomaly candidate if it satisfies (5) and (6). This process is 
applied through ispeak in algorithm 1.

  In order to improve WINTENDED, further research should be carried out to derive 
a rule to spot also sparsification events. This feature is left as future work.

(5)tr(𝜏) > Q3 + 3IQR

(6)tr(𝜏) − tr(𝜏) > 𝛾

Fig. 3  Illustrative example of the anomaly candidate identification in a given time window W : candidates 
are the concepts for which the time factor vector has an isolated extreme outlier
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3. Characterizing and verifying the anomaly candidates: The goal of this stage is to 
discard the anomaly candidates that do not represent a densification pattern. To achieve 
our aim, we construct the graph induced from the anomaly candidate and quantify its 
presence in the remaining timestamps.

  In more detail, let Ĝ�
r
= (V �

r
,E�

r
) be the subgraph associated with the anomaly candi-

date, where: 

(a) the nodes set is given by V �
r
= nodesar ∪ nodesbr;

(b) the adjacency matrix is given by AĜ(nodesar , nodesbr ) so that AĜ = �r◦�r◦�r(𝜏) 
(with � being the anomalous instant).

   Then, we carry out a “cleaning procedure” by discarding from the subgraph Ĝ′
r
 the 

nodes which are less active in the original networks as they do not substantially con-
tribute to the densification event.

  Finally, we quantify the anomaly level of the candidate Ĝ′
r
 based on three statistics, 

measured in each timestamp of the time span:

– the density of the subgraph induced by V ′
r
 in the original network;

– the average weighted node degree of the graph induced by V ′
r
 in the original net-

work;
– the rate of edges in the anomaly candidate subgraph Ĝ′

r
 that are also present in 

the original graph.

   The candidate is flagged as event if for all those three vectors, the anomalous times-
tamp � is an isolated extreme outlier. Otherwise, it means that the candidate does not 
substantially deviate from the behavior observed in the time window. This process is 
carried out when executing isanomaloussubgraph in algorithm 1.

  For each component flagged as event, we store the anomalous instant � and an activity 
score which accounts for the size of the corresponding subgraph, computed as: 

 where N is the total number of nodes in the network. Additionally, we also store the 
event pattern corresponding to the concept r: {ar, br, cr}.

Ensemble The main parameters of WINTENDED are the number of factors to con-
sider in tensor decomposition and the window length.

Regarding the number of components, the choice of an appropriate value is not 
straightforward. In particular, the suitable number of components depends not only on 
the type of data (Papalexakis 2016) but also on the task at hands (da Silva Fernandes 
et  al. 2017). Consequently, it is not guaranteed that a given state-of-the-art estimator 
provides the most adequate estimate for our scenario. Based on this, and inspired by 
Dunlavy et al. (2011), Hosseinimotlagh and Papalexakis (2018), we considered models 
with varying number of components so that we are able to understand the “strength”/

(7)activity_scoreG� =
|nodesar ∪ nodesbr |

N
,
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relevance of the pattern: if a pattern is predominant, then it is expected to be present 
regardless of the number of components used.

With respect to window length, we also considered varying values with the goal 
of making the method more robust to seasonality effects arising from using a single 
window length. Note that if there is a periodical interaction peak at each t timestamps, 
then by considering a window length of less than t timestamps, the peak is isolated 
within the time window and the method assumes that such peak is abnormal. On the 
other hand, by considering a window length higher than t then the periodicity is cap-
tured and the peaks are not flagged as events. Therefore, the choice of the set of values 
should take into account the time granularity and periodicity (if known). In particular, 
by setting LK as the maximum window length, we are guaranteeing that the events 
spotted by WINTENDED do not repeat within a time span of length LK . Still, it should 
be noted that LK should be relatively small in order to ensure that tensor decomposition 
accurately models the network dynamics.

Let {Ri}
M
i=1

 and {Li}Ki=1 be the set of numbers of components and the set of win-
dow lengths to be considered, respectively. Then, we generate a model Mij using Ri 

Table 1  Illustrative example on how to rank the events detected by the ensemble based on the number of 
models detecting them and the number of nodes in the anomalous subgraph (activity score). Higher ranks 
are associated with more abnormality

�
1

�
2

�
3

�
4

number of models detecting the event 4 2 3 2
activity_score 0.5 0.53 0.33 0.67
final abnormality rank 1 4 2 3

20 40 60 80 100 120 140 160
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100
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Fig. 4  Event detected by WINTENDED in the manufactoring e-mail network
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components and a window length of Lj for each possible combination. Finally, the 
results of the several models are combined. The events are ranked according to the 
number of models detecting them and their number of participants (that is, their activ-
ity score, computed using (7)). In more detail, the anomaly score is as high as the num-
ber of models detecting it. Moreover, if two events are detected by the same number of 
models, then the event involving more nodes (that is, having a higher activity score) is 
considered to be more anomalous.

As an illustrative example, let us consider an ensemble of 6 models that detected 
the events in Table 1. Then �1 is considered the most anomalous event, followed by �3 . 
Since both �2 and �4 were detected by the same number of models, we have to check 
their activity score so that the event associated with a larger subgraph is considered 
more anomalous. Therefore, �4 is considered more anomalous than �2.

Specification For each event detected, WINTENDED provides the factor vectors 
associated with the event, as the one shown in Fig. 4, thus allowing the identification 
of the nodes contributing to the event and the event instant (in this case, the anomaly is 
caused by employee 35 at the seventy-seventh day).

5.1  Notes on complexity

Applying WINTENDED to a given time window of a network requires the decomposition 
of the time window and the posterior automatic analysis of each of the R factors produced.

According to Hansen et al. (2015), the cost per iteration of the algorithm used to fit a 
CP-APR model, is approximately proportional to the number of non-zero entries in the 
tensor. In this context, since we target networks, the number of non-zeros corresponds to 
the number of edges in the network timestamps. Therefore, CP-APR is efficient when deal-
ing with sparse networks, in which the number of edges is substantially smaller than the 
number of nodes (Ching et al., 2015). Also, by processing the network in a sliding window 
mode, we substantially reduce the amount of data to be processed at each time (on the 
contrary to the traditional tensor decomposition-based approaches Kolda and Sun 2008; 
Koutra et al., 2012).

Based on this, since the number of non-zero entries in the tensor is usually much larger 
than the number of components R, then the computational cost of the proposed approach is 
dominated by the tensor decomposition calculation. In more detail, the cost of processing 
a given time window in WINTENDED is proportional to the number of edges in the time 
window. It should be noted that if an edge connecting nodes a and b is repeated in multiple 
timestamps then each occurrence must be accounted as a distinct edge.
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6  Experiments

The empirical evaluation was carried out on MATLAB using Tensor Toolbox (Bader and 
Kolda, 2015, 2007). The code is publicly available at https:// github. com/ ssfer nandes/ Event 
Detec tor.

6.1  Datasets

In this work we considered two synthetic networks (synth and synthx) and seven real-
world time-evolving networks: stockmarket (Costa, 2018), challengenet (Rayana 
and Akoglu, 2014), enron (Priebe et  al., 2005), manufactoring (Michalski et  al. 
2011), reality (Eagle and Pentland, 2006), biketrips1 and zagrebtraffic (Carić 
and Fosin, 2020). In particular, stockmarket maps the correlation between assets in the 
stock market at each semester. challengenet is a computer communication network. 
enron and manufactoring are email exchange networks whose edges are weighted 

1 https:// www. capit albik eshare. com/ system- data
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by the number of emails between two people. reality is a proximity network derived 
from bluetooth devices logs. biketrips is network of bike trips between stations in 
Washington so that an edge between two stations has a weight equivalent to the number of 
bike trips between those stations. Finally, zagrebtraffic is part of the road network of 
Zagreb whose edges are weighted by the relative average speed between the corresponding 
road intersections at a given time of working days, with summer months (July and August) 
excluded from the data (for a more detailed description of this network, the reader may 
refer to Carić and Fosin (2020)). All these networks are summarized in Table 2. As a pre-
processing step, networks with large weights (all but stockmarket, biketrips and 
zagrebtraffic), were subjected to a logarithmic scaling on the edge weights, similarly to 
Berry and Browne (2005).

The first four networks (synth, synthx, stockmarket and challengenet) 
were used as validation networks, while the remaining were analysed as case studies.

With respect to the validation networks, the synthetic datasets were generated so that 
they simulated a network. To achieve our aim, we decomposed a sampled subnetwork of 
dblp (Desmier et al., 2012) using CP with 3 components and combined the node factor 
matrices with an artificial temporal factor matrix (modelling a periodical cosine, a linear 
trend and a white noise vector with 60 elements each). Then three local anomalies were 
injected into the network by replacing three subgraphs with less than 10 nodes with a 
dense subgraph extracted from a different network (InfectiousPatterns Isella et al., 
2011). synth and synthx differ on the nodes and size of the sampled subnetwork.

In stockmarket, according to the analysis provided in Costa (2018), which is also 
supported by the known economic situation, there are two major events (at timestamps 24 
and 30).
challengenet was characterized by three events: abrupt node degree increase 

at instants 376, 377 and 1126. Nonetheless, in order to enrich this network, we injected 
anomalies by increasing at least 10× the degree of one node at timestamps 500 and 612 and 
by injecting a clique subgraph at timestamp 1053.

It should be noted that the local events injected into the networks were of three different 
types, described in Table 3. In synth and synthx the events consisted of nodes interact-
ing with a subset of nodes with which they did not interact in the remaining instants. In 
challengenet, we artificially increased the degree of a given node, not necessarily very 
active, and we injected a clique subgraph within a subset of interacting nodes. Moreover, 
the scale of the events in each of the validation networks are listed in Table 4.

6.2  Design of experiments

We processed each network using a sliding window with no overlap and applied the detec-
tion procedure to each time window. In our ensemble, we considered window lengths 
according to the time granularity of the datasets (presented in Table 2). In particular, we 
used: 5,10 and 15 timestamps for synth, synthx and reality; 8, 10 and 12 times-
tamps for stockmarket; 9, 18 and 36 timestamps for challengenet; 8, 12 and 16 
weeks in enron; 7, 14 and 21 timestamps for manufactoring; 12, 24 and 168 times-
tamps for bike and 4, 6, 8 timestamps for zagrebtraffic. Regarding the number of 
components, we used 15, 25, 35, 50 and 75 in all datasets. Finally, according to our prelim-
inary experiments, the method was able to spot the events, even when we set a small value 
for � (in (6)) and, consequently we considered � = 0.05 in all of the experiments.
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6.3  Baselines

Since our aim is not only to improve over the existing tensor decomposition-based 
approaches but also over the state-of-the-art detectors, we considered two baselines: the 
tensor decomposition reconstruction error (TDRE) (Koutra et  al., 2012) and the recent 
ensemble approaches proposed by Rayana and Akoglu (SELECTH and SELECTV) (Ray-
ana & Akoglu, 2016).

Regarding TDRE, in order to make a fair comparison, we also considered an ensemble 
of models with different number of components. The timestamps were ranked based on the 
reconstruction error and the ranking results of the multiple models were averaged.

In SELECT variants, for each ensemble we considered the time-series of one of three 
node features: weighted degree (w), unweighted degree (uw) and number of triangles in the 
node egonet (t). Thus, the method SELECT[X][f ] refers to the application of a SELECT, 
with ensemble approach X ( X ∈ {H,V} ), using feature f, for f ∈ {w, uw, t}.

6.4  Evaluation metrics

In the evaluation process it should be taken into account that WINTENDED does not 
assign an abnormality score to all instants, contrary to the baselines. In fact, it only assigns 
an abnormality score to the instants flagged as events by the method. Therefore, as evalu-
ation metric, we considered the top-k precision. This metric consists of the rate of true 
events within the top-k anomaly scores, where k is the number of true events.

Nonetheless, it is important to account for how far the method is from making an accu-
rate detection, whenever possible. For example, let us assume that (i) there are 3 true 
events, �1, �2 and �3 and (ii) the list of instants sorted by abnormality score (in descend-
ing order - from the most anomalous to the least) is [�1, �2,◻, �3 …] by method a and 
[�1, �2,◻,◻,◻, �3 …] by method b, with ◻ representing an instant of time different from 
�1, �2 and �3 . Then, both methods have the same top-3 precision ( ≈ 66, 7% ), but method a 
is closer to an accurate detection. Note that in the sorted scores list of method a, �3 is the 
instant with the fourth highest abnormality score while in method b, the same instant was 
associated with the sixth highest abnormality score. Based on this, we considered an adap-
tation of the Levenshtein edit distance (Levenshtein, 1966) to quantify the deviation of the 
abnormality rankings provided by the methods under study. The idea consists of counting 
the number of operations needed to arrive to the correct ranking (that is, to a top-k preci-
sion of 1).

6.5  Results

We carried out our experimental evaluation in order to address the following questions:

– Q1: Is WINTENDED accurate?
– Q2: How irregular are the events flagged by WINTENDED?
– Q3: Does WINTENDED have potential to find other types of events?

The results were as follows.
RQ1: Is WINTENDED accurate?
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For the sake of simplicity, we start by analysing the results in each network separately 
and then present the general observations. The accuracy results on the validation datasets 
are presented in Table 5.

Synth As depicted in Table  5, our approach was able to spot the three injected local 
anomalies, while TDRE was able to spot one event and SELECT variants failed at detect-
ing all the known events.

We further analysed the top-3 ranked events flagged by the baselines and verified that 
two of such instants, 9 and 12, corresponded to the interaction peaks of the network (and 
therefore, may be regarded as global events, which resulted from the usage of a white noise 
factor). Our method also flagged instants 9 and 12 as anomalous. However, a lower anom-
aly score was assigned to them, being the 5th and 6th ranked instants, respectively.

Moreover we measured the Levenshtein edit distance (see Table 6), and observed that 
TDRE was the state-of-the-art approach whose estimates were closer to a correct ranking. 
On the other hand, SELECT variants, specially SELECTH variants, were far from an accu-
rate prediction.

Synth X In this network, our method failed at detecting one of the events, but still, it 
outperformed the baselines. The performances of TDRE and SELECT were similar to the 
previous. In particular, SELECT variants spotted interaction peaks which resulted from the 
usage of the white noise factor in the dataset generation.

Moreover, we measured the deviation level using the Levenshtein distance (Table 6) and 
verified that SELECTV variants were in general, the methods exhibiting the less erroneous 
rankings, followed by TDRE. SELECTH variants were far from identifying the true events. 
In particular, we further investigated the abnormality rankings provided by SELECTH and 
observed that the true event associated with the highest anomaly score was at least 26th in 
the abnormality ranking. Finally, we note that tensor decomposition was not able to find 
patterns associated with one of the true events and, consequently, WINTENDED did not 
assigned an abnormality score to such instant. Because of this, the WINTENDED devia-
tion was not computed in this network.

Stock Market Both WINTENDED and SELECT variants were able to detect the events 
in stockmarket, which corresponded to global events, involving at least 75% of the 
nodes. Still, TDRE failed at detecting them: semesters 24 and 30 were the 22th and 27th 
positions in the abnormality rank. We believe that this is due to the inability of tensor 
decomposition to model local dynamics when processing a large tensor, which in this case 
corresponds to the set of all timestamps in the network. Such issue does not hold when 
applying WINDTENDED because of its sliding window processing that allows the captur-
ing of the local dynamics.

Challenge Network We observed that WINTENDED was the method exhibiting the 
highest precision, while TDRE was the least accurate method. In particular, by taking a 
closer look at the results (Table  7), we observed that SELECT variants failed at detect-
ing the local events. Moreover, it is important to note that the event only flagged by our 
approach (at instant �3 = 500 ) was very local, resulting from increasing the degree of a 
(not very active) node substantially. In other words, despite increasing the node degree 
considerably, this increase remained unnoticed to the baseline detectors because the node 
was originally not very active. Additionally, we also observed that the amount of deviation 
was similar for all baseline approaches but TDRE, that was extremely far from spotting one 
of the true events.

How irregular are the events flagged by WINTENDED?
Since there is few availability of real-world networks with known events, we addition-

ally considered four real-world networks as case studies.
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It is noteworthy that the number of events found in these networks was large, suggesting 
that isolated communication patterns between a considerable small number of individuals 
are regular and should not be considered as abnormal. Therefore, we discarded the events 
with an activity score (in other words, percentage of nodes in the subgraph) lower than the 
median score over all events. By carrying out this cleaning step we are guaranteeing that 
the events flagged are more likely relevant and do not correspond to a regular but very local 
pattern.

For each of these networks, we analysed the top-12 events flagged by the event detectors 
considered in this study, with the goal of assessing how the corresponding subgraphs den-
sity (at the instant flagged) deviated from the remaining instants.

Case study 1: Enron The top anomalous weeks flagged by WINTEDED were weeks 39, 
84, 90, 104, 107, 120, 125, 126, 127, 129, 144 and 145. We further analysed each of such 
weeks, along with the associated subgraphs and were able to:

– verify the abnormality of the flagged subgraphs in its corresponding week. In particu-
lar, we verified that for all of such weeks, the number of edges of the anomalous sub-
graphs was at least 7× larger at the anomalous week than in the remaining (reaching, in 
most of the cases, a density greater than 50× the average);

– spot the topic of the conversation, given the emails content availability2. For example, 
we verified that:

– week 84 was the interaction peak within the subgraph formed by Richard Shapiro 
(Vice President), James Steffes (Vice President), Jeff Dasovich (Government Execu-
tive) and Steven Kean (Vice President) - the individuals flagged in the anomaly - 
and the discussion was on the preparation of a document on the Gas issues;

– the event at week 104 was caused by Jonh Lavorato (CEO), that sent an email to 
almost all employees scheduling a meeting.

   These two cases illustrate, respectively, a local and a global event.

From the events detected by WINTENDED, TDRE spotted instants 107 and 145 (which 
are global events, involving all employees) and SELECT variants flagged, in general, seven 
instants in common with our approach (also corresponding to events involving the majority 
of the employees). We analysed the other events flagged by these methods but we were not 
able to spot considerable irregularities in terms of node activity peaks.

Case Study 2: Manufacturing We analysed the top 12 ranked instants and verified that 
all of them corresponded to the interaction peak of a given (flagged) node and the other 
nodes flagged in the event, similarly to example in Fig. 4. We note that, as illustrated in 
Sect. 1, this type of events is “expected” in an email network and, in this case, results from 
the sending of an email to a broad set of employees in the manufacturing company.

We further analysed the subgraphs flagged as anomalous by our method and observed 
that their density was at least 20× larger at the anomalous instants than the average across 
all instants - a behaviour which attests the abnormality of the events found.

We also applied the baselines to this network and observed that SELECTH and 
SELECTV variants provided a top-12 set of anomalous instants similar to the one obtained 
with WINTENDED. We further investigated the few instants of time flagged only by the 

2 http:// www. enron- mail. com/ email/
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SELECT variants and observed that they revealed global anomalies (which were also 
detectable when tracking the density of the network over time).

Finally, it is noteworthy that the TDRE top-12 ranked events totally differed from the 
ones provided WINTENDED and the other baselines. Once more, we believe TDRE was 
not able to capture local (but regular) dynamics, thus flagging such periods as anomalous.

Case Study 3: Reality mining According to our analysis, all of the instants flagged by 
WINTENDED corresponded to an interaction level at least 4× stronger in the anomalous 
instant than the average, between the flagged individuals. Around half of these events 
were also flagged by SELECT variants and only two were also flagged by TDRE. From 
the remaining instants flagged by SELECTV, we observed that there was one instant that 
corresponded to an interaction peak that was not flagged by WINTENDED; however, no 
anomaly evidence was found for the others.

Besides the 2 instants flagged in common with WINTENDED, the top ranked instants 
by TDRE were mostly associated with extremely low network activity instants, which were 
neglected, leading to a high reconstruction error.

Case Study 4: Bike trips From analysing the top-12 abnormal instants provided by 
WINTENDED, we verified that all of them corresponded to a densification peak of at least 
7× the average density (of the anomalous subgraph). However, it should be noted that, on 
the contrary to the previous networks, the hourly bike network is expected to be periodic 
with density peaks in the rush hours. Therefore, an event detector should only flag a rush 
hour if it deviates from the remaining rush hours, which was the case of WINTENDED: 
most of the instants flagged by WINTENDED occurred at 9 a.m in weekdays (correspond-
ing to rush hours) but the traffic level at the instants flagged as abnormal was even higher 
than the usually observed in the same hour of a different weekday. In Fig. 6 we provide an 
example of a pattern modelling one of the anomalies found: at 9 a.m. of September, 19th 
there was more traffic than usual between the stations flagged in the nodes factor vectors. 
This event is confirmed by the number of trips occurring between the stations flagged (see 
Fig.  7): the number of trips between the stations is periodic but, still, it is substantially 
higher at 9 a.m. of September, 19th.

SELECTH and SELECTV variants flagged around 3 and 6 events in common with 
WINTENDED, respectively. No strong anomaly evidence was found for the remain-
ing instants of top-12 SELECT variants ranking. TDRE top instants differed from all of 
the other approaches and were mainly few active instants of the network (similarly to the 
observed in the reality case study).

Q3: Does WINTENDED have potential to find other types of events?
While our method was designed to spot densification events, we also wanted to study 

how we could adapt the method to detect other types of events.
For example, in a traffic network, in which the nodes represent intersections and the 

edges represent road segments, there are no densification events (because the structure of 
the network is always the same) but the volume and speed of the traffic on those roads 
changes over the day and is indicative of rush hours, accidents, ...In such scenario, an event 
is characterized by an abrupt change in the weights of the edges.

With this type of event in mind, we removed the verification step of WINTENDED 
(step 3 in Fig. 5) and we additionally incorporated a rule similar to (5) but for low extreme 
outliers (Dawson 2011) so that the resulting method is not restricted to detecting high 
peaks. We applied the resulting variant to zagrebtraffic network, which is characterized 
by three anomalous events: significant vehicle speed decrease in two rush hours (due to 
congestions caused by large number of daily commuters) and increase in vehicles speeds 
during night time interval.
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Fig. 5  Illustration of the WINTENDED processing of a network window with 3 timestamps
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Table 2  Datasets Summary

Dataset Type Nodes Time granularity Size

synth Synthetic network – – 500 × 500 × 60

synthx Synthetic network – – 1000 × 1000 × 60

stockmarket Stock market network assets 6 months 30 × 30 × 42

challengenet Computer communica-
tion network

hosts 10 minutes 125 × 125 × 1304

enron E-mail exchange network employees week 184 × 184 × 44

manufacturing E-mail exchange network employees day 167 × 167 × 272

reality Proximity network mobile phones working day 94 × 94 × 175

bike Bike traffic network stations hour 573 × 573 × 720

traffic Traffic road network road junctions time intervals of a day 34 × 34 × 8

Table 3  Types of local events injected in the networks

Dataset Injected local events Number 
of events

synth/synthx Instant substantial interaction between nodes which do not 
interact often

3

challengenet Instant substantial node degree increase 2
Instant substantial subnetwork densification 1

Table 4  Number of event types 
in the validation networks

Dataset Global Events Local events

synth 0 3
synthx 0 3
stockmarket 2 0
challengenet 3 3

Table 5  Top-k precision in the 
validation networks

Best performance in bold

synth synthx stockmarket chal-
len-
genet

TDRE 0,33 0,33 0,00 0,17
SELECTHw 0,00 0,00 1,00 0,67
SELECTHuw 0,00 0,00 1,00 0,67
SELECTH t 0,00 0,00 1,00 0,67
SELECTVw 0,00 0,00 1,00 0,67
SELECTVuw 0,00 0,00 1,00 0,83
SELECTV t 0,00 0,00 1,00 0,83
WINTENDED 1,00 0,66 1,00 1,00
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We observed that our method flagged the periods mentioned above as abnormal. In par-
ticular, it flagged the morning and evening rush periods as low speed peaks and the night 
time as high speed peak.

Table 6  Level of deviation from 
a correct detection according to 
the Levenshtein edit distance in 
the validation networks

synth synthx stock-
market

chal-
len-
genet

TDRE 15 19 25 164
SELECTHw 38 48 0 10
SELECTHuw 51 29 0 6
SELECTH t 51 29 0 6
SELECTVw 32 5 0 7
SELECTVuw 33 5 0 4
SELECTV t 33 5 0 4
WINTENDED 0 ∖ 0 0

Table 7  Top-k precision per 
event type in challengenet 

Best performance in bold

Method Global Events Local Events

TDRE 1/3 0/3
SELECTHw 3/3 0/3
SELECTHuw 3/3 1/3
SELECTH t 3/3 1/3
SELECTVw 3/3 1/3
SELECTVuw 3/3 2/3
SELECTV t 3/3 2/3
WINTENDED 3/3 3/3
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Fig. 6  Event (9 a.m. 19th September) flagged by WINTENDED in bike traffic network
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Once more, we also applied the baselines to this data and verified that all of them 
flagged the evening rush hour as a top-3 event. The other instants in top-3 anomalous 
rank were periods of time immediately prior or posterior to the rush hours, in which 
the traffic flowed normally, and therefore did not represent an anomaly.

Based on this, the output of the modified version of WINTENDED was more mean-
ingful than the others.

General observations In this study, we observed that:

– TDRE performance was generally poor: not only it failed at spotting known events 
(as in stockmarket), but it also provided substantially different abnormality 
rankings (as in manufactoring case study). We believe that if the networks 
under study exhibited a more regular evolution over time (with no local dynamics), 
then TDRE would be able to spot the events. However, in such scenario most of the 
existing detectors would also perform well.

– The estimates made by the variants of SELECT considerably differed on whether 
using SELECTH and SELECTV ensembles, with SELECTV exhibiting more accu-
rate results. In this context, SELECTV variants were mostly successful in spot-
ting global events (as in stockmarket), but failed at detecting some of the local 
events (as occurred in the synthetic networks). We believe that its inability to detect 
some local events arises from the fact that this type of events may not affect the 
node features considered by the method. In the specific case of the synthetic net-
works, an event caused by a subset of nodes interacting with nodes they usually do 
not interact may not affect the node degree nor number of triangles, thus remaining 
undetectable by these approaches.

– WINTENDED was able to detect not only global events (exhibiting as good or 
better performance than the baselines in stockmarket), but also local events, 
which are more difficult to spot (exhibiting the best performance in the synthetic 
networks).

  Moreover, we observed that WINTENDED has the potential to find other types 
of events in different networks.

Fig. 7  Number of bike trips 
between the stations flagged in 
the event of Fig. 6
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7  Conclusions

In this work, we propose a new perspective regarding the application of tensor decom-
position to event detection in time-evolving networks - the WINdowed TENsor decom-
position for Densification Event Detection (WINTEDED). In particular, we resort to a 
sliding window processing in order to capture local dynamics of the networks and use 
statistical tools to automatically identify network global and local density peaks from 
the window tensor decomposition result. Moreover, our method provides the pattern 
associated to each flagged instant, thus allowing for the characterization of the events.

According to our empirical study, our method spots irregular density peaks even if 
they occur between a small subset of nodes, on the contrary to its competitors that fail at 
identifying local abnormalities.

In order to make our method a more versatile and powerful tool, as future direction, 
it would be interesting to make WINTENDED robust to detect different types of events 
simultaneously, independently of the network type.

Acknowledgements This work was financed by National Funds through the Portuguese funding agency, 
FCT - Fundação para a Ciência e a Tecnologia within project: UIDB/50014/2020 and by the European 
Regional Development Fund under the grant KK.01.1.1.01.0009 (DATACROSS). Sofia Fernandes also 
acknowledges the support of FCT via the PhD grant PD/BD/114189/2016. The traffic data used for this 
research was collected during project SORDITO, European Regional Development Fund under contract 
RC.2.2.08-0022. Finally, the authors would like to acknowledge the SocioPatterns collaboration for making 
the dataset (in Isella et al. (2011)) available.

References

Akoglu, L., & Faloutsos, C., (2010). Event detection in time series of mobile communication graphs. In: 
Army Science Conference, pp. 77–79

Akoglu, L., Tong, H., & Koutra, D. (2015). Graph based anomaly detection and description: A survey. 
Data mining and knowledge discovery, 29(3), 626–688.

Bader, B. W., & Kolda, T. G. (2007). Efficient MATLAB computations with sparse and factored tensors. 
SIAM Journal on Scientific Computing, 30(1), 205–231. https:// doi. org/ 10. 1137/ 06067 6489.

Bader, B.W., & Kolda, T.G., et al. (2015). Matlab tensor toolbox version 2.6. Available online . http:// 
www. sandia. gov/ ~tgkol da/ Tenso rTool box/

Berlingerio, M., Koutra, D., Eliassi-Rad, T., & Faloutsos, C., (2013). Network similarity via multiple 
social theories. In: Advances in Social Networks Analysis and Mining (ASONAM), 2013 IEEE/
ACM International Conference on, pp. 1439–1440. IEEE

Berry, M. W., & Browne, M. (2005). Understanding search engines: Mahematical modeling and text 
retrieval. Siam

Carić, T., & Fosin, J. (2020). Using congestion zones for solving the time dependent vehicle routing 
problem. Promet - Traffic&Transportation, 32(1), 25–38. https:// doi. org/ 10. 7307/ ptt. v32i1. 3296.

Chi, E. C., & Kolda, T. G. (2012). On tensors, sparsity, and nonnegative factorizations. SIAM Journal on 
Matrix Analysis and Applications, 33(4), 1272–1299.

Ching, A., Edunov, S., Kabiljo, M., Logothetis, D., & Muthukrishnan, S. (2015). One trillion edges: 
Graph processing at facebook-scale. Proceedings of the VLDB Endowment, 8(12), 1804–1815.

Costa, P., (2018). Online network analysis of stock markets. Master’s thesis, University of Porto
Dawson, R. (2011). How significant is a boxplot outlier? Journal of Statistics Education, 19(2). https:// 

doi. org/ 10. 1080/ 10691 898. 2011. 11889 610
Desmier, E., Plantevit, M., Robardet, C., & Boulicaut, J.F., (2012). Cohesive co-evolution patterns in 

dynamic attributed graphs. In: International Conference on Discovery Science, pp. 110–124. 
Springer

Dunlavy, D. M., Kolda, T. G., & Acar, E. (2011). Temporal link prediction using matrix and tensor fac-
torizations. ACM Transactions on Knowledge Discovery from Data (TKDD), 5(2), 1–27.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



 Machine Learning

1 3

Eagle, N., & Pentland, A. S. (2006). Reality mining: Sensing complex social systems. Personal and 
ubiquitous computing, 10(4), 255–268.

Fanaee-T, H., & Gama, J. (2016). Event detection from traffic tensors: A hybrid model. Neurocomputing, 
203, 22–33.

Fernandes, S., Fanaee-T, H., & Gama, J. (2019). Evolving social networks analysis via tensor decompo-
sitions: From global event detection towards local pattern discovery and specification. In: Interna-
tional Conference on Discovery Science, pp. 385–395. Springer

Hansen, S., Plantenga, T., & Kolda, T. G. (2015). Newton-based optimization for kullback-leibler non-
negative tensor factorizations. Optimization Methods and Software, 30(5), 1002–1029.

Hosseinimotlagh, S., & Papalexakis, E.E. (2018). Unsupervised content-based identification of fake 
news articles with tensor decomposition ensembles. In: Proceedings of the Workshop on Misinfor-
mation and Misbehavior Mining on the Web (MIS2)

Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.F., & Van  den Broeck, W., (2011). What’s in a 
crowd? analysis of face-to-face behavioral networks. Journal of theoretical biology 271(1), 166–
180 http:// www. socio patte rns. org/ datas ets/ infec tious- socio patte rns- dynam ic- conta ct- netwo rks/

Jeon, B., Jeon, I., Sael, L., & Kang, U., (2016). Scout: Scalable coupled matrix-tensor factorization-
algorithm and discoveries. In: 2016 IEEE 32nd International Conference on Data Engineering 
(ICDE), pp. 811–822. IEEE

Kapsabelis, K. M., Dickinson, P. J., & Dogancay, K. (2007). Investigation of graph edit distance cost 
functions for detection of network anomalies. ANZIAM Journal, 48, 436–449.

Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM review, 51(3), 
455–500.

Kolda, T.G., & Sun, J., (2008). Scalable tensor decompositions for multi-aspect data mining. In: 2008 
Eighth IEEE International Conference on Data Mining, pp. 363–372

Koutra, D., Papalexakis, E.E., & Faloutsos, C. (2012). Tensorsplat: Spotting latent anomalies in time. In: 
Proceedings of the 2012 16th Panhellenic Conference on Informatics, PCI ’12, pp. 144–149. IEEE 
Computer Society

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals. Soviet 
physics doklady, 10, 707–710.

Michalski, R., Palus, S., & Kazienko, P. (2011). Matching organizational structure and social network 
extracted from email communication. In: Lecture Notes in Business Information Processing, 
vol. 87, pp. 197–206. Springer Berlin Heidelberg

Papadimitriou, S., Sun, J., & Faloutsos, C. (2005). Streaming pattern discovery in multiple time-series
Papalexakis, E., Pelechrinis, K., & Faloutsos, C. (2014). Spotting misbehaviors in location-based social 

networks using tensors. In: Proceedings of the companion publication of the 23rd international con-
ference on World wide web companion, pp. 551–552. International World Wide Web Conferences 
Steering Committee

Papalexakis, E.E., (2016). Automatic unsupervised tensor mining with quality assessment. In: Proceed-
ings of the 2016 SIAM International Conference on Data Mining, pp. 711–719. SIAM

Papalexakis, E.E., Faloutsos, C., & Sidiropoulos, N.D., (2012). Machine Learning and Knowledge Dis-
covery in Databases: European Conference, ECML PKDD 2012, Bristol, UK, September 24-28, 
2012. Proceedings, Part I, chap. ParCube: Sparse Parallelizable Tensor Decompositions, pp. 521–
536. Springer Berlin Heidelberg, Berlin, Heidelberg

Priebe, C. E., Conroy, J. M., Marchette, D. J., & Park, Y. (2005). Scan statistics on enron graphs. Com-
putational & Mathematical Organization Theory, 11(3), 229–247.

Ranshous, S., Shen, S., Koutra, D., Harenberg, S., Faloutsos, C., & Samatova, N. F. (2015). Anomaly 
detection in dynamic networks: a survey. Wiley Interdisciplinary Reviews: Computational Statis-
tics, 7(3), 223–247.

Rayana, S., & Akoglu, L., (2014). An ensemble approach for event detection and characterization in 
dynamic graphs. In: ACM SIGKDD ODD Workshop

Rayana, S., & Akoglu, L. (2016). Less is more: Building selective anomaly ensembles. ACM Transac-
tions on Knowledge Discovery from Data (TKDD), 10(4), 42.

Shin, K., Hooi, B., & Faloutsos, C. (2016). M-zoom: Fast dense-block detection in tensors with qual-
ity guarantees. In: Joint European Conference on Machine Learning and Knowledge Discovery in 
Databases, pp. 264–280. Springer

Shin, K., Hooi, B., Kim, J., & Faloutsos, C., (2017). D-cube: Dense-block detection in terabyte-scale 
tensors. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Min-
ing, pp. 681–689. ACM

Shoubridge, P., Kraetzl, M., WALLIS, W., & Bunke, H. (2002). Detection of abnormal change in a time 
series of graphs. Journal of Interconnection Networks, 3(01n02), 85–101.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Machine Learning 

1 3

da Silva Fernandes, S., Tork, H.F., & da Gama, J.M.P., (2017). The initialization and parameter setting prob-
lem in tensor decomposition-based link prediction. In: 2017 IEEE International Conference on Data 
Science and Advanced Analytics (DSAA), pp. 99–108. IEEE

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



1.

2.

3.

4.

5.

6.

Terms and Conditions
 
Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center
GmbH (“Springer Nature”). 
Springer Nature supports a reasonable amount of sharing of  research papers by authors, subscribers
and authorised users (“Users”), for small-scale personal, non-commercial use provided that all
copyright, trade and service marks and other proprietary notices are maintained. By accessing,
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the Creative Commons license used will apply. 
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